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Abstract 

Across languages, the speech signal is characterized by a predominant modulation of the 

amplitude spectrum between about 4.3-5.5Hz, reflecting the production and processing of 

linguistic information chunks (syllables, words) every ~200ms. Interestingly, ~200ms is also 

the typical duration of eye fixations during reading. Prompted by this observation, we 

demonstrate that German readers sample written text at ~5Hz. A subsequent meta-analysis with 

142 studies from 14 languages replicates this result, but also shows that sampling frequencies 

vary across languages between 3.9Hz and 5.2Hz, and that this variation systematically depends 

on the complexity of the writing systems (character-based vs. alphabetic systems, orthographic 

transparency). Finally, we demonstrate empirically a positive correlation between speech 

spectrum and eye-movement sampling in low-skilled readers. Based on this convergent 

evidence, we propose that during reading, our brain’s linguistic processing systems imprint a 

preferred processing rate, i.e., the rate of spoken language production and perception, onto the 

oculomotor system.  
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Speech production and perception form a quasi-rhythmic information processing cycle1. During 

spoken communication, our brain entrains to the frequency structure of the speech signal2,3, 

suggesting that the temporal structure of the linguistic stimulus drives neural processes in 

auditory and language processing systems4. Across languages, the amplitude modulation 

spectrum of natural speech peaks consistently in a frequency range between 4.3 and 5.5Hz5,6, 

which reflects that informative signals (e.g., syllables7,8) are processed by the listeners’ brains 

every ~200ms9. Interestingly – and we hypothesize not accidentally – a typical eye fixation 

during reading has a very similar duration, i.e., between ~200ms for orthographically 

transparent writing systems like German or Finnish10,11 and ~250ms for character-based 

systems like Chinese11,12.  

 Abundant research has used eye-movement recordings to study reading at high temporal 

resolution, exploring, for example, how reading is influenced by word length, word frequency, 

or word predictability given a sentence context12. Among various measures that can be derived 

from eye-movement recordings, timing measures like fixation duration are most frequently 

examined and considered precise markers of reading speed13,14. These temporally highly-

resolved measurements have so far only been analyzed at the level of individual items – 

typically words. However, other domains of cognitive research (like attention15) demonstrate 

that eye movements can also be subjected to frequency-based analyses. We here demonstrate 

that a frequency-based exploration of how written text is sampled by the eyes can open up new 

perspectives onto several fundamental questions related to the process of reading, including 

whether reading is related to spoken language processing as recent investigations of word-per-

minute measures suggest16 and whether the visual system’s sampling of linguistic input differs 

from eye movements during non-linguistic tasks or between different languages or writing 

systems. 
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 To address these foundational questions, we first used an empirical dataset17 to 

determine eye-movement sampling frequencies for 50 native speakers of German during 

sentence reading compared to a non-linguistic control task, using two different methodologies. 

Next, to determine the generality of these results and to investigate possible cross-linguistic 

differences in the sampling rate of reading, we conducted a meta-analysis of 124 studies from 

14 different languages. To this end, we established a frequency analysis for fixation durations 

extracted from published eye-tracking studies. Finally, we acquired two novel datasets, one 

with 48 non-native and one with 86 native speakers of German, to investigate directly the 

relationship between the sampling frequency of reading and speech production rates on a 

subject-by-subject level. Experimental and meta-analytic results show (i) that written text is 

sampled in the same frequency range as spoken language, (ii) that the sampling rate of reading 

has an upper limit at ~5Hz, observable in languages with transparent orthographies, (iii) that 

this rate can be modulated depending on the complexity of the writing system (e.g., in character-

based as opposed to alphabetic scripts or in alphabetic scripts with opaque grapheme-phoneme 

mapping), and (iv) that a direct coupling between reading and speech rates is only found in 

persons with lower levels of reading skill. 

 

Results: Estimating the sampling rate of reading 

50 healthy volunteers read sentences from the Potsdam Sentence Corpus (144 sentences 

presented as a whole; 1,138 words in total; see Ref.10) while movements of their right eye were 

tracked (resolution: 1,000Hz). As non-linguistic control task, participants scanned ‘z-strings’ 

that were constructed by replacing all letters of the sentence by the letter ‘z’ (e.g., “Ein 

berühmter Maler hat sich selbst ein Ohr abgeschnitten”/ A famous painter cut off his own ear. 

was transformed to “Zzz zzzzzzzzz Zzzzz zzz zzzz zzzzzz zzz Zzz zzzzzzzzzzzzz.“; see Methods for 

details and Ref.17 for previous results from this dataset). Given that fixation numbers do not 
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differ significantly between sentences and z-strings17–19, similar scan paths are assumed which 

qualifies z-strings as valid control stimuli for reading experiments (see Supplementary 

Information 1 for a detailed comparison of scan-paths).  

Fixation durations. After preprocessing (leading to removal of 3.1% of the data), we 

estimated mean fixation durations separately for each participant and experimental condition. 

Figure 1a shows that fixation durations (presented here as subject-specific means) are shorter 

for reading than scanning (average: 197ms vs. 249ms, respectively; Effect size: 52ms; Cohen's 

d =1.57; t(49)=11.1; p<.001). This has been reported previously for this dataset17 and replicates 

earlier results for German18, English20, and French19 in which fixation durations increased from 

reading to scanning between 38-42ms. 

As a first characterization of rhythmic eye-movement patterns during reading, we 

plotted for each sample point after stimulus onset the probability that a saccade occurs (Fig. 

1b). This analysis demonstrates distinct peaks visible at regular intervals, providing evidence 

that eye-movements follow a rhythmic structure in both reading and scanning. Importantly, this 

rhythmic pattern is more pronounced and faster during reading. Dominant sampling rates were 

estimated directly from fixation durations, as well as using classical frequency analysis. While 

the former approach is important because fixation durations are also the basis for the subsequent 

meta-analysis, the latter approach allows us to evaluate the validity of fixation-duration-based 

frequency estimation. 
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Figure 1. Reading-related sampling rates. (a) Subject-specific mean fixation durations from 50 
participants (dots), the overall mean (circle), and confidence intervals (colored bars) while 
reading sentences on the Potsdam sentence corpus10 and scanning z-strings. Lines connect 
reading with z-string scanning data, per subject, to visualize effects at the single-subject level. 
Violin plot shows the distribution of individual means (Blue: Scanning; Green: Reading; similar 
in d and f). (b) Mean saccade probability (across all participants and stimuli, separated by task) 
relative to the first saccade of the sentence, with a non-linear regression line. (c) The sampling 
period t of one event was defined as the duration of a fixation plus its preceding saccade. 
Displayed is the distribution of these sampling periods for sentence reading (green) and z-
string scanning (blue), with estimated means (‘+’ symbol and dashed lines) and modes 
(asterisk and solid lines). (d) Subject-specific mean sampling frequencies f (i.e., equals to 1/t) 
and the overall mean (crossed circle) based on the sampling periods shown in c. (e) Power-
spectrum for reading and z-string scanning, estimated across all participants using Fourier 
transform analysis. (f) Individual peak frequencies estimated from individual power spectra and 
their mean (crossed circle). See Methods for details.  
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To estimate sampling rates from fixation durations, we first estimated sampling periods 

t (i.e., the time from the start of a saccade to the start of the next), by adding to each fixation 

duration (N=112,547) the duration of the preceding saccade. Figure 1c shows the distribution 

of all sampling periods across participants, separately for reading and z-string scanning. Note 

that due to the ex-Gaussian distribution of fixation durations typical for fixation duration data21, 

the mean (dashed line) overestimates the central tendency, whereas the mode (solid line) – by 

definition – is a better representation of the predominant sampling period (Fig. 1c). Next, we 

estimated an eye-movement sampling frequency f for each participant and condition, by 

dividing 1sec by the subject-specific mode of the sampling period in seconds. This revealed a 

higher average sampling rate for reading (5.0Hz) relative to the control task (4.2Hz; Figure 1d). 

