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Abstract  

Causal reasoning is a principal higher-cognitive ability of humans, however, much remains 

unknown, including (a) the type (systematic versus intermixed) and order (inductive-then-

deductive or vice versa) of experience that best achieves causal-chain extraction; (b) how 

inferences generalize to novel problems, especially with one-shot experience; and (c) how 

metacognition, reflected in uncertainty of one’s knowledge, relates to actual knowledge. We 

tested people on a realistic cancer biology task (e.g., ‘seroc’ chemicals inducing tumors with 

subsequent effects). Systematic experience was superior, with some evidence that the 

inductive-then-deductive order promoted stronger one-shot generalization. Notably, 

uncertainty was decoupled from actual knowledge, with the deductive-then-inductive group 

being overconfident, likely reflecting lack of awareness of the inductive component; while those 

with successful one-shot generalization held lower confidence, reflecting generalization with 

minimal experience, while remaining skeptical. Our findings clarify processes underlying causal 

reasoning, and reveal a complex relationship between causal reasoning and metacognitive 

awareness of it. 
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Introduction 

Learning is the act of acquiring new or modifying existing knowledge, which frequently requires 

learning a relationship between different factors (e.g., stimuli, behaviors, outcomes). Although 

observations of relationships are inherently associational, causality may be captured formally 

by considering the degree of certainty one has that one factor will lead to another (Lee et al. 

2015): when one is reasonably certain, it appears causal. Two distinct learning strategies for 

identifying relationships are incremental and one-shot learning1,2,3. Acquisition of knowledge 

that occurs gradually through repeated trial and error has been referred to as incremental 

learning; whereas, the phenomenon in which animals rapidly learn from only a single pairing 

of two factors such as a stimulus and consequence is called one-shot learning. A classic 

example for the latter is conditioned taste aversion: i.e., when the ingestion of a novel 

substance (conditioned stimulus, CS) is paired with internal malaise (unconditioned stimulus, 

US), an association between the taste and sickness can be quickly established, even with just 

one pairing, and even with long delays (4-12 hours) between them4,5,6,7,8,9,10. 

Although taste aversion may be a specialized case11,12, it is clear that a substantial 

amount of human learning occurs via one-shot: i.e., after just one observation of the 

phenomenon. In fact, for one-shot learning we can distinguish two types: the learning of an 

entirely new problem (such as a novel stimulus-outcome pairing as in taste aversion), and the 

other via generalizing from prior knowledge based on similarity, such as one-shot 

categorization, in which people quickly learn to recognize novel objects using prior knowledge 

of object categories13. 

Progress has also been made in determining when each learning strategy is employed. 

For example, there is evidence that both learning strategies are driven by prediction error, with 

higher learning rates reflecting faster and ultimately one-shot learning, and lower rates, the 

slower incremental strategy1,2,14,15,16,17,18. Moreover, evidence also supports the existence of a 

separable control process that sets the learning rates (of all possible relationships to be 

learned), and guides further processing in the brain that underlies the given learning 

strategy1,19. Finally, evidence suggests that the learning rate for any given case (such as a 

given stimulus-outcome pairing) is set by the control process based on the uncertainty of the 

relationship, with higher rates assigned to less certain pairings — that is, if a particular 

relationship is unclear, put extra effort into resolving it more quickly1.  

Thus, in general, when uncertainty of a given relationship is high, one-shot learning is 

more likely to be deployed by the control process, with increased learning rates sufficient to 

resolve the uncertainty and learn the relationship. However, when uncertainty is high, an 

additional challenge may exist: the posed problem could be too difficult to solve. What then 

should the control process do if simply increasing the learning rate does not suffice? In fact, 
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we can look to the standard scientific process for clues as to what, in principle, should be done. 

Causal factors (i.e., independent variables) must be isolated from confounds for each 

phenomenon (i.e., dependent variable) of interest, and achieving this generally requires 

systematic experience with the relationship in question (leading to actual experimental 

manipulation when possible)20,21. One might then assume that causal reasoning may also 

benefit from systematic experience, especially in more challenging settings.  

We therefore attempted to extend the previous research to a more difficult real-world 

problem that also reflects everyday scenarios for people. In most real-world cases, causal 

relationships exist in sequences or chains — some x leading to some y, and in turn y leading 

to z, and so forth — and to comprehend these causal chains, two main types of reasoning are 

typically needed: inductive and deductive inference 22,23,24,25. For inductive, it involves 

identifying the causal factor among multiple possibilities (e.g., x causing y vs. possible a, b, c 

and others as causes); for deductive, comprehending a series of relations (x leading to y, y 

leading to z) as a sequence, with the transitive understanding that x would lead to z. Two 

critical and open questions, then, are whether a particular type and order of experience with 

the inductive vs. deductive components would facilitate comprehension of the entire causal 

chain: i.e., whether systematic or intermixed, and whether inductive then deductive or vice 

versa. In the current study, we therefore tested the effects of experience type and order. We 

did so on both causal learning and inference, and under both incremental and one-shot 

experiences. 

Indeed, one of the important advantages of logical reasoning is applying the acquired 

knowledge to otherwise novel instances; but the mechanisms underlying this process remain 

underspecified19,24. In one case that focused on transitive inference, people were first trained 

on seven pictures of galaxies that formed a ranking based on age (i.e., older to younger: A > 

B > C, etc.)24. Their ability to transfer this ordered ‘schema’ to novel cases was then tested by 

exposing the participants to novel galaxies, training them with adjacent pairings of the novel 

galaxies with prior ones (e.g., A > H, H > B), then testing their knowledge with nonadjacent 

pairings. They found that those with a stronger grasp of the original hierarchy transferred most 

successfully. In the current study, we attempted to extend this work in multiple ways, including 

testing causal understanding beyond simple rank, both deductive and inductive components, 

and transfer in the extreme one-shot case: i.e., one trial of one novel exemplar.  

At the same time, heightened problem difficulty poses additional challenges for the 

control system. Evidence for a control process that uses uncertainty to toggle among different 

learning strategies may suggest that uncertainty should closely match the actual likelihood of 

problem-solving accuracy. However, exactly how the uncertainty assessment achieved is not 

fully known, especially in cases with heightened problem difficulty. Since the uncertainty 
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assessment is based on a separable process, it could in principle have a more complex 

relationship with actual problem-solving accuracy, with possible mismatches including 

overconfidence (knowing less than you think) or lack of it (knowing more than you think). And 

yet such possible decoupling may be difficult to produce with less challenging problem 

paradigms. The final major aim of the current study, therefore, was to examine this relationship 

more closely.  

In sum, we designed the current study to test (a) the type (sequential vs. intermixed) and 

order (inductive then deductive vs. vice versa) of experience that best achieves extraction of 

causal chains requiring inductive and deductive reasoning; (b) how inferences generalize to 

novel problems from single one-shot experience with the novel case; and (c) how 

metacognition, reflected in uncertainty of one’s knowledge, relates to actual problem 

knowledge. We tested people on a cancer biology task (e.g., ‘seroc’ based chemicals inducing 

tumors with particular effects) designed to provide a realistic causal reasoning problem. 

 

Results 

We constructed sentence stimuli that, based on inductive and deductive inference, formed 

causal chains of events (Table 1, Fig. 1). For example, using inductive inference, if substances 

that induce the tumor ‘Karmeictumor’ include Acoseroc and Benzoseroc, one could infer that 

all substances containing ‘–seroc’ in their name are likely causal. And using deductive 

inference, if ‘Acoseroc induces the tumor Karmeictumor’, ‘Karmeictumor triggers neckache’, 

and ‘tumors that trigger neckache eventually metastasize’ then ‘Acoseroc can lead to tumor 

metastasis’. Construction of the complete causal chain (Fig. 1) was referred to as extracting 

the rule. We then asked whether the type (sequential vs. intermixed) and order (inductive then 

deductive vs. vice versa) of experience with the sentences affected learning and inference, 

both after an initial incremental learning condition and after a subsequent one-shot experience 

with a novel causal chain. In addition, we examined the relationship of actual causal 

knowledge to the participants’ metacognitive assessment of their knowledge via confidence in 

their answers.  

To address these research questions, we divided the participants into three groups: (1) 

those that received inductive-then-deductive incremental experience, (2) vice versa, and (3) 

those who experienced both the inductive and deductive components simultaneously — i.e., 

randomly across trials. All three groups then experienced the one-shot trial with the novel 

problem (with inductive and deductive components in the same order as in the incremental 

condition—see Materials and Methods). The participants then received a 35-question test to 

assess their knowledge of (a) the specific sentences presented (called “Learning” questions), 

and (b) the possible inferences made (called “Inference” questions). Thus, the test questions 
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fell into eight categories: Incremental Inductive Learning, Incremental Inductive Inference, 

Incremental Deductive Learning, Incremental Deductive Inference, One-shot Inductive 

Learning, One-shot Inductive Inference, One-shot Deductive Inference, and One-shot 

Inductive + Deductive Inference. See Materials and Methods for details. 

Finally, to examine the relationship between actual causal reasoning (i.e., performance 

on the test questions) and one’s own assessment of their knowledge, for all test questions we 

also asked the participants to rate the certainty of each answer from -5 to 5.  

 

Incremental inductive learning and inference leads to overconfidence 

Incremental learning and inference 

Overall, the total mean scores for all questions combined revealed no significant differences 

among the three groups; however, the difference in confidence among the groups was 

significant (ANOVA, F=4.304, p<0.05), with mean confidence of Group 2 being significantly 

higher than that of Group 3 (p<0.01) (Fig. 2). Thus, deductive-then-inductive experience led 

to greater confidence in test answers over random order, although the heightened confidence 

was not reflected in actual performance, at least overall. 

To examine these findings more closely, we next analyzed the results for each of the 

main question types, focusing first on incremental learning and inference (Fig. 3). Examining 

performance scores first, and focusing first on learning, in which questions were based on the 

actual sentences used (Table 1), we found no overall difference among the groups in the 

inductive learning performance scores (Fig. 3A), but we did find a difference for deductive 

learning (ANOVA, F=3.991, p<0.05), with Group 1 having a significantly higher score than 

Group 2 (p<0.01; Fig. 3C), indicating that receiving the deductive training last promoted 

retention of the specific training exemplars used for deductive learning.  

For incremental inductive inference, we also found no significant differences among the 

groups on the incremental inference scores (Fig. 3B), but we did find differences for deductive 

inference, with Groups 1 and 2 both obtaining higher scores than Group 3 (p<0.05, p<0.01; 

Fig. 3D). With scores near 50% (and thus near chance) for inductive inference, it is clear that 

the inductive inference test was difficult for the participants; while the deductive inference 

component was easier, at least for Groups 1 and 2 (Fig. 3D).   

In contrast, and as reflected in the overall results (Fig. 2), the confidence ratings did not 

match the performance scores. Although we found no significant differences among 

performance scores for inductive learning (Fig. 3A), confidence was significantly higher for 

Group 2 than for both Groups 1 and 3 (p<0.05, p<0.001); and although Group 1 obtained a 
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significantly higher performance score than Group 2 for deductive learning (Fig. 3C), with 

Group 2 actually having a lower score than Group 3, Group 2 nonetheless held confidence in 

their scores comparable to Group 1 and to a level greater than Group 3 that approached 

significance (p=0.06). For incremental inductive inference (Fig. 3B), in which all groups 

performed relatively poorly (indicating that the incremental inference problem component was 

particularly challenging), Groups 1 & 2 nonetheless exhibited relatively high confidence in their 

performance, with Group 2’s being significantly higher than that of Group 3 (p<0.05). For 

deductive inference (Fig. 3D), where the performance scores of both Groups 1 & 2 were 

relatively high, Group 2’s confidence nonetheless particularly stood out, exceeded that of both 

Groups 1 and 3 significantly (p<0.05, p<0.001). Thus, for incremental learning and inference, 

and for both the inductive and deductive components, we found a mismatch between 

performance scores and confidence in them, with the deductive-then-inductive experience 

order appearing to inflate confidence above actual performance. We consider this result in 

light of the entirety of the findings in the discussion. 

One-shot learning and inference 

For one-shot learning and inference, we found no differences among the groups for any of the 

question types, for either performance scores or confidence in performance — we thus show 

the results for One-Shot Learning (Fig. 3E) and One-Shot Inference (Fig. 3F) combined for 

the inductive and deductive components. In fact, the relatively low performance scores for 

one-shot learning and inference for all participants combined suggest that, overall, participants 

had difficulty with this task component, both with respect to remembering the specific 

information presented for the one-shot problem (Table 1), and transferring a rule from the 

incremental task component to the novel, one-shot problem exemplar.   

 

One-shot inference culminates in underconfident generalization 

Incremental learning and inference 

From the post-test interview, we could identify the participants who were able to infer the 

overall causal chain or rule. Because participants did well on the deductive component of the 

task, in the post-experiment interview we identified those who also successfully extracted the 

inductive component, and thus those who reported a general relationship between a suffix and 

a cancer disease state. To examine the results of these participants, we defined two new 

groups based on whether they inferred the rule, denoted Group O, and those who did not, 

denoted Group X. Four participants who extracted the rule but did not use it to solve the 

inference questions were excluded (one from Group 1, three from Group 2). The proportion of 
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“rule-catch” participants in each group was 42.3%, 46.2% and 8%, respectively. This result 

has two main implications: first, for type of experience, prior experience with inductive and 

deductive learning and inference, regardless of order, promoted the ability to make the proper 

inferences and extract the causal chain, i.e., the rule; second, the order of inductive versus 

deductive learning did not significantly impact the number of participants who could infer the 

general rule.  

Comparing the rule-catch and non-rule-catch groups overall, as expected Group O 

performed significantly better than Group X (p<0.01). However, although the confidence rating 

was higher for the group, confidence overall was not significantly different (Fig. 4). We next 

examined the results broken down by question type (Fig. 5). For the incremental experience 

condition, for both the inductive and deductive learning questions, i.e., based on the specific 

exemplars experienced (Table 1), there were no differences between Groups X and O for 

either performance score or confidence (Fig. 5A&C). These findings reflect the fact that the 

division between groups was based on their inference success, and further suggest a relative 

independence of the learning and inferencing components of the problem, given the different 

effects. For both inductive (Fig. 5B) and deductive (Fig. 5D) inference, in contrast, we found 

significant differences between the groups for both performance scores and confidence (In 

inductive inference; score p<0.001, confidence p<0.05 and in deductive inference; score 

p<0.05, confidence p<0.05). Thus, in this case, the performance scores and confidence 

ratings of the participants were aligned, reflecting actual problem understanding: i.e., the ability 

to infer the general rule from the original exemplar sentences.  

One-shot learning and inference 

For one-shot learning, we again did not find a significant difference between the two groups 

either for performance score or confidence (for either inductive or deductive components) (Fig. 

5E). However, for both one-shot inference (i.e., inductive and deductive inference questions 

combined) (Fig. 5F) and one-shot inductive + deductive inference (i.e., questions probing 

understanding of the entire causal chain) (Fig. 5G), the performance score for Group O was 

significantly higher than that of Group X (p<0.05). The results thus indicate that actually 

abstracting the inference rule was critical for solving the inference problem we constructed, 

and classifying participants based on the follow-up interview accurately reflected this 

successful abstraction. Moreover, additional evidence for this successful abstraction process 

comes from the significant difference between the O and X groups with the inference as 

opposed to learning questions (Fig. 5E vs. 5F & G). Yet at the same time, the successful 

abstraction of the rule and relatively high performance scores did not lead to significantly 

higher confidence in their one-shot performance, with confidence ratings remaining 
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comparable to the non-rule-catch group. Thus, even though the Group X participants 

performed relatively well by transferring the extraction of the rule from the incremental 

experience to the one-shot exemplar, their confidence in this transfer remained low: i.e., 

transfer occurred, but they appeared nonetheless skeptical about it. Thus, as opposed to the 

incremental learning and inference case, in which those experiencing the deductive-then-

inductive order held overinflated confidence compared to their actual performance scores, and 

as opposed to the rule-catch group’s confidence with incremental inference, which generally 

matched performance, in the one-shot experience case, the rule-catch group revealed a lack 

of confidence in their answers, even though they nonetheless generalized from their prior 

knowledge and made the proper inference.  

Examination of experience order for rule-catch group only 

Although the incremental sequential orders given to Group 1 (inductive-then-deductive) and 2 

(vice versa) appeared to promote general rule inference comparably (42.3% and 46.2% rule-

learners respectively), could the order nonetheless influence the strength of the successfully 

extracted rule and/or the ability to promote one-shot inference? To address these questions, 

we analyzed the performance scores, confidence, and one-shot inference ability of Group 1 

versus 2 for only the rule-learners. We again found no evidence for order except in two cases, 

in which the Group 1 performance scores were higher than those of Group 2 for one-shot 

inference (i.e., inductive and deductive questions combined) (Group 1: 71.4 ± 4.0; Group 2: 

59.0 ± 2.7) and one-shot inductive+deductive inference (i.e., questions that tested the entire 

one-shot causal chain) (Group 1: 77.4 ± 4.9; Group 2: 61.5 ± 3.5), with the difference in both 

cases approaching significance (stat 1, p<0.05; stat 2, p<0.05, respectively). Thus, we did find 

some evidence that receiving inductive experience prior to deductive may promote stronger 

rule extraction that leads to greater generalization of the inference rule to novel instances.   

 

Decoupling between performance and confidence during learning and inference 

Finally, to provide a general, overall assessment of the interrelationships among the main 

factors of training order, test performance scores, confidence, and actual rule extraction, we 

used multiple linear regression. We conducted three regressions with test performance scores, 

confidence, and rule extraction as the dependent variable for each regression, respectively. 

For test scores and confidence ratings of them we used all test questions. For performance 

scores, the independent variables were ‘Group (x1)’, ‘Rule (x2)’ and ‘mean confidence (x3)’. 

For the Group variable in the regressions, because both sequential incremental learning 

orders (i.e., Groups 1 and 2) promoted the extraction of a general rule, we focused here on 

Groups 1 and 2 versus Group 3, so that Groups 1and 2 were coded as x1=1 and Group 3 
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coded as x1=2. The ‘Rule’ variable coded rule catching vs. not, with Group O as x2=1 and 

Group X as x2=2. A significant regression equation was found (F=5.738, p<0.01), with an 

adjusted R2 of 0.157. Participants’ predicted mean score was equal to 73.68 – 0.116x1 – 

8.758x2 + 0.128X3. As shown in Table 2, ‘Rule’ proved to be the only significant predictor of 

mean performance score; in fact, when participants failed to catch the rule, the mean score 

decreased about 8.8. Thus, test performance was indeed a function of how well the 

participants inferred the general rule from the learning exemplars. 

To determine the factors underlying confidence, we examined Group and Rule, as 

defined for the first regression above, as well as mean score set as the third independent 

variable x3. A significant regression was again found, with F=3.188, p<0.05, R2=0.079, and 

participants’ predicted mean confidence equal to 68.024 – 6.481x1 – 1.013x2 + 0.179x3. As 

also seen in Table 2, only the Group variable was found to be significant in this second 

regression, although the Group*Rule interaction was also significant. Thus, we again found 

that rather than confidence being driven largely by proper rule inference (Rule main effect) 

and thus actual understanding of the test material, it was driven more by prior history: i.e., 

receiving systematic incremental experience (i.e., the inductive and deductive components 

separately), rather than randomly experienced.  

For the final regression, to determine what factors most enabled the participants to 

extract the general inference rule, we examined Group (x1) and mean confidence (x2) as 

independent variables. A significant regression equation was found with F=6.015, p<0.01, an 

adjusted R2=0.117. As seen in Table 2, the ‘Group’ variable was significant. Thus, as found 

throughout the study, the random presentation of the inductive and deductive components of 

the causal chains proved exceedingly difficult for participants to make further inferences from 

them; and thus participants needed to experience the inductive and deductive components 

separately to make the proper inferences.  

Finally, Fig. 6 provides a summary diagram of the main regression findings: i.e., the 

relationship between Group, Rule, Score, and Confidence. In short, sequential incremental 

learning (i.e., Groups 1 and 2 vs. 3) promoted greater rule inference and greater confidence; 

when the rule was properly extracted, it was indeed reflected in the performance scores; and 

yet we did not find a direct, linear relationship between actual test scores and confidence in 

their test performance. In fact, we found evidence for a more complex relationship between 

them, with evidence for overconfidence, a proper level of confidence, and a lack of it, 

discussed further below.  

 

Discussion 

Recent evidence suggests that different learning strategies may be employed based on 
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uncertainty, with greater uncertainty (e.g., of how a given stimulus relates to an outcome) 

leading to higher learning rates, reflecting faster and ultimately one-shot learning, and lower 

rates reflecting the slower incremental strategy1,15. Thus, with relatively manageable problems, 

learning rate manipulation can be sufficient; but as problem difficulty increases, more 

elaborate means are likely needed for effective learning. In general, these may include more 

systematic experience with the factors to be learned and inferred, so that the problem 

becomes manageable, enabling successful extraction of the causal chains (i.e., logical 

inference). But what this ‘systematic experience’ may entail remains unclear. Here we focus 

on human high-level causal reasoning to determine whether the assembly of a complete 

causal chain via both inductive and deductive inference processes benefits by a particular 

type and order of experience (i.e., whether inductive-then-deductive, vice versa, or random). 

We also examined these effects on both incremental and one-shot experience, with the former 

providing multiple exemplars of a given rule with multiple trials of each, and the latter requiring 

the transfer of inference achieved from previous experience to a novel case consisting of one 

trial of one new exemplar. We tested these questions using realistic scenarios in cancer 

biology.  

 

Incremental experience 

For learning (i.e., test questions based on the specific examples used in training), the results 

appeared to be highly driven by basic memory processes, revealing, for example, apparent 

recency effects in the incremental condition, in which the component experienced last (i.e., 

inductive or deductive) enjoyed more success. 

For inference, the inductive component of the reasoning problem proved particularly 

challenging, and the only order effect we found among the specific reasoning types (inductive 

vs. deductive) was a detrimental effect of random order on deductive inference. Overall, 

however, it was clear that random order harmed inference, which was borne out in the third 

linear regression that focused on rule-catch (i.e., the factors enabling the ability to extract the 

rule properly, as identified by the post-experimental interview), with group (i.e., Groups 1 & 2 

vs. 3) having a significant main effect on rule. Thus, isolated experience with the specific 

examples for each reasoning component (inductive and deductive inference) appeared 

necessary to see the problem components and their relationships clearly enough to enable 

proper inferences. 

Yet for both learning and inference in the incremental experience condition, and for both 

inductive and deductive inference individually, the confidence of Group 2 (deductive-then-

inductive experience) outpaced that for the other two groups, leading as well to a main effect 

of group on confidence both in the general ANOVA and in the second regression, even though 
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no differences were found for the actual performance scores. Why would confidence, 

especially for the deductive-then-inductive order, be overinflated? Heightened confidence 

would be due to (a) an actual better understanding, leading to greater certainty, or (b) a false 

confidence, born from misunderstanding. Since the results revealed no significant differences 

in the level of understanding between groups, it suggests that Group 2 developed a false 

confidence. 

Misunderstanding and subsequent false confidence could potentially reflect a lack of 

sufficient engagement in the problem to appreciate the difference between a general 

understanding and actual precise understanding of the details being tested. However, we 

assume that the participants were sufficiently motivated to engage sufficiently in the task 

details. A misunderstanding, then, may otherwise derive from focusing on wrong aspects of 

the problem, which nonetheless are confounded with the correct ones, resulting in a lack of 

negative feedback to signal misunderstanding. For example, when participants in Group 2 first 

received the deductive incremental learning component, they potentially learned the XAXA’ 

and XBXB’ links (see Figure 1), as well as XA’M and XB’M; and they presumably inferred 

the XAM and XBM links as well, with results showing that participants generally did well 

with the deductive component. Thus, they focused on various causeeffect links, and 

deductive inference. When they then moved to incremental inductive learning, it nonetheless 

included learning the deductive link at the beginning of the causal chain, i.e., A1XA, for all 

A1-A5 and B1-B5. If participants learned the specific names of all 1-5, they would score well on 

the learning questions for incremental inductive learning, which they generally did (see Fig. 

3A, Group 2). Thus, a significant part of Group 2’s attention may have remained on deductive 

reasoning. At the same time, the specific 1-5 cancer inducers (e.g., Acoseroc) were in effect 

a confound of the more general inductive understanding (the suffix only), such that if one only 

noticed the specifics, they could proceed with no obvious inconsistencies throughout learning 

and testing. Indeed, levels of confidence for the incremental learning (both inductive and 

deductive) and incremental deductive inference answers were highly similar (Fig. 3). Thus, 

Group 2 may have been led astray, so to speak, by experiencing the deductive component 

first, without recognizing the inductive pattern (suffix similarity).  

At the same time, inductive performance was ultimately comparable between Groups 1 

and 2. This may be due to the high degree of difficulty of the inductive component, with Group 

1, who experienced the inductive component first, being more aware of the difficulty (leading 

to lowered confidence) without being able to do anything about it. In any case, our results 

show that actual understanding and one’s awareness of it indeed can diverge, which may 

arise from inherent confounds existing in complex, more natural scenarios.  
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One-shot experience 

For all participants combined, performance and confidence with the one-shot learning 

example (for both learning and inference) were relatively low (again, especially for inductive 

inference), and we found no effects of group (i.e., experience order) on either learning or 

inference. Thus, as might be expected, without proper rule extraction prior to the one-shot 

novel case, successful transfer could not occur.   

For those who were able to extract the rule from the incremental experience (i.e., rule-

catch group), they generally had success not only with the incremental cases, but also with 

the novel one-shot case (as reflected in the original ANOVA comparing rule-catch and not, the 

first regression showing the significant relation between rule and score, and in the breakdowns 

for one-shot inference, i.e., Fig. 3E&F). In fact, with the rule-catch group, we did find some 

evidence that the Group 1 order — inductive-then-deductive experience — helped to promote 

transfer of the rule to the one-shot problem. This order of experiencing the inductive 

component first may have helped to focus attention on the most challenging aspect of the 

problem, promoting the extraction of the suffix compound (e.g., ‘–seroc’) as the actual causal 

factor more strongly, enabling better transfer in the one-shot example. Kumaran 24 also found 

that stronger initial schema formation enabled more successful transfer to novel cases. Our 

findings are consistent with this, and thus suggest the extension to one-shot transfer, although 

future research is needed to verify possible facilitation from experiencing the inductive 

component first.  

In any case, those who extracted the rule successfully during the incremental experience 

generally transferred it to the one-shot case — i.e., they also targeted the new suffix as the 

critical causal factor inducing the tumor, which enabled generalization to novel substances 

(i.e., ‘-cemel’). We thus found evidence for successful one-shot learning and generalization in 

a challenging logical reasoning paradigm, in which participants transferred their knowledge to 

the novel case even under the sparest of conditions: one instance of a novel case, i.e., one 

data point.  

At the same time, however, their confidence lagged behind the performance scores. 

Thus, even though they transferred properly, they nonetheless were uncertain about it. Again, 

then, we found a decoupling between performance and confidence, but in the opposite 

direction of the prior case, in which actual knowledge here is accurate, but uncertainty about 

it remains high. Two general possibilities might explain the current mismatch. First, it is 

possible that the metacognitive system itself simply performs poorly: e.g., in the uncertainty 

derivations, the comparison among them, or control strength necessary to influence cognitive 

processing and behavior. The alternative possibility, however, is that the results actually reveal 

a well-designed cognitive system. That is, the results are consistent with an overall system 
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that is operating with a set of hypotheses weighted by their individual certainties; and when 

required to select one of them, the leading hypothesis is chosen, even with low certainty14,26. 

Such a process is similar to ‘jumping to conclusions’ (i.e., revealing an overgeneralization 

bias)26,27,28, yet is critically different to the extent ‘jumping to conclusions’ is doing so without 

the corresponding caution (reflected in lower confidence) to prime updating of this knowledge 

in the future. Whereas the former may be seen as a clinical dysfunction, or an inherent flaw in 

the cognitive system29, the latter may reflect an optimized strategy: for example, in an 

environment where exploitation prospects are low (e.g., limited resources, high competition), 

random-exploration and trial-and-error learning too costly (e.g., heightened punishment due 

to scarce resources, competition, predation), with new opportunities that therefore must be 

seized upon when they present themselves, however minimal the evidence of how to exploit 

them. Evolutionary theorists have argued that this indeed was the type of environment that 

primates more generally, and humans in particular, evolved in20,30,31, although it also may 

reflect reinforcement contingencies for many people in our complex modern world. 

Computational analysis will be needed to help specify the conditions under which an apparent 

action bias toward generalization with minimal evidence, coupled with heightened 

metacognitive sensitivity, may provide a best-of-both-worlds cognitive strategy.  

 

Conclusions 

When problems are relatively manageable, learning rate manipulation (by the cognitive control 

process) can be sufficient; but as problem difficulty increases, more elaborate means are 

needed for effective learning. We found that concentrated sequential experience (inductive-

then-deductive or vice versa) proved to be far superior to intermixed (i.e., random) experience, 

and we also found some evidence that for those who were able to extract the rule (i.e., rule-

catch group), inductive-then-deductive may have helped transfer the rule to the one-shot novel 

case, perhaps concentrating attention on the most difficult, inductive inference. As expected, 

we also found that those who extracted the rule properly, performed better and reported higher 

confidence than those who did not. At the same time, we also found uncertainty to be notably 

decoupled from actual knowledge. During sequential experience, those who experienced the 

deductive-then-inductive order were overconfident, which may have reflected a predominant 

focus on deductive reasoning, with a concomitant lack of awareness of the inductive 

component. In addition, for one-shot generalization, even though the rule-catch group showed 

superior ability to transfer their knowledge to the novel case, their confidence lagged. This 

finding appears to reflect a willingness to generalize with minimal experience, while maintaining 

skepticism about it — an overall strategy that may be particularly successful in difficult 

conditions that nonetheless harbor hidden opportunities.  
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Future research will be needed to further delineate and explain this complex relationship 

between causal reasoning and the metacognitive awareness of it. Indeed, our findings in turn 

suggest the need for explicit manipulation of one’s environmental experience to achieve a 

sufficient degree of controlled systematic experience with particularly challenging problems. 

Moreover, without someone to guide this (e.g., teacher), one normally must do it him/herself, 

in turn suggesting that an internal control process itself must orchestrate this manipulation of 

one’s own environmental experience20,30. Future computational development, together with 

behavioral and neurobiological studies are warranted to elucidate the possible more elaborate 

control mechanisms. Improvements to the current experimental design include a more explicit 

manipulation of problem difficulty, and confidence augmented by additional measures, such 

as response time (RT)32. Future work may also include the development of computational 

systems that can help overcome our blind spots and augment our ability to identify causal 

relationships, especially in particularly challenging problem domains21. 

 

Materials and Methods 

Participants 

Seventy-seven adults (ages 20-33 years, mean ± standard deviation: 24 ± 2.5; 43 females) 

participated in the experiment. Participants with no reported history of neurological or 

psychological disorders were recruited from the local community around the Daejeon area via 

online job sites and college websites. With consideration of sex ratio, participants were divided 

into three groups based on learning order (described further below). Group 1, 2, and 3 

consisted of twenty-six participants (ages 21-33, 24.42 ± 3.00; 15 females), twenty-six 

participants (ages 21-31, 24.08 ± 2.53; 14 females), and twenty-five participants (ages 20-28, 

24.04 ± 2.09; 14 females), respectively. All participants gave written consent, and the 

experimental procedures were approved by the Institutional Review Board (IRB) of Korea 

Advanced Institute of Science and Technology (KAIST). 

 

Sentence inference task 

Background 

Inference refers to the process of deriving a new proposition or judgment from one or more 

propositions or judgments that are known a priori. Typically, inference is divided into two types: 

inductive and deductive. 

Inductive inference is a reasoning method that begins with collecting individual 

evidences and gradually finding general principles that can explain the individual cases. A 

famous example of inductive inference is as follows:  
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Premises: A. Socrates is mortal, B. Aristotle is mortal, C. Einstein is mortal. 

Conclusion: All men are mortal. 

Deductive inference is a reasoning method to derive a logically certain conclusion from 

one or more propositions. An example of deductive inference is the law of syllogism, which is 

further subdivided into Modus ponens (law of detachment), Modus tollens (law of 

contrapositive), etc. A simple example of syllogism is as follows: 

Premises : 1. All men are mortal, 2. Socrates is a man. 

Conclusion : 3. Therefore, Socrates is mortal. 

 

Sentence structure 

To build a sentence structure that requires inference for acquiring information, we used 

schematized forms of inductive and deductive inference shown in Fig. 1. We generated the 

concepts, words and sentence structure with reference to the Korean translation of Principles 

of Cancer Biology33. 

To encourage inductive inference, we made artificial words by using a common suffix. 

For example, substances that cause ‘Karmeictumor’ contain ‘–seroc’ in their name, such as 

Acoseroc, Benzoseroc, Uvoseroc, etc. In the same way, words whose suffix is ‘-myce’ cause 

‘Parpenicumor’.  

Deductive sentences were constructed by using a syllogism. For example, from the 

following three sentence sequences, we can infer the last one: ‘Humoseroc in rotten water 

induces Karmeictumor.’, ‘Karmeictumor is known as a tumor that triggers neck-ache.’, and ‘The 

tumor, which triggers neck-ache, easily induces metastasis and reinvasion.’ so that 

‘Humoseroc can induce the tumor that easily induces metastasis.’. The sentence stimuli are 

shown in Table 1, although all were presented in Korean. 

 

Task paradigm 

Every participant received incremental learning (both inductive and deductive parts), as well 

as one-shot learning, and all groups received incremental learning first, followed by one-shot 

learning. To test both type and order of experience, we divided participants into three groups: 

Group 1 received the inductive learning sentences first, followed by the deductive ones; Group 

2 received vice versa (deductive prior to inductive); and Group 3 received all incremental 

learning sentences in Table 1 (i.e., deductive and inductive) in random order, and then all one-

shot learning sentences in randomized order — and thus inductive and deductive learning 

being intermixed.  

The task consisted of learning, exercise and test phases. In the learning phase, to 

promote incremental learning, the sentences denoted in Table 1 were presented 10 times 
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each, with one caveat. For the inductive sentences, we created two versions of each sentence, 

one with “induced”, and the other with “did not induce”, with both sentence types also including 

the premise “In this case”: for example, “In this case, Acoseroc in tobacco smoke induced 

Karmeictumor by DNA impair” and “In this case, Acoseroc in tobacco smoke did not induce 

Karmeictumor by DNA impair”. The number of presentations of each sentence type was 8 (for 

“induced”) and 2 (for “did not induce”). This manipulation accomplished two objectives: (1) 

making the task sufficiently difficult to test our hypotheses with respect to more challenging 

logical reasoning problems; and (2) promoting uncertainty, one of the study’s central 

examination objectives. Thus, the total number of sentence stimuli was 143: 140 for 

Incremental Learning and 3 for One-shot Learning. 

After the learning phase, an exercise phase was instantiated whereby the participants 

were asked two simple questions regarding their gender (“Are you a male?”) and major (“Does 

your major relate to biology or pharmacy?”) to (a) distract them to minimize contributions of 

short-term memory, and (b) provide familiarity with the question procedure. The test phase 

then consisted of thirty-five yes/no questions: those based on the exact information in the 

presented sentences (e.g., “Among the ingredients that cause Karmeictumor, Acoseroc is also 

included.”), called “Learning” questions, and new ones (e.g., “Nagoseroc will induce 

Karmeictumor.”), called “Inference” questions, which were not presented in the learning phase. 

The thirty-five test questions were of eight types (with the number of each question type in 

parenthesis): Incremental Inductive Learning (6), Incremental Inductive Inference (6), 

Incremental Deductive Learning (7), Incremental Deductive Inference (6), One-shot Inductive 

Learning (1), One-shot Inductive Inference (4), One-shot Deductive Inference (1), and One-

shot Inductive + Deductive Inference (4), with an example of the last type being “Among the 

substances that cause intraepithelial carcinoma, there may be Yamincemel.” (see Fig. 1). The 

“Learning” questions used in the test portion were randomly selected to diminish the effect of 

familiarity for any particular sentence. 

Finally, to rule out participants having superior memory capacity enabling them to 

potentially memorize all sentences without ever developing an inductive or deductive rule, we 

also tested them on a modified version of the 3-digit number span subtest from the WAIS 

(Wechsler Adult Intelligence Scale)34.  

 

Task procedure 

First, participants were instructed as follows: 

“In the first phase, sentences will be shown on the computer monitor for about 25 minutes. 

Imagine that you performed some kind of experiment and the shown sentences are the results 

of it. You need to learn it, and do not think about your previous knowledge. They will be 
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repeatedly shown but please pay attention until it is over. 

When the first phase is finished, you will receive a training phase with two questions. 

First, you can answer the questions by pressing O (for correct) or X (for incorrect). After 

answering each question, you will be asked to score how confident you are about your answer 

on a scale from -5 to +5. Move the point on the screen with ‘←’ or ‘→’ key and press Enter. 

For the third phase, you will be asked a series of questions about what you learned in the 

first phase. The method of submitting your answers is the same as the second (training) phase. 

Some words that were not shown in the learning phase may appear, but you can infer an 

answer from what you learned in the first (learning) phase.” 

The learning phase then initiated. Six to eight seconds were given randomly for reading 

each sentence and also one to four seconds randomly for the fixation period between 

sentences. After the learning phase, the participants were given the two exercise questions 

(gender and major) and then the thirty-five test questions. As shown in the instructions to the 

participants, they were asked to read the question sentence on the screen and answer with 

O/X for whether that sentence was correct or not. The computer screen then displayed the 

additional question asking ‘How confident are you about your answer?’ Participants then rated 

their confidence from -5 to 5. The exercise and test phase were self-paced. 

When the main task was completed, a brief interview was conducted to determine 

whether the participant developed the inference rule or not. For example, we asked:  

“How did you remember the causal relationship between the words?” 

“How did you answer the question that includes a new word you did not see in the first 

phase?” 

“Did you find some kind of rule?” … etc. 

After the interview, forty participants were further tested on the modified version of the 

WAIS memory test, with five trials performed by each participant, with each trial consisting of 

a serial presentation of 4 3-digit numbers to be memorized. Each 3-digit number appeared for 

two and a half seconds, with a half-second fixation period in between each number. Serial 

presentation of the four numbers was followed by a recall question to test whether they 

remembered each digit (ones, tens, or hundreds) of each number. Each question was shown 

for five seconds.  

 

Statistical analysis 

Behavioral data were analyzed using IBM SPSS statistics 22.0 software. The average score 

and confidence rating (‘-5 to +5’ scale converted to ‘0-100’ via ‘50+10*rating’) of the three 

groups were compared using analysis of variance (ANOVA). When comparing two groups 

directly we used Student’s t-test. Finally, regression was conducted to quantify the correlation 
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between variables.   
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Tables 

Table 1. Sentence stimuli 

 

 

All of the stimuli were presented in Korean. See the ‘Task Paradigm’ section for a description of 

how the inductive sentences for incremental learning also included a “did not induce” structure, used to 

increase difficulty and uncertainty.    
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Table 2. Results of multiple linear regression 

 

 

Bold font highlights the factors with significant coefficients.    

 

 

 

 

 

 

 

 

Figures & Figure Legends 
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Figure 1. The sentence structure used for test stimuli. For inductive sentences for Incremental learning, 

A1 – A5 and B1 – B5 represent the specific substances that induced tumor growth (e.g., A1 = Acoseroc, 

B1 = Radimyce); while XA and XB represent the tumors (Karmeictumor, Parpenicumor). For deductive 

sentences for Incremental learning, XA’ and XB’ represent neck-ache and weakened immune system 

respectively, while M represents the final outcome (metastasis and reinvasion). An represents the 

inductive inference to be drawn from A1 – A5 (suffix ‘-seroc’); Bn, not depicted, is the suffix ‘-myce’. The 

dashed lines from A5 to XA’ and M reflect the deductive inferences that can be drawn, with those for A1 

– A4, B1 – B5, An, and Bn not depicted. The structure for one-shot learning was the same, with C1 

representing both the specific substance used (Krincemel) and the actual causal suffix ‘-cemel’, XC 

representing Barlocilumor, XC’ representing mucosal epithelium, and N representing intraepithelial 

carcinoma. See Table 1 for specific sentences. 
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Figure 2. Total mean score and confidence of each group. The mean confidences values were 

significantly different among all three groups (p<0.05). The mean confidence of Group 2 (mean 74.336, 

SE 2.11) was higher than that of Group 3 (mean 64.738, SE 2.61); p<0.01.  
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Figure 3. Performance scores and confidence ratings of each group when the questions divided 

into several types. (A) The confidences of IC Inductive Learning questions showed difference between 

all three groups (p< 0.01). Group 2 (mean 81.410, SE 2.07) had higher confidence than both Group 1 

(mean 72.435, SE 2.70; p<0.05) and Group 3 (mean 66.303, SE 3.65; p<0.001). (B) In the case of IC 

Inductive Inference questions, confidence of Group 2 (mean 70.746, SE 3.74) recorded higher than 

Group 3 (mean 58.424, SE 3.34) with p<0.05. (C) shows the case of IC Deductive Learning that score 

differences between all three groups were significant (p<0.05). Score of Group 1 (mean 84.615, SE 2.37) 

was higher than that of Group 2 (mean 73.626, SE 3.04) with p<0.01. Difference of confidences between 

Group 2 (mean 83.467, SE 1.95) and Group 3 (mean 77.766, SE 2.29) was close to being statistically 

significant (p-value=0.06). (D) For IC Deductive Inference part, score and confidence both showed 

significant differences between all three groups with p<0.05, p<0.001 each. Scores of Group 1 (mean 

78.846, SE 3.14) and Group 2 (mean 80.128, SE 3.21) were higher than score of Group 3 (mean 67.333, 

SE 3.26) with p<0.05, p<0.01 respectively. In confidence, Group 2 (mean 84.732, SE 1.74) got more 

confident than Group 1 (mean 77.389, SE 2.43; p<0.05) and Group 3 (mean 70.545, SE 3.32; p<0.001) 
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each. (E), (F) show the case of OS Learning and Inference that there were no significant differences between 

groups. 
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Figure 4. Total mean score and confidence of each group divided by rule-catch. The mean score 

of Group O (mean 73.214, SE 2.25) was significantly higher than that of Group X (mean 65.337, SE 

1.35); p-value<0.01.     
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Figure 5. Performance scores and confidence ratings of two groups based on rule-catch 

when the questions divided into several types. (A) The difference in scores and confidences of IC 

Inductive Learning part between two groups were not significant. (B) In the case of IC Inductive 

Inference questions, both score and confidence of Group O (score mean 73.016, SE 6.03; confidence 

mean 72.583, SE 2.86) recorded higher than Group X (score mean 46.795, SE 2.47; confidence mean 

60.897, SE 2.63) with p<0.001 and p<0.05 respectively. (C) The result of IC Deductive Learning shows 
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no significant differences. (D) For IC Deductive Inference part, score and confidence both showed 

significant differences between two groups with p<0.05 both (Group O score mean 83.333 SE 3,64; 

confidence mean 83.117, SE 2.46; Group X score mean 72.756, SE 2.24; confidence mean 74.738, SE 

2.02). (E) In OS learning, differences were not significant. However, (F) In OS Inference, Group O had 

a higher score (mean 71.429, SE 4.03) than Group X (mean 58.974, SE 2.70); p<0.05. (G) Performance 

scores and confidence ratings of two groups based on rule-catch with the questions about OS Inductive 

+ Deductive Inference. Group O (mean 77.381, SE 4.85) was higher than that of Group X (mean 61.538, 

SE 3.46); p-value<0.05. 
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Figure 6. Relationships between experimental factors, performance and confidence level.  

The diagram was made based on the multiple linear regression results. Sequential incremental learning 

(i.e., Groups 1 and 2 vs. 3) promoted greater rule inference and greater confidence; when the rule was 

properly extracted, it was reflected in the performance scores; and yet we did not find a direct, linear 

relationship between actual test scores and confidence in their test performance. 
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