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1 Abstract

Background: Many computational methods have been developed that leverage the results

from biological experiments (such as Hi-C) to infer the 3D organization of the genome.

Formally, this is referred to as the 3D genome reconstruction problem (3D-GRP). None of

the existing methods for solving the 3D-GRP have utilized a non-procedural programming

approach (such as constraint programming or integer programming) despite the established

advantages and successful applications of such approaches for predicting the 3D structure

of other biomolecules. Our objective was to develop a set of mathematical models and

corresponding non-procedural implementations for solving the 3D-GRP to realize the same

advantages.

Results: We present a set of non-procedural approaches for predicting 3D genome or-

ganization from Hi-C data (collectively referred to as SonHi-C and pronounced "sonic").

Specifically, this set is comprised of three mathematical models based on constraint program-

ming (CP), graph matching (GM) and integer programming (IP). All of the mathematical

models were implemented using non-procedural languages and tested with Hi-C data from

Schizosaccharomyces pombe (fission yeast). The CP implementation could not optimally

solve the problem posed by the fission yeast data after several days of execution time. The
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GM and IP implementations were able to predict a 3D model of the fission yeast genome

in 1.088 and 294.44 seconds, respectively. These 3D models were then biologically validated

through literature search which verified that the predictions were able to recapitulate key

documented features of the yeast genome.

Conclusions: Overall, the mathematical models and programs developed here demon-

strate the power of non-procedural programming and graph theoretic techniques for quickly

and accurately modelling the 3D genome from Hi-C data. Additionally, they highlight the

practical differences observed when differing non-procedural approaches are utilized to solve

the 3D-GRP.

Key Words: 3D Genome Reconstruction Problem, Mathematical Modelling, Constraint

Programming, Graph Matching, Integer Programming

2 Background

Within the nucleus, a cell’s genetic information undergoes extensive folding and reorganiza-

tion throughout normal physiological processes. Just like in origami where the same piece

of paper folded in different ways allows the paper to take on different forms and potential

functions, it is possible that different genomic organizations are related to various nuclear

functions. Until recently, it has been extremely difficult to comprehensively investigate this

relationship due to the lack of high-resolution and high-throughput techniques for identifying

genomic organizations. The development of a technique called Hi-C (based on chromosome

conformation capture) [36] has made it possible to detect the complete set of genomic regions

in close physical proximity. This proximity is often referred to as an "interaction" between

two genomic regions. These interactions can be categorized as either intra-chromosomal (cis)

interactions or inter-chromosomal (trans) interactions (Figure 1).

It is currently unknown whether the 3D genomic organization drives various nuclear func-

tions or vice versa. Alterations in the 3D organization of chromosome territories have been
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Figure 1: A representation of the DNA-DNA interactions that can occur within the 3D
genome structure. Panels give the following representations. A: the linear locations of the
genes undergoing a trans-interaction between two hypothetical chromosomes, K and L. B: a
trans-interaction. C: a nucleus with the coloured lines representing the separate chromosomes
from Babaei et al. [3]. D: a cis-interaction. These genes might be linearly "distant" but
still have a detectable interaction in 3D space. E: the linear locations of the genes that are
undergoing a 3D cis-interaction. The orange and pink regions in panels A, B, D and E are
examples of possible gene locations. The red circles in panels B and D represent the genomic
regions involved in an interaction.

demonstrated in a wide variety of cellular processes, including differentiation [31], serum

response [39], therapeutic response [21, 40] and response to DNA damage [41]. The unique

spatial organization of the genome that is seen under these different cellular conditions is

hypothesized to be a crucial mechanism driving various nuclear and cellular functions. It has

been theorized that this dynamic organization of the genome may be driven by the global

regulation of gene expression [1, 7, 11]. Therefore, the identification of distinct genome inter-

actions may highlight novel mechanisms responsible for organism health and development.

Hi-C [36] is a biological technique that utilizes next generation sequencing technologies

to detect regions of the genome that are interacting in 3D space. These regions may be

located on different chromosomes or distally on the same chromosome. An overview of the

experimental procedure is depicted in Figure 2. Briefly, (1) cells are fixed with formaldehyde

in order to covalently cross-link genomic regions that are in close 3D proximity. (2) The cross-

linked fragments are then digested with a restriction enzyme to remove the potentially large

non-interacting interconnecting segments of DNA. (3) The sticky ends generated through the

restriction digest in step (2) are filled in with biotinylated nucleotides. (4) Digested fragments

are ligated together. (5) The initial cross-linking is removed, resulting in DNA fragments that
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represent the two genomic regions that form an interaction. (6) The biotinylated products

are purified using streptavidin beads allowing for the detection of fragments that were cut

by restriction enzymes. (7) Paired-end sequencing is then performed and the resultant reads

are mapped to a reference genome using a Hi-C specific read mapper [2].