This difference was significant (Cohen's d=-1.16; t(49)=-8.2; p<.001) and 45 of 50 participants 

showed a numeric reduction of sampling frequency from reading to scanning (grey lines in Fig. 

1d). We find virtually the same pattern of effects when regressive saccades are removed (i.e., 

when analyzing only single fixation cases; Cohen's d=-1.0; t(49)= -6.9; p<.001; absolute values: 

4.9Hz and 4.2Hz for reading and scanning, respectively) and only slightly higher values when 

restricting analyses to inter-word re-fixations (i.e., fixations after regressive saccades; 5.2Hz 

vs. 4.6Hz, respectively; Cohen's d=-0.8; t(48)=-5.5; p<.001; note that one participant was 

excluded due to the absence of regressive saccades in the scanning task).	Sampling rates of 

reading and scanning, thus, are highly similar between forward-oriented and regressive eye 

movements (r=0.6; t(96)=6.7; p<.001). Therefore, all further analyses will not differentiate 

between these cases. Note that estimating sampling rates from the mean (rather than mode) of 

fixation durations results in lower rates for reading (4.5Hz) and scanning (3.7Hz). This results 

from an overestimation of the central tendency by the mean in right skewed distributions (see 

Fig. 1c) and indicates that this procedure would be inadequate. 
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Finally, power spectra of reading vs. z-string scanning were estimated using canonical 

frequency analysis. For each task, we created a time series (resolution 1,000Hz) starting with 

the first saccade of the first participant and ending with the last fixation of the last participant, 

with a ‘1’ at the exact time of saccade onset and ‘0’ elsewhere. Note that saccade onsets are the 

appropriate event for generating this time series, as they are the re-occurring event and can be 

measured with high accuracy22. Subsequently, power spectra of these task-specific event 

timecourses were estimated via Fourier Transform to visualize periodic signal components 

across subjects (see Methods). Corroborating the results of the first analysis approach, a 

prominent peak was found at 5Hz for reading and a somewhat less pronounced peak at ~4Hz 

for scanning (Figure 1e). To compare these estimates between reading and scanning, we next 

estimated separate power spectra for each participant. Individual peaks were retrieved, averaged 

(Figure 1f), and statistically compared. This analysis reproduces the sampling frequencies 

estimated from the mode of fixation durations, with frequencies of 5.0Hz and 4.4Hz for reading 

and scanning, respectively (Cohen's d=-1.12; t(49)=-7.9; p<.001). There was a high correlation 

between the two analysis approaches (reading: r=.80; t(48)=9.3; p<.001; scanning: r=.62; 

t(48)=5.5; p<.001), which underscores the validity of sampling-duration-based frequency 

estimations. 	

To summarize, a quantitative frequency-domain characterization of eye-tracking data 

shows that the predominant sampling frequency during reading in German, across participants, 

is found at ~5Hz. This frequency representation of the reading process falls squarely within the 

boundaries of the predominant modulation frequencies of 4.3-5.5Hz determined for speech 

signals across languages5,6 which in turn have a clear reflection in the neuronal response to 

speech3. We observed the ~5Hz peak during reading using two different analysis strategies, i.e., 

when estimating sampling frequencies from saccade and fixation durations and when analyzing 

the sequence of saccade events in the frequency domain. Attentive scanning of z-strings shows 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 28, 2021. ; https://doi.org/10.1101/391896doi: bioRxiv preprint 

https://doi.org/10.1101/391896
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

9 

highly similar scan path characteristics compared to reading18,19, but a significantly lower 

sampling frequency at ~4.2Hz, convergent with findings from non-linguistic attentional 

reorienting tasks15,23.  

An analysis of the pupil response in this same dataset had previously indicated higher 

cognitive effort during reading as compared to z-string scanning17. This finding most likely 

reflects the additional involvement of reading-specific and linguistic processes, like lexical-

semantic access, beyond the oculomotor sampling itself. Thus, the specific sampling rate 

observed for reading is unlikely to be driven exclusively by (perceptual or cognitive) features 

of the stimulus. In light of the overlap with the rate of spoken language, we tentatively propose 

that the observed sampling rate of ~5Hz may reflect functional constraints imposed by the 

interface nature that the process of reading has between visual and linguistic processing (which 

developed primarily based on spoken language). We speculate that the brain’s language systems 

impose the cortical rate at which speech is produced and perceived onto oculomotor 

programming systems exclusively during reading, possibly to optimize language-related 

information processing.  

This hypothesis predicts that the overlap of reading and speech rates should generalize 

across languages and writing systems. On the other hand, writing systems differ substantially 

between languages11,24, and even within writing systems, the mapping from orthography to 

meaning differs between languages25. For example, the letter a in cat vs. ball maps onto two 

different speech sounds in English, whereas it maps onto the same sound in the German 

translations of these words (Katze vs. Ball). This letter-to-sound correspondence strongly 

influences reading acquisition26, so that among the alphabetic writing systems, opaque 

orthographies (writing systems like English with inconsistent letter-to-sound correspondences) 

are associated with lower reading accuracy during the first years of learning to read. These 

differences would be suggestive of cross-linguistic differences in the frequency at which written 
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text can be sampled, and recent experimental evidence like the observation of longer fixation 

durations for Chinese as compared to Finnish or English11 seems to support this prediction.  

 

Results: Cross-linguistic meta-analysis of reading rates 

To investigate the language generality of the alignment between speech and reading rates, we 

conducted a meta-analysis of sampling frequencies during reading in 14 different languages, 

based on 1,420 fixation duration estimates extracted from 124 original studies published 

between 2006 and 2016 (see Methods for selection criteria). In addition to this cross-linguistic 

comparison, we examined (a) possible differences between character-based vs. alphabetic 

writing systems and (b) the effect of letter-to-sound correspondence among alphabetic writing 

systems. Also, we explore (c) the cross-linguistic correlation between eye-movement sampling 

frequencies and language-specific peaks of the speech modulation spectra, and (d) the 

association between reading rates and information density (linguistic information per syllable27) 

across languages.  

All studies selected for inclusion reported mean fixation durations. However, as 

discussed above, mean fixation durations are not a valid representation of the predominant 

sampling duration in fixation data and accordingly not the preferred basis for calculating the 

sampling rate of reading. We used 29 full empirical datasets to develop a transformation 

function that allowed us to estimate the mode from the mean fixation durations reported in the 

original publications. In brief, this involved fitting ex-Gaussian distributions to the empirical 

distributions of these datasets, retrieving distributional parameters (including mean and mode), 

and on this basis optimizing a regression-based transformation that estimates the mode from 

the mean (see Methods and Supplementary Methods for details). For the meta-analysis, mean 

durations were extracted from published studies and transformed to the mode. The sampling 
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period t (interval from saccade onset to end of following fixation; see above) was obtained by 

adding an estimate (the mode saccade duration from Study 1; 29ms) to the mean fixation 

duration. Lastly, the sampling frequency was calculated as f=1/t. 

Fixation durations and sampling frequency: Descriptive statistics. Figure 2 shows that the 

majority of mean fixation durations derived from the reading studies were between 200-300ms 

(upper panel), which transforms to mean sampling frequencies between 3.9-5.2Hz (lower 

panel). Note that languages with only one original study (Arabic, Italian, Polish) were excluded. 

As expected, the majority of studies was conducted in English28. 10 of the 14 languages in our 

meta-analysis fall between the minimum (4.3Hz) and the maximum (5.5Hz) of previously 

reported5,6 language-specific peaks of the speech amplitude modulation spectra (see Figure 2, 

lower panel, dashed lines). The remaining four languages fell within the range of one standard 

deviation around the language-specific speech peaks (Figure 2, lower panel, dotted lines). 

Considering the language-specific confidence intervals, only for Chinese can we be confident 

that the sampling rate is lower than the range of the speech amplitude modulation spectra5,6. Of 

the 1,420 individual sampling rate values derived from the studies included in our meta-

analysis, only 3.0% fell below, and only 0.3% were above the range of one standard deviation 

of the mean (see violin plot in the lower panel of Figure 2). Nevertheless, the mean sampling 

rate of reading observed when averaging across all languages is at the lower bound of the speech 

modulation range, i.e., at 4.3Hz (Figure 2, lower panel).  

Effect of writing system on sampling frequency. The observed cross-linguistic differences, 

arguably, are related to different language characteristics. One plausible hypothesis is that the 

higher perceptual complexity of character-based scripts (as opposed to alphabetic scripts24) may 

modulate the rate at which written text is sampled. Figure 3a shows that the eye-movement 

sampling frequency is significantly lower for Chinese (the only character-based language 

included; n=205 estimated sampling rates from 20 studies; mean: 3.9Hz) than for alphabetic 
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languages (n=1,215 sampling rates; 97 studies; mean: 4.5Hz; effect size estimate (Est) of 

difference: -.70Hz; Standard error (SE): .13; t=5.2; see Methods for details on linear mixed-

effects modeling).  

 

	

Figure 2. Meta-analysis of reading-related sampling rates. Fixation durations (upper panel) 
and corresponding eye movement sampling frequencies (lower panel) for 14 different 
languages. Violin plots (left) represent the respective distributions of all 1,420 
duration/frequency values extracted from the included studies, independent of language. Bars 
reflect confidence intervals, and circles reflect the mean. In the right panel, each dot reflects 
one study (mean number of fixation durations per study: 12.4); Bars reflect confidence 
intervals, and circles reflect the mean across studies for each language. In the lower panel, 
the dashed lines represent the range of the means of the peak amplitude modulation spectrum 
that was empirically determined for speech in different languages in independent work5,6. The 
dotted lines represent the range between the lowest mean minus one standard deviation and 
the highest mean plus one standard deviation for the same data (that was manually read out 
from Figure 3c in Ref.5 and from Figure 7 in Ref.6). For Arabic, 1 study/ 12 fixation durations 
are available, Chinese 20/205, Dutch 5/45, English 65/965, Finnish 3/21, French 2/3, German 
14/48, Hebrew 3/28, Italian 1/1, Jap. 2/12, Korean 2/39, Polish 1/1, Spanish 4/10 and Thai 
3/30. 
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Effect of orthographic complexity on sampling frequency. Within alphabetic languages, one 

plausible hypothesis is that the orthographic difficulty of writing systems influences the speed 

of sampling the visual input29. To examine this, we quantified orthographic difficulty as a 

continuous predictor representing the number of grapheme-to-phoneme conversion rules30 as 

defined by computationally implemented dual-route models of visual word recognition31. 

Graphemes are letters or letter combinations that map onto one or multiple speech sounds 

(phonemes); for illustration, remember the above example of mapping the grapheme a onto one 

(Katze/Ball) vs. two (cat/ball) phonemes, requiring one vs. two rules. To date, computational 

implementations are available for only five out of the nine alphabetic languages included in this 

meta-analysis, which restricts this test to English, French, German, and Dutch (with n = 965, 3, 

48, 45 data points, respectively; Italian, the fifth language, was excluded due to lack of 

sufficient data points). A detailed comparison of these language-specific model 

implementations can be found in Ref.25. Figure 3b demonstrates that less transparent writing 

systems (operationalized as more grapheme-to-phoneme rules) elicit significantly lower 

sampling frequencies (Est: -.10Hz; SE=.03; t=3.0). Highly transparent orthographies (German, 

Dutch) produce relatively fast sampling rates around 5Hz (Fig. 3b).  

Figure 3. Comparison 
of writing systems. (a) 
Character vs. 
alphabetic contrast, 
including 205 fixation 
durations from 20 
Chinese reading 
studies (brown) and 
1,215 fixation 
durations from 97 
studies of reading in 
alphabetic languages 

(grey). (b) The effect of language transparency/opacity. Only studies from alphabetic 
languages for which the number of grapheme-to-phoneme rules could be quantitatively 
estimated from published computational models (see Methods) were used (four languages 
with a total of N = 1,025 fixation durations). Dots reflect each study, and crossed circles reflect 
the mean across studies for each language. The dashed line in (b) represents the 
approximation of the language transparency/opacity effect based on a linear regression. 
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Effects of speech rate and information density on sampling rates. Lastly, we explored the 

effect of cross-linguistic differences in speech rate5,6 and information density (information per 

syllable27) on the observed eye-movement sampling rates (see Methods). To control for the 

strong effects of orthographic differences on sampling rates (as above), linear mixed models 

were calculated that also included the factor alphabetic vs. character-based script (effect size 

estimates/Est in both models<-0.57Hz; SE<0.15; t>4). Neither the between-language 

differences in speech frequencies (Est: -0.03; SE=.03; t=0.8) nor information density (Est: -

0.03; SE=0.05; t=0.7) showed significant effects on the eye-movement sampling rate (all 

analyses including Chinese, Dutch, English, French, Japanese, and Spanish).  

As further exploration, we investigated the relationship between speech and reading 

rates within alphabetic languages for which estimates of orthographic complexity (grapheme-

to-phoneme rules) could be taken into account (English, French, Dutch). This analysis also 

failed to produce significant effects (Est.:0.06; SE=0.06; t=1.0). Still, the result indicated a 

positive relationship between peak speech modulation rate and eye-movement sampling rate. 

Note that we report this analysis despite its low statistical power (with only three languages), 

to motivate future investigations of the relationship between speech and reading rates. 

The meta-analysis (i) replicates the results obtained for German in the first section, (ii) 

shows that eye-movement sampling frequencies of most languages fall into the range of the 

peaks of speech amplitude modulation spectra (4.3-5.5Hz)5,6 determined in independent 

research, and (iii) shows a systematic modulation of reading rates by the perceptual difficulty 

of orthographic systems. We found similar average sampling rates for languages of comparable 

orthographic transparency levels (e.g., German and Dutch) and highest reading rates (~5Hz) in 

transparent (i.e., relatively easy-to-process) writing systems. Our tentative proposal that the 

linguistic processing systems underlying speech production and comprehension provide the 

temporal frame that ‘drives’ the oculomotor machinery during reading would predict a direct 
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relationship between the rate of speech production and the sampling rate of reading. In the 

present meta-analysis, this proposal could only be tested cross-linguistically and using highly 

aggregated data, and we found no robust support for this proposal. However, these analyses 

included small sample sizes as they were limited by the number of languages included. To 

investigate this proposal in more detail, we next conducted two new studies that examine the 

existence of associations between speech and reading rates at a subject-by-subject level. 

 

Results: Association of individual differences in speech and reading rates 

We tested the correlation between peaks in the speech modulation spectra of individual speakers 

and their eye-movement sampling rates during reading in two experiments. First, we tested 48 

learners of German (Study 3), as we expected to observe higher variabilities in both measures 

in non-native language learners than in native speakers32 and a more direct relationship between 

speaking and reading (similar to letter-by-letter reading in beginning readers33). We recorded 

eye movements from each participant while reading German sentences (implemented 

analogously to the reading task in Study 1) and a speech sample based on a ‘small talk 

interview’ (22 questions, on average 18 minutes of speech per participant, range: 6 to 28min). 

Also, we controlled for individual differences in reading proficiency statistically by adding a 

standard measure of reading skill34,35 (see Methods). The eye-movement sampling frequency 

was estimated based on the fixation durations (i.e., as in Experiment 1), and the speech 

modulation spectrum was examined analogous to previous reports6.  

Figure 4a shows the average speech modulation spectrum across participants (black 

line), with a peak at 4.2Hz, and individual spectra from all participants (gray lines). As expected 

for language learners, the peak of the spectrum was below that of native speakers (compare 

Figure 1) and on the lower border of the cross-linguistic range of mean speech rates5,6 (compare 
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Figure 2). Nevertheless, all participants produced peaks between 3Hz and 6Hz (Figure 4b), i.e., 

within the previously reported5,6 range of the standard deviations around the language-specific 

mean peaks (dotted line in Figure 4c). The peaks of individual speech modulation spectra and 

eye movement sampling frequencies were in a comparable range (Figure 4b; confirmed by a 

significant equivalence test36: t(47)=-2.0, p=.03) and positively correlated (Figure 4c; Effect 

estimate/Est=0.32; SE=0.15; t=2.1; p=0.04). Note that this correlation effect was estimated 

while controlling for individual differences in reading proficiency (Figure 4d; Est=0.032; 

SE=0.016; t=2.1; p=0.04) by calculating a linear model that estimates the individual eye-

movement sampling rate with speech modulation rate as predictor.  

 

Figure 4. Relationship of speech and reading rates in non-native German speakers. (a) 
Speech modulation spectrum from 48 non-native speakers of German. Y-axis: speech 
modulation index6; X-axis: speech modulation rate. For additional comparison, we present the 
mean range (dashed lines) and standard deviations (dotted lines) of the speech amplitude 
modulation spectra across languages, which were read out from Figure 3c in Ref. 5 and from 
Figure 7 in Ref. 6. (b) Eye movement sampling frequency in reading and the mean amplitude 
modulation spectrum in speech, for each participant. Lines connect the reading and speech 
frequencies of each individual, the violin plots represent the distribution of the data, bars 
represent the standard error of the mean and circles reflect the mean. (c) Positive correlation 
of the individual peaks of the speech modulation spectrum (x-axis), reflecting each participant’s 
speech rate, with the eye-movement frequency (y-axis) from the same participants. (d) 
Correlation between the eye-movement frequency (y-axis) and a paper-pencil based reading 
score (x-axis) reflecting a positive association of the eye-movement sampling rate and reading 
performance. Note that in (c) and (d) we present the individual sampling frequencies corrected 
for either reading skill and speech frequency, respectively, based on predictions from the fitted 
linear regression models used for statistical analysis. 

 

In a second, pre-registered study (Study 4), we assessed the relationship between speech 

modulation spectrum peaks and eye movement sampling frequencies in a group of 86 native 
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speakers of German (see Method; preregistration: https://osf.io/mjhkz). We replicated the 

finding that the peaks of the speech modulation spectra and eye movement sampling 

frequencies were in the same range (Figure 5a; equivalence tests for left and right eye: t’s>3.9, 

p’s<.001). The pre-registered correlation analysis showed a small positive, albeit not significant 

relationship between eye-movement sampling and speech modulation rates (Est.=0.07; 

SE=0.04; t=1.8; p=0.08). For further exploration (i.e., non-registered post-hoc analysis), we 

separately investigated and compared four subgroups created by a 2x2 combination of reading 

speed and reading accuracy. Specifically, we implemented a median split based on reading 

speed measured with a standardized German reading test (adult version of the SLS35; fast vs. 

slow: Median: 78% vs. 60%) and, orthogonal to this, divided the sample based on their sentence 

comprehension accuracies in the eye-tracking experiment (errors present vs. absent: Median 

0% vs. 15%). Only readers with the lowest skill level, i.e., slow and low comprehension 

performance, showed a robust positive association (N=21; Figure 5b, bottom right; Est.=0.33; 

SE=0.10; t=3.4; p=0.002). None of the other groups showed a significant correlation, resulting 

in a reliable interaction effect (Est.=-0.05; SE=0.02; t=2.8; p=0.005) which was also present 

when the percentage of regressions, skipping, and single fixation probabilities (see Table 1) 

were added as covariates to the model. Note that the low-reading skill group had a lower reading 

speed than the ‘slow only’ group that produced no errors (Est.=0.08; SE=0.04; t=2.0; p=0.049), 

but still had a substantially higher reading speed compared to the non-native readers from Study 

3 (Est.=0.57; SE=0.04; t=14.42; p<.001; for general eye-movement characteristics of both 

experiments see Table 1). In sum, we replicated the results of Study 3 selectively by 

demonstrating that the correlation between reading and speaking rates is limited to (here native 

German) speakers with low reading skills. 
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Figure 5. Relationship of 
speech and reading rates in 
86 native German speakers. 
(a) Eye movement sampling 
frequency measured during 
reading for the left and right 
eyes (left and center 
columns) and the mean 
amplitude modulation 
spectrum of samples of 
spoken speech (right 
column). Grey dots represent 

individual data points from all participants; lines connect the reading and speech frequencies 
of each participant. The violin plots represent the distribution of the data, filled bars represent 
the standard error of the mean, and circles reflect the mean. (b) The correlation between the 
speech modulation spectrum (x-axis) with the eye-movement sampling frequency (y-axis). The 
four panels represent performance subgroups depending on reading speed (slow vs. fast; 
median split) and whether they produced errors in an independent standardized reading test 
(see Methods for details).  
 

Table 1. Reading speed, reading comprehension, and basic eye tracking measures (fixation durations, skipping 
probability, single fixation cases, and percentage of regressions) for Study 3 and Study 4. For Study 4, data are 
presented separately for the four performance-based subgroups. All values reflect means and standard deviations.   

 Study 3 S. 4 Fast; No 
errors S. 4 Fast; Errors S. 4 Slow; No 

errors 
S. 4 Slow; 

Errors 
Reading speed 
(SLS test; % 
sentences read) 

26.0 (10.4) 79.0 (6.5) 78.9 (5.3) 58.0 (11.1) 53.6 (9.0) 

Reading speed 
(experiment; in 
sec.) 

4.8 (2.3) 2.4 (0.7) 2.2 (0.8) 2.4 (0.5) 2.7 (0.6) 

Reading 
comprehension 
(experiment; % 
errors) 

20 (40) 0 (0) 17 (4.4) 0 (0) 19 (14.5) 

Fixation 
duration (right 
eye, in ms.) 

223 (29) 192 (20) 188 (15) 196 (21) 198 (20) 

Fixation 
duration (left  
eye, in ms.) 

225 (30) 192 (20) 189 (15) 197 (21) 199 (20) 

Skipping (%) 7.5 (5.8) 19.8 (7.9) 24.0 (10.8) 15.7 (6.9) 14.7 (6.6) 

Single fixation 
cases (%) 35.5 (14.6) 52.3 (9.1) 54.1 (10.2) 56.6 (9.2) 52.7 (9.4) 

Regressions (%) 10.9 (4.5) 12.1 (5.3) 9.3 (6.9) 8.6 (4.9) 10.6 (6.0) 

Note. Statistical comparisons of the four groups from study 4 (2x2, error by speed groups interaction linear 
regressions models) yielded a significant main effect of reading speed group (slow vs. fast) for SLS-based reading 
speed (Estimate: 0.53; SE = 0.22; t(84)= 2.4, p=0.017; all other effects t’s < 1.7) and an obvious group difference 
on the percentage of errors (0 vs. ~18% errors). For eye-tracking measures, the only significant effect was a main 
effect of reading speed group on the percentage of skipping (Estimate: -0.09; SE = 0.03; t(84)= 3.4, p<0.001); no 
other main effect or interaction effect reached significance (all t’s < 1.94). 
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Discussion 

This (to our knowledge first) frequency-based investigation of eye-movements during reading 

shows that reading operates in a generally comparable frequency domain as the production and 

perception of natural speech. We first reproduced in a frequency-domain analysis previous 

insights based on fixation duration measures17–19, i.e., that eye-movements sample text with a 

higher rate than during comparable, cognitively less challenging non-linguistic tasks. More 

importantly, we demonstrate that the sampling frequency of reading lies within the range of 

previously observed speech rates for one language, German. Next, by integrating across 

languages data from 124 empirical studies, we show that eye-movement sampling varies 

between ~3.9Hz and ~5.2Hz, indicating a higher variability than previously assumed. While it 

was generally believed average fixation durations are similar even for very distinct 

orthographies like Chinese and English (Rayner12, p.1461), our meta-analytic results that show 

significantly higher sampling rates for alphabetic compared to character-based writing systems. 

However, average speech rates have been shown to vary more narrowly around 5Hz across 

languages (i.e., Ref.5: 4.3-5.4Hz; Ref.6: 4.3-5.5Hz), a range that would exclude the lower 

frequencies we observed for reading. Our meta-analytic findings indicate that this might result 

from differences in the complexity of the underlying orthographies (e.g., character vs. 

alphabetic), such that more computationally ‘difficult’ orthographies might slow down reading 

relative to highly transparent alphabetic orthographies.  

Subsequently, we demonstrate in two independent empirical studies that second language 

learners (of German) read in a lower frequency range than native readers (~4.3Hz vs. ~4.7Hz) 

and that only language learners and low skilled native readers show a positive correlation 

between individual reading and speech rates. Combined, these results suggest that reading, i.e., 

an internally controlled visual-perceptual process involving sophisticated oculomotor 
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programming, is remarkably well temporally aligned with the rate at which spoken language is 

produced (and perceived). We tentatively suggest that this observed association between speech 

and reading supports the existence of fundamental perceptual principles underlying the 

temporal structure of linguistic information processing, irrespective of modality16.  

Text is a temporally stable visual stimulus. However, our eye-movements impose 

temporal structure onto the linguistic input when sequentially sampling a text. The reading 

process - including the oculomotor programs - thus serves as an interface between a stable 

external percept and linguistic processing systems optimized for analyzing sequential speech 

input. The observation of faster sampling rates during reading as compared to parsing non-

linguistic letter strings (Study 1) indicates that sampling rates are not exclusively driven by the 

physical layout of the stimulus or by the cognitive effort of processing the stimulus (in which 

case they should have been slower). We tentatively propose that neural processors dedicated to 

the linguistic analysis of speech impose their preferred timing onto the process of reading. 

Evidence for the principled possibility of such internally driven entrainment of reading comes 

from the observation that manipulating the speed of ‘inner speech’ during reading has a causal 

effect on reading speed37–39.  

Our meta-analysis demonstrates that the sampling rate of reading varies between 

languages – but falls within the range of speech rates identified in cross-linguistic studies5,6. 

The meta-analysis also shows higher sampling rates for transparent vs. opaque orthographies, 

which converges with transparency effects within languages29,40 and cross-linguistic studies 

investigating reading development26,41,42. Direct associations between reading and speech rates 

could not be established in the meta-analysis given the small number of languages for which 

all necessary parameters were available. Empirical Studies 3 and 4 show this relationship on a 

subject-by-subject level, however only in less-skilled readers. This suggests that increasing 
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reading expertise makes the tight control of reading by linguistic processors in the brain 

obsolete.  

The differential coupling of speech and reading rates in low-skilled but not high-skilled 

readers may also result from other phenomena well-established in reading research, like word 

skipping, para-foveal preprocessing, and re-fixations. Reading is not merely a sequence of 

word-to-word fixations. From time-to-time, we skip words as a result of parafoveal pre-

processing43,44, which describes visual word recognition based on low acuity visual information 

from parafoveal regions of the retina. Also, words are sometimes fixated multiple times, e.g., 

to correct perceptual errors after suboptimal landing at the beginning or end of a word14,18,45 or 

when semantic inconsistencies must be resolved by re-reading46,47. We14 and others10 have 

shown that overall probabilities for word skipping and multiple fixations on a word are 

comparable (~20%) when reading the sentence materials used here. However, low-skilled 

readers show lower skipping rates (reflecting reduced parafoveal preprocessing48–50) and more 

re-fixations on the same word13. Thus, readers with lower skills focus more on fixated words 

and their components (letters, syllables)51, indicating a greater alignment between the 

phonological properties of the words and the eye-movements they elicit during reading33, 

suggesting that low-skilled readers sample written text with a temporal resolution close to the 

speech processing rate. In contrast, the faster reading rates of fluent readers indicate that they 

utilize the static nature of text better by processing the fixated word and following words (based 

on parafoveal vision) within one 'sample'.  

The specific characteristics of fixation behavior and text presentation during reading can 

also provide context for another intriguing phenomenon, i.e., the significantly lower sampling 

rates in character-based than alphabetic writing systems (while overall reading times for 

sentences with the same content are comparable between the two writing systems11). Here, 

fewer fixations per sentence are needed to sample the entire stimulus, while the increased 
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perceptual complexity and information density11 lead to longer fixation durations, relative to 

alphabetic languages. In the non-linguistic control task, participants were presented with stimuli 

consisting of many repetitions of the same letter. In this case, information density and 

perceptual complexity are low compared to all real-language stimuli. Nevertheless, we 

observed longer fixation durations in the z-string scanning task, which may indicate the 

presence of qualitatively different cognitive processes compared to reading. 

The frequency representation of reading-related eye-tracking data that we advance here 

can be construed as 'nothing but' a transformation of fixation and saccade duration data. This 

transformation also comes at the cost of zooming out to a 'meso-level’ representation of the  

data1, at which we rely on aggregated data (i.e., only one data point per participant), which is 

against the trend in eye-movement research of focusing on investigating single words and using 

regression methods for detailed analysis of, e.g., the influence of word characteristics52. Still, 

the frequency perspective proposed here provides a novel perspective onto component 

processes of reading as an interface between linguistic and orthographic processing. This new 

approach to reading research opens up several interesting new research questions. For example, 

it becomes possible to compare reading behavior more directly to evidence from other 

measurement modalities, such as oscillatory brain activation data53,54, and to other cognitive-

psychological domains, such as attention15,55, which typically do not have the advantage of 

exact duration measurements for different events of interest (e.g., during covert attention). 

Maybe most importantly, the frequency perspective on reading offers direct links to several 

neurodynamic phenomena in speech perception5,6, including the observation that dyslexic 

children56,57 and adults58 show altered cortical tracking of speech signals in the oscillatory 

domain. 

In conclusion, we show that during reading, our eyes ‘sample’ written text in the same 

frequency range in which speech is produced and perceived, which suggests that extracting 
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information from linguistic stimuli follows a similar temporal structure in time irrespective of 

modality. A plausible mechanism is to assume that linguistic processing has a preferred cortical 

rate of information uptake and thus acts as an internal temporal driver for eye-movements 

elicited during reading. Thus, eye-movements in reading are utilized as a temporal interface 

between a stable physical stimulus – written text – and brain systems that have evolved to 

process signals whose temporal structure is constrained by the characteristics of our vocal tract1. 

However, our empirical data also demonstrate that a direct coupling between speech and 

reading rates is only present in persons with low reading skills, which calls for future work to 

clarify the mediating role of reading expertise for the temporal relationship between speech 

processing and reading rates. We suggest that the novel frequency perspective on reading 

adopted here opens up new research paths, such as understanding slow or impaired reading, 

second language learning, or more directly investigating the commonalities and differences 

between reading and other cognitive processes. 

 

Methods 

Study 1, 3 and 4, Participants. Fifty (13 male; 18–47years old; M=24years; students at 

University of Salzburg) native speakers of German participated in Study 1, forty-nine (13 male; 

18–74years old; M=24 years) non-native German speakers participated in Study 3, and eighty-

six (36male; 18–53years old; M=25years; five had to be excluded based on preregistered outlier 

correction boundaries for both speech and reading rates; +-3 standard deviations) German 

speakers participated in Study 4 after giving informed consent according to procedures 

approved by the respective local ethics committee. For Study 1, see our original publication of 

this dataset17 for more details. Note that relative to the previously published report, one 

participant was added. For Study 3, participants with varying mother tongues (Arabic, 

Azerbaijani, Bulgarian, Chinese, English, Farsi, French, Georgian, Indonesian, Italian, 
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Japanese, Persian, Russian, Serbo-Croatian, Spanish, Turkish, Ukrainian, Hungarian, Urdu, and 

Uzbek) and, for Study 4, native German participants were recruited on the campus of Goethe 

University Frankfurt as part of a larger study. Also note that six participants from Study 3 

became literate without the acquisition of an alphabetic script. The power estimation for the 

fourth and final study resulted at sample size of 90 while assuming the effect size from study 3 

and a power of .9 (see preregistration for more details: https://osf.io/mjhkz).  

Procedure Study 1. Movements of the right eye were tracked with a sampling rate of 

1,000Hz (Eyelink 1000, tower mount system; SR-Research, Ontario, Canada). We used a 

forehead and chin rest to fixate the head of participants at a distance of 60cm from a 21” CRT 

screen. In the reading task, we used the Potsdam Sentence Corpus10 (PSC) which consists of 

144 sentences and a total of 1,138 words. Participants were instructed to read silently for 

comprehension, which was controlled by simple comprehension questions after 38 of the 144 

sentences. 

As a non-linguistic control task, participants performed a z-string scanning task using 

stimuli in which all letters of the sentence corpus were replaced by the letter z (preserving 

letter case, punctuation, and word boundaries. Participants were instructed to visually scan the 

meaningless z-strings as if they were reading; for obvious reasons, no comprehension 

questions were administered in this condition. Z-string scanning has been used as control task 

in previous studies17–20. While it is difficult to find a reasonable control task for reading (see, 

e.g., Discussion in Ref.18), z-string scanning proved to be interesting because participants 

produce similar scan path patterns (i.e., similar number of fixations) as when reading17–19. 

Interestingly, while z-string scanning produced longer mean fixation durations than reading, 

the pupil response indicated higher cognitive effort in reading, in the dataset used here17. We 

take this dissociation between cognitive effort and reading time as evidence for the operation 

of reading-specific cognitive processes that go beyond mere attentional processes. 
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In each task, a 9-point standard calibration was performed before the 10 practice trials, 

before the experimental trials, and after a break halfway through the experiment. A calibration 

was considered accurate when the mean error was below .5° of visual angle. Visual stimuli 

were presented in black letters (mono-spaced, bold Courier New font; 14 pt., width ~.3°) on 

white background with a 1,024 × 768 pixel resolution and a refresh rate of 120 Hz, using 

Experiment Builder software (SR Research, Ontario, Canada). In both tasks, a trial started 

when an eye-fixation was found at a dot presented 100 pixels from the left margin of the 

monitor, at the horizontal level of the fixation cross. For this fixation check, real-time analysis 

of eye-tracking data was used to present the sentence only when a fixation of at least 100ms 

was identified on the position of the dot. If no fixation was registered on the dot for 10 

seconds, a re-calibration procedure was initiated. Following the fixation check, the stimulus 

(i.e., sentence or z-string) appeared, with the center of the first word presented at the position 

of the fixation dot. As a consequence, participants always fixated the center of the first word 

of the sentence first. Stimulus presentation was terminated when participants fixated an X in 

the lower right corner of the screen after the sentence was read. As noted, in about 25% of 

sentences, the presentation was followed by a comprehension question to assure that 

participants processed sentences semantically. This procedure was practiced in ten trials prior 

to the main experiment. 

Procedure Study 3 and Study 4. Eye movement measurements during reading were 

acquired using the same stimulus materials and experimental procedures as in Study 1, with 

three exceptions: We used a desktop-mount eye tracker, a horizontal 3-point calibration 

procedure, and we did not implement the z-string scanning task. All other parameters were 

unchanged. For Study 4, we not only measured the right eye but also the left eye (i.e., 

binocular measurement). To acquire a speech sample from each participant, we conducted a 

brief interview in German involving 22 questions about, e.g., last weekend’s activities (see 
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the full list of questions in the Supplementary Methods). Speech was recorded with the 

Audacity software (Version 2.1.3; https://www.audacityteam.org/) on a standard computer.   

Data analysis: Fixation durations. The first word of each sentence was excluded from 

analyses, since the first word is known to be contaminated by stimulus onset effects. A total of 

994 words were analyzed per subject. For each participant, all fixation durations from all 

analyzed words were extracted. Words with fixation durations shorter than 60ms and longer 

than 1,000ms and saccade durations longer than 80ms were removed from the analysis (3.1% 

of the data) since they likely reflect machine error. On the basis of the remaining fixation 

durations, each participant’s individual mean fixation duration was calculated, separately for 

the reading and scanning tasks. To account for the well-known fact that eye fixation data have 

an ex-Gaussian distributions (see Figure 1c) data were log-transformed resulting in a normal 

distribution (Kolmogorov-Smirnov test not significant; D < .14; p > .7).  

Estimation of the sampling frequency. To estimate the sampling frequency of eye movements 

in reading, a repetitive event needed to be identified. We defined the time between the onset of 

a saccade and the onset of the following saccade as the sampling period, which can be 

transformed into a frequency value. Note that we used the EyeLink eye-tracker’s built-in 

saccade detection algorithm, which in a recent comparative evaluation showed the best 

detection rates for saccade onsets compared to all other algorithms22.  The distribution of the 

sampling period is ex-Gaussian, for both reading and z-string scanning (Figure 1c). Ex-

Gaussian distributions are a convolution of a normal distribution and an exponential distribution 

reflecting the rightward skew. As Figure 1c shows, the central tendency is best represented by 

the mode, so that all subsequent calculations were based on the participant-specific mode of the 

sampling period (which we denote t). These subject-specific representations of the predominant 

sampling period were transformed to an individual eye movement sampling frequency (f = 1 / 

t). 
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Power spectrum. We, secondly, performed a canonical frequency analysis by estimating a 

power spectrum for reading and scanning in Study 1. For Figure 1e, we estimated the power 

spectrum based on a time series starting with the first saccade of the first participant and 

ending with the last fixation of the final participant for each task. For Figure 1f, the time 

series was cut into participant-specific time series, so that individual peaks could be recovered 

for each participant for each task. The time series was implemented as a sparse sequence of 

zeros and ones (resolution: 1,000 entries per second), set to one at time points at which a 

saccade was initiated, and zero otherwise. Subsequently, a Fast Fourier Transform was used 

to estimate a power spectrum (power spectral density; psd_welch function from MNE-

Python59 ; 0-100Hz, length of the FFT used = 4096 samples) for each event time course 

separately.  

Speech amplitude modulation spectrum in Study 3 and 4. In a first step, all non-

participant audio signals were removed from the speech samples (i.e., interviewer questions 

and pauses before answers). To obtain the amplitude modulation spectrum we adapted the 

AM_FM_Spectra script6 (https://github.com/LeoVarnet/AM_FM_Spectra). The first 

adaptation divided the recording of each participant into speech segments of 10s length, 

resulting in a mean number of 110 segments per participants (range 35 to 167). In Study 4, we 

used 20s segments to increase the efficiency of the analysis (mean number of segments: 55; 

range 15 to 81). The second adaptation was an increase in the resolution of the amplitude 

modulation spectrum by decreasing the widths of the modulation filters from 3 to 10 per 

octave. After the speech amplitude modulation was estimated for each 10s speech segment, 

we retrieved the frequency at the peak of the modulation spectrum. Thereafter, we removed 

outliers by first eliminating unrealistic values lower than 2 and higher than 10 Hz, and then 

removed all values larger and smaller than two standard deviations from the mean. This 

procedure removed 3% of the data. Finally, we estimated the mean across all segments for 
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each participant. Here we found that one participant, in both studies, had a mean amplitude 

modulation spectrum larger than three standard deviations from the mean of the sample; this 

participant was excluded from the analysis. 

Meta-analysis. We included empirical studies that report eye-tracking results from natural 

reading tasks, published between 2006 and 2016. These studies were identified by the search 

term eye movement in "natural reading" or "sentence reading" or "text reading“ in the PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed) and PsychInfo 

(https://health.ebsco.com/products/psycinfo) databases. Additionally, 10 studies were 

manually identified (e.g., on the basis of reference lists in the identified papers). From the 

resulting sample of 124 articles we extracted 1,420 fixation durations, including mean fixation 

durations (all fixations on a word combined; 10% of the meta-analytic dataset), first fixation 

durations (duration of the first fixation on a word, which is most often reported in eye-tracking 

studies; 67% of the meta-analytic dataset), and single fixation durations (fixation duration in 

case a word was fixated only once, which is the predominant case for normal readers10; 23% of 

the meta-analytic dataset). A full list of all included studies can be found in the Supplementary 

Note. Note that the results of the above-reported experiment (Study 1) and its previous 

analysis17 were not included. This meta analytic dataset encompassed 14 different languages, 

with a range from one (Arabic, Italian, and Polish) to 65 (English) retrieved papers. Consistent 

with a general bias towards English in reading research28, 68% of fixation durations in our 

dataset were from English. 

Frequency estimation. In order to estimate the predominant sampling frequency, per 

published study, we have to take into account, once more, the ex-Gaussian distribution of 

fixation duration data. Following the general trend in the eye movement reading literature, most 

studies reported only mean fixation durations (with the exception of Ref.21, for which in 

addition the fitted ex-Gaussion paramaters were reported). For the purposes of the present meta-
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analysis, we developed a transformation function that allowed us to estimate the mode from the 

mean fixation durations reported in the original publications. This transformation function was 

then applied to transform mean fixation durations extracted from the published original studies 

into the mode. In a final step, sampling period was determined as mode fixation duration plus 

mode saccade duration (as estimated from study 1) and then converted into a frequency value.  

In brief (for details see Supplementary Methods), the development of this function 

involved (i) fitting ex-Gaussian distributions to the empirical distributions of fixation durations 

in 29 original datasets to which we had access (and which were not included into the meta-

analysis), and (ii) retrieving distributional parameters for each fitted distribution (specifically: 

μ, the mean of the normally distributed component; σ, its standard deviation; τ, the parameter 

reflecting the rightward skew, representing the contribution of the exponential distribution). 

This allowed us to (iii) apply a regression analysis to predict the mode (dependent variable) 

from the mean fixation duration (predictor variable). Figure 6a presents the final generalized 

mean-to-mode transformation function, applied to all possible fixation durations in the range 

covered by the meta-analysis. Figure 6b shows how well the modes of our 29 datasets can be 

recovered by this function: Despite some unsystematic noise, the numeric transformation was 

nearly perfect (i.e., beta = .95; SE = .23; t(28) = 4.1). We then used the transformation function 

to estimate the respective modes from the 1,420 mean fixation durations of the meta-analysis 

dataset. To obtain the sampling period t (i.e., the interval from the onset of a saccade until the 

end of the following fixation; see also Study 1, above), a saccade duration estimate of 29ms 

(i.e., the mode of saccade durations from the reading dataset used in the first experiment) was 

added to each of the mode fixation duration. This is feasible since saccade durations do not 

differ much between persons during reading (see, e.g., Ref.60: range 20-39ms, mean: 29ms). 

Finally, the sampling period values (t) were transformed into frequency values (f = 1 / t). 
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Figure 6. 
Transformation 

function for 
converting mean 
fixation durations into 
simulated mode 
values. The function 
was established 
using ex-Gaussian 
estimations on 29 
empirical datasets 
containing fixation 
durations. For details 
see Supplementary 

Methods. (a) Performance of the final mean-to-mode transformation function (blue line) 
demonstrated here for all 248 possible fixation durations, i.e., for each millisecond within the 
range of fixation durations included in the meta-analysis (149 – 397 ms; x-axis: empirical 
means). (b) Performance of the final mean-to-mode transformation function, as demonstrated 
by the relationship between empirically measured (x-axis) and simulated (y-axis) modes from 
the 29 datasets used for establishing the transformation function. 
 

Writing system comparisons. In order to explore whether or not the sampling frequency of 

reading is influenced by global characteristics of writing systems and languages, we 

implemented four tests. First, reading Chinese (205 fixation duration data points) was compared 

to all alphabetic writing systems (1,215 fixation durations). Note that the Korean (with an 

alphabetic syllabary orthography61) and Japanese (using a mixture of Kana and Kanji) studies 

in the meta-analysis could not be clearly assigned to the character or alphabet categories and 

therefore were not included into this contrast. Second, among the alphabetic scripts we 

examined how the differences in transparency/opaqueness of the letter-to-sound relationship 

influence reading rates by a continuous predictor representing the number of grapheme-to-

phoneme rules as defined by computationally implemented dual-route models25. A low number 

of grapheme-to-phoneme rules reflects a high transparency, meaning that letters more 

consistently represent only one speech sound. For example Italian, Dutch, and German are 

considered transparent orthographies, with 59, 104, and 130 rules, respectively 25). English and 

French, in contrast, are typically considered as in-transparent (opaque) with 226 and 340 rules, 

respectively, because letters map to multiple speech sounds on a regular basis. Third, we 
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investigated the cross-linguistic relationship between variance in the peak modulation spectra 

from speech and mean sampling frequencies in reading. To this end, we retrieved the 

modulation spectra for Chinese, Dutch, English, French, Japanese, and Spanish from Figure 3c 

in Ref.5 and from Figure 7 in Ref.6. The modulation spectra varied from 4.3 Hz in English to 

5.4 Hz in Dutch. Finally, in the fourth test, we investigated the relationship between eye 

movement sampling in reading and the information density of a language. This parameter 

indicates how dense a language codes meaning in texts27. The density is coded from 0 to 1 and 

could be retrieved for a subgroup of languages in the present meta-analysis dataset (i.e., 

Chinese, English, French, German, Italian, Japanese, and Spanish) from Ref.27. Density varied 

from dense languages like Chinese (0.94) to less dense languages like Japanese (0.49).  

All four effects were analyzed using linear mixed models (LMM62). In addition to the 

parameters of interest, we accounted for experimental settings (experiment vs. corpus-based 

studies), for the different eye trackers used (which may also imply use of different saccade 

detection algorithms), and for different fixation measures reported (mean, single, or first 

fixation duration) by introducing these parameters into the LMMs as fixed effects. Also, for the 

modulation spectrum and information density comparisons we added a factor contrasting 

character-based (i.e., Chinese) vs. alphabetic writing systems, to account for perceptual 

difficulties, and for all four LMMs we estimated the random effect on the intercept of study, to 

take into account unspecific differences between studies. t-values larger than 2 were interpreted 

as significant63.  
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Supplementary Methods: Mean to mode transformation function 
 
The typical distribution of eye fixation duration data in reading is ex-Gaussian (see Figure 1c). 

For simplification, one can decompose the ex-Gaussian distribution in a normal and an 

exponential distribution. This decomposition is a simplification on a mathematical level since 

both the normal and exponential distributions can be modeled easily. Consequently, one can 

describe the central tendency of the ex-Gaussian distribution by three parameters: the mean and 

standard deviation of the normal distributed component and the exponential component (i.e., 

reflecting the skew of the ex-Gaussian distribution). The μ relates to the mean of the normal 

distribution. The σ refers to the standard deviation of the normal distribution. The τ describes 

the rightward skew, i.e., representing the contribution of the exponential distribution. 

 In a frequency analysis one investigates if a reoccurring event, in our case a saccade, 

has a temporal structure. In Experiment 1, we showed that the mode of the ex-Gaussian 

distribution of the sampling durations (fixation plus saccade duration) indicates the most 

common sampling duration, which was found to be the adequate metric for the frequency 

estimation (i.e., by showing comparable frequency estimates based on mode fixation duration 

and power spectral estimation approaches but not when using the mean fixation duration). In 

the eye-tracking literature on reading, it is more typical to report mean fixation durations. 

Reporting mean not mode fixation durations is a central problem of the current meta-analysis. 

Accordingly, we developed the mean-to-mode transformation function described here. With 

this function, we transform the mean fixation durations extracted from papers into mode values. 

We implemented the mean-to-mode transformation function in three steps: (i) We fit 

ex-Gaussian distributions (i.e., by decomposition methods) to existing empirical datasets. (ii) 

We used fitted ex-Gaussian parameters (μ: mean of the normal distribution; σ: standard 

deviation of the normal distribution; τ: exponential component describing the rightward skew) 

to simulate new, informed, ex-Gaussian distributions to derive a transformation function. (iii) 

We optimize the transformation function to increase transformation accuracy.  

(i) Ex-Gaussian fitting to existing empirical datasets. First, we fitted the three ex-Gaussian 

parameters to 29 empirical datasets containing fixation durations (11 published studies, i.e., 

three German studies from our lab, (1–3), and multiple English studies (4–10) for which 

datasets were openly available) using the mexgauss function from the retimes package in R 

(11). Figure S1a shows two empirical and the respective simulated distribution, including the 

mean and mode of the distribution, exemplarily. Henceforth, we jointly refer to these 29 

datasets as the ‘simulation data’. Combined we now obtained the exact mean and mode of 29 
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datasets as well as the μ, σ, τ for each dataset. Note, the main selection criteria for the datasets 

used in the present study was availability and accessibility of the raw fixation duration values. 

(ii) Using fitted ex-Gaussian parameters to simulate new informed ex-Gaussian distributions. 

With the fitted ex-Gaussian parameters, we estimated, in a next step, three robust linear 

regression models (rlm function in R from the MASS package; (12)). One for each of the ex-

Gaussian parameters (μ, σ, τ) to predict the mean fixation duration (μ: 0.40, SE = 0.09, t = 4.6; 

σ: 0.14, SE = 0.09, t = 1.5; τ: 0.60, SE = 0.09, t = 6.7). Figure S1b shows the relationships of 

each parameter to the means from each study.  

Now, we can simulate realistic ex-Gaussian distributions (with 500 samples) for any 

mean value with the exGAUS function from the gamlss.dist package in R (13). These 

distributions can be realized by the fitted linear regression coefficients (intercept, beta weight), 

which describe the relationship of each of the three ex-Gaussian parameter estimates to the 

mean of the dataset (see Figure S1b). For example, one can go to the graphics and see that with 

a mean fixation duration of 200 ms one can obtain a μ value of 140, a σ value of 30 and a τ 

value of 40. Having a value to each of the ex-Gaussian parameters, one can simulate an ex-

Gaussian distribution. This simulation then allows us to estimate the mode of the distribution, 

in our case around 150 ms. As a consequence, one can directly relate the mode of 150 ms to the 

mean value of 200 ms. 

To reduce estimation noise and increase robustness against outliers, we sampled ex-

Gaussian distributions, not only for the 29 datasets available but for the whole range of mean 

fixation durations (149 and 397 ms) from the meta-analysis. From these 248 simulated ex-

Gaussian distributions, we estimated the mode values relating each mean to a mode value. 

Finally, these related mean and mode values allowed us to generate a generalized mean-to-

mode transformation function by only one linear regression (e.g., blue line in Fig. S1d). Note, 

to realize the function in a generalized way, we on purpose neglected the specific experimental 

manipulations of the different studies of our simulation data. 

(iii) Optimizing the transformation function. For initial quality control, we used the fitted linear 

regression coefficients (intercept, beta weight) from the transformation function to transform 

the mean fixation duration of each of the 29 simulation datasets into a simulated mode. Since 

we were also able to measure the mode of these datasets were able to compare the simulated to 

the measured modes for each dataset. In Figure S1c, Level 1, we present the residual errors of 

the 29 simulated modes, relative to the measured modes. The negative relationship between the 
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measured mode and the residuals (i.e., simulated minus measured mode) indicated a systematic 

overestimation for low measured modes and underestimation for high measured modes. This is 

likely caused by imprecisions in the ex-Gaussian fitting procedure. To account for this 

systematic error, we corrected the simulated modes by a sequential procedure. First, we 

described the error by a linear model. This model is then used to predict the 

over/underestimation of a given mode. The prediction is then used to correct the simulate mode 

values. This correction procedure was applied two times.  

Figure S1c, Level 3, shows that after this sequential correction procedure, the final 

transformation function does not include a systematic error that one would expect to be present 

in the residuals. Figure S1d, accordingly, shows the final, i.e., corrected, transformation-

function, for all possible 248 mean fixation durations. Figure S1e shows the final quality check 

from the simulation dataset showing the relationship of the measured and simulated modes. 

Despite some unsystematic noise, this optimized transformation function showed a near-perfect 

beta of 0.95 (SE = 0.23; t = 4.1).  
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Figure S1. Development of a transformation function for converting mean fixation durations 
into simulated mode values. In order to estimate the predominant, i.e., mode, fixation duration 
from a single mean value extracted from a published empirical study, we implemented the 
following procedure: (a) First, an ex-Gaussian function was fitted separately to empirical 
fixation duration distributions of each of 29 independent datasets (left panel; see Materials and 
Methods), and we extracted the parameters μ, σ, τ describing the fitted ex-Gaussian distribution 
(right panel). (b) Second, across these 29 datasets, the relationship between the ex-Gaussian 
parameters and the empirical study means were described by linear models, separately for each 
parameter. The intercepts and beta-weights resulting from these linear models, for each ex-
Gauss parameter, were then used to simulate an ex-Gaussian for each of the 29 empirical mean 
fixation durations, so that we could compare the empirical and simulated ex-Gaussian 
distributions. (c) Residuals for the mode estimation showed a systematic error, i.e., an 
overestimation for low modes and underestimation for high modes (upper panel / Level 1). We 
accounted for this systematic error, sequentially, by two linear models describing the error; see 
lower panel / Level 3 for residuals after accounting for the estimation error. (d) Performance of 
the final mean-to-mode transformation function (blue line) demonstrated for 248 fixation 
durations, i.e., for each millisecond within the range of the meta-analysis (149 – 397 ms). (e) 
Performance of the final version of the mean-to-mode transformation function, as demonstrated 
by the relationship between empirically measured and simulated modes from the 29 datasets 
used for establishing the transformation function.   
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Supplementary Methods: Small talk interview 

The full list of 22 questions from the “small talk” interview we conducted in German.  

 

1. Wie viele Prüfungen hast du jetzt im Semester? 

2. Warum studierst du? (ich frage meistens auch noch so allgemeiner, was genau sie 

studieren, wieso sie sich das rausgesucht haben, was ihnen daran Spaß macht) 

3. Hast du dein Wohnort durch das Studium gewechselt? 

4. Wie ist die Wohnungssituation für dich in Frankfurt? 

5. Hast du schon früher eine Ausbildung/Studium gemacht? 

6. Hast du schon mal ein Auslandsaufenthalt gemacht? 

7. Hast du eine Zweitsprache? Welche Sprachen sprichst du? 

8. Machst du irgendein Sport? 

9. Spielst du irgendwelche Computerspiele / hast früher gespielt? 

10. Was sind deine Hobbys / Interessen? 

11. Was hast du am Wochenende gemacht? (wenn sie sich nicht erinnern können frage ich 

was sie für das kommende Wochenende vorhaben) 

12. In welchen Ländern warst du schon? 

13. Was ist dein Lieblingsessen? Was isst du gerne? 

14. Wie findest du das Wetter im Moment so? 

15. Was ist deine Lieblingsjahreszeit? 

16. Machst du irgendein Nebenjob? 

17. Hast du für den Sommer / die Weihnachtsferien etwas vor? 

18. Isst du gerne in der Mensa? 

19. Wo kommst du eigentlich her? 

20. Was machst du im Studium im Moment so inhaltlich? 

21. Was hast du nach dem Studium vor? 

22. Was war dein letzter Kinofilm / Fernsehfilm / Serie, die du geguckt hast? 
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