Mapping the raw data of a Hi-C experiment to a reference genome results in the gener-

ation of a N × N matrix (a whole-genome contact map) where N is the number of "bins"

which represent linear regions of genomic DNA. In general, the number of genomic bins is

approximately equal to the total genome size divided by the Hi-C experimental resolution.

Whole-genome contact maps are characteristically sparse and symmetric along the diagonal.

Each cell (Ai,j) of a hypothetical whole-genome contact map (A) records the count of how

many times the genomic bin i was found to interact with the genomic bin j. These counts

are often referred to as the frequency of the interaction between Ai and Aj (or interaction

frequency). Inherent systematic biases within the whole-genome contact map are dampened

by normalizing the interaction frequencies. Typically, an iterative correction and eigenvector

decomposition (ICE) [24] or Knight-Ruiz (KR) [27, 35] normalization are/is applied to the

raw data resulting in fractional interaction frequencies.

These normalized whole-genome contact maps can be used to infer the 3D organization

of the genome. The process of predicting a model of the 3D genomic organization from a

contact map is known as the 3D genome reconstruction problem (3D-GRP) [50]. Typically

this is done by converting the normalized interaction frequencies into a set of corresponding

pairwise Euclidean distances. In general it is assumed that a pair of genomic regions with a

higher interaction frequency will often be closer in 3D space than a pair of genomic regions

with a lower interaction frequency [14, 23, 34]. Most computational tools for solving the

3D-GRP then take the predicted pairwise Euclidean distances and produce a visualization

of the 3D genome by modelling the chromatin fibre as a polymer [52]. In general, most

existing programs can be broadly classified as either (1) consensus or (2) ensemble meth-

ods. Consensus methods generate a single population-averaged genomic model that best
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Figure 2: A simplified overview of the Hi-C protocol adapted from reference [36]. GR stands
for "genomic region". The blue lines represent the location of a restriction enzyme cut site;
green circles, a pair of genomic regions being chemically cross-linked together; orange circles,
biotin; and red arrows, the primers that are required for paired-end sequencing. The purple
symbol represents a streptavidin bead that can be used to purify molecules with a biotin
label.
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represents the whole-genome contact map, while ensemble methods produce a collection of

genome models that represent the inherent heterogeneity of genome organizations within a

population of cells [33].

None of the current methods to solve the 3D-GRP have used a non-procedural approach

(such as constraint programming (CP), integer programming (IP) or mixed-integer program-

ming (MIP)) even though non-procedural approaches have been successfully used to predict

the 3D structure of other biomolecules [5, 20, 29, 30, 45, 46, 47, 59]. These applications

are advantageous since they have been shown to produce more biologically relevant results

and take less computational time when compared to competing methods [16, 17, 46]. One

of the advantages of utilizing non-procedural programming in biological applications is that

biological knowledge can be naturally encoded into the program, instead of having to con-

vert this information into procedural steps. Additionally, they restrict the search space of

possible solutions and ensure only models that agree with constraint-encoded experimental

data are retained [26]. It is expected that similar advantages will be achieved by applying

non-procedural programming to predicting the 3D genomic organization. Here we present

three mathematical modelling solutions to the 3D-GRP, collectively referred to as sonHi-

C (pronounced "sonic"). Each mathematical model was implemented in a non-procedural

language and tested with a normalized whole-genome contact map from fission yeast (Gene

Expression Omnibus accession number: GSM1379427) [42]. Fission yeast was selected since

it is a well-studied model organism with a relatively small but complex genome [58]. Addi-

tionally, it has many properties governing genomic organization that have been previously

established using a variety of microscopy techniques.

3 Results & Discussion

This section presents the results for three mathematical modelling solutions to the 3D-GRP

(Subsection 3.1), the non-procedural implementation for each mathematical model (Subsec-
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tion 3.2) and a visualization of the predicted genome model (Subsection 3.3). Subsection

3.4 demonstrates the effect of varying the m parameter (described below) for the fission

yeast dataset and Subsection 3.5 discusses how this research could be applied to organisms

with higher ploidies (the number of chromosome copies) and/or larger genomes. All of the

auxiliary files and programs used to generate these results are available at the project home

page (https://github.com/kimmackay/SonHi-C).

3.1 Mathematical Modelling

Under normal cellular conditions, a given genomic region can be simultaneously involved

in more than one interaction within the genome [18]. In contrast, a single genomic region

within an individual cell is only able to participate in one Hi-C mediated interaction due

to inherent restrictions within the biochemistry of the Hi-C experimental protocol [56]. In

diploid organisms (organisms with two genomic copies) single cell Hi-C reactions are only

able to detect two Hi-C mediated interactions per genomic region, one for each genomic

copy [43]. An analogous restriction can be assumed in haploid organisms (organisms with

only one genomic copy), where a single genomic region can only be actively detected in one

Hi-C mediated interaction in a single cell. Using this restriction, a model of the 3D genome

organization can be constructed from a whole-genome contact map by selecting a ploidy-

dependent subset of the interactions for each genomic region that maximizes the sum of the

corresponding interaction frequencies. The mathematical models and programs presented in

this paper focus on modelling the 3D organization of haploid genomes but, as outlined in

Subsection 3.5, they could be easily extended to organisms with higher ploidies.

Naively, a greedy heuristic could be employed to model the 3D fission yeast genome orga-

nization using the strategy described above. Briefly, the subset of interactions representing

the solution set would be chosen by sorting and selecting the interactions with the largest cor-

responding frequency values. This process would then be repeated, rejecting any frequency

that involves a region of the genome that has already been selected. This heuristic will fail
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to take into account the situation where lower frequencies, which were rejected by selecting

a higher frequency interaction, actually result in a greater overall maximum value for the

sum of all selected frequencies within the solution. An example of this can be seen in Figure

3 where panel A is a hypothetical whole-genome contact map and panels B and C represent

two possible solution matrices with different overall frequency sums. Specifically, Figure 3B

follows the greedy heuristic described above which results in a non-optimal solution where

the selected frequencies sum to 1.3. Figure 3C shows the optimal solution where the selected

frequencies sum to 1.4. This type of optimization problem has been shown to be well-suited

for non-procedural approaches.

A B C

1 2 3 4 5 6

1 - 0.5 0.2 0.1 0.1 0.1

2 0.5 - 0.4 0.4 0.1 0.1

3 0.2 0.4 - 0.3 0.5 0.2

4 0.1 0.4 0.3 - 0.6 0.4

5 0.1 0.1 0.5 0.6 - 0.4

6 0.1 0.1 0.2 0.4 0.4 -

1 2 3 4 5 6

1 - 0.5 0.2 0.1 0.1 0.1

2 0.5 - 0.4 0.4 0.1 0.1

3 0.2 0.4 - 0.3 0.5 0.2

4 0.1 0.4 0.3 - 0.6 0.4

5 0.1 0.1 0.5 0.6 - 0.4

6 0.1 0.1 0.2 0.4 0.4 -

1 2 3 4 5 6

1 - 0.5 0.2 0.1 0.1 0.1

2 0.5 - 0.4 0.4 0.1 0.1

3 0.2 0.4 - 0.3 0.5 0.2

4 0.1 0.4 0.3 - 0.6 0.4

5 0.1 0.1 0.5 0.6 - 0.4

6 0.1 0.1 0.2 0.4 0.4 -

Figure 3: An example of two (of many) possible solutions to a 3D genome reconstruction
problem. For all of the panels: the symmetric lower half of the contact map is indicated
in light grey, the diagonal that represents "self-self" interactions is indicated in green and
the genomic bin labels are represented in dark grey. For panels B and C: the blue boxes
represent the subset of frequencies that could be selected as possible solutions (for m = 1).
Panel B is a representation of a valid, non-optimal solution from the greedy algorithm and
panel C is a representation of the valid optimal solution for the contact map where the sum
of the selected interaction frequencies are 1.3 and 1.4, respectively.

We developed three mathematical solutions to the 3D-GRP which describe the relation-

ships present within the whole-genome contact map. As mentioned previously, a whole-

genome contact map is a N × N matrix where the genome has been partitioned into N

genomic bins. For a hypothetical whole-genome contact map (A), each cell (Ai,j) records

the normalized interaction frequency between genomic bins i and j. By construction, the
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contact map is symmetric (Ai,j = Aj,i for all i, j), and its main diagonal elements are all

zero (Ai,i = 0 for all i). The second parameter of our mathematical models is the maximal

number of interactions that a given genomic bin can be involved in based on the source or-

ganism’s ploidy (denoted by the parameter m). For instance, m would be set to the following

values based on the number of chromosome copies present: m = 1 (haploid), m = 2 (diploid;

common in mammals), m = 4 (tetraploid; common in plants), and so on. Below are the

specifics for three mathematical formulations of the 3D-GRP based on a given whole-genome

contact map (A). Some variants require that the interaction frequencies be rounded and

scaled to integer values.

3.1.1 Constraint Programming (CP)

Our first model, CP, is encoded with Constraint Programming [49]. This model is valid

for m = 1 only and requires integral Ai,j values due to the implementation (described in

Subsection 3.2.2). It is based on introducing variables Mi where Mi = j if genomic bin i

interacts with genomic bin j, and Mi = i otherwise. The goal of this model is to solve Mi for

all i. The model is given in Mathematical Model 1. Since this model encodes a combinatorial

problem, its time complexity is exponential in the worst case.

maximize ∑
i∈V

Ai,Mi
(1)

subject to:

Mi = j ↔Mj = i, ∀i, j ∈ V (2)

Mi ∈ {i} ∪ {j | Ai,j > 0}, ∀i ∈ V (3)

Mathematical Model 1: The CP model, valid for m = 1 and integral interaction fre-
quencies (Ai,j) only. V is the set {1, . . . , N} representing the genomic bins.
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3.1.2 Graph Matching (GM)

Our second model, GM, is only valid for the m = 1 case. By representing the contact map

as an undirected graph with N vertices (genomic bins) and N(N−1)
2

edges (interactions) the

3D-GRP can be regarded as the problem of computing a maximum-weight matching for the

graph G = (V,E). A matching in a graph is a set of edges where no two edges share an

endpoint. Each edge has an associated weight, and the weight of the matching is simply

the sum of the weights of the edges in the matching. In the GM model, the vertices V

are the set of genomic bins, the edges E are the set {(i, j) | i < j ∧ Ai,j > 0}, and the

weights are given by A. An O(|V | · |E| log |V |) implementation of the weighted matching

problem was reported by Mehlhorn and Schäfer [38], and is provided in the LEDA algorithm

library 1. However, this formulation does not guarantee that each vertex in the original graph

is represented in the matching. In terms of the 3D-GRP, this means that there is no guarantee

each genomic bin from the contact map would be represented in the solution. In order to

overcome this, the 3D-GRP can be represented as a maximum-weight perfect matching

problem to ensure all vertices in the graph are matched. Edmonds [15] invented the first

polynomial maximum-weight perfect matching algorithm, which runs in O(|V |2|E|) time. If

the graph was completely connected (i.e. |E| = N(N−1)
2

), this would intuitively suggest a time

complexity of O(N4), but in reality whole-genome contact maps are characteristically sparse

resulting in |E| � N2 since zero-weight edges are not represented in the graph. As such, the

mean computational complexity will depend on the experimental resolution and resultant

sparsity of a given whole-genome contact map. Kolmogorov’s Blossom V algorithm [28] is

considered the most efficient implementation of Edmonds algorithm. We use this reduction

in our model, given in Mathematical Model 2.
1http://www.algorithmic-solutions.com/
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Solve the maximum-weight perfect matching problem for the graph G′ = (V ′, E ′) and
weight function f : E ′ 7→ R, i.e.:

maximize ∑
(i,j)∈E′′

f(i, j) (4)

subject to:

V ′ = {i | i ∈ V } ∪ {i+N | i ∈ V } (5)

E ′ = {(i, j) | (i, j) ∈ E} ∪ {(i+N, j +N) | (i, j) ∈ E} ∪ {(i, i+N) | i ∈ V } (6)

E ′′ ⊆ E ′ is a perfect matching for G′ (7)

f(i, j) =


Ai,j , if i ≤ N ∧ j ≤ N
Ai−N,j−N , if i > N ∧ j > N
0 , otherwise

(8)

Mathematical Model 2: The GM model, for m = 1 only. V is the set {1, . . . , N}
representing the genomic bins. E is the set {(i, j) | i < j ∧ Ai,j > 0} representing the
interactions and the weights are given by A. f(i, j) is the function used to calculate edge
weight. G′ = (V ′, E ′) is an extended graph used to map G = (V,E) to a maximum-
weight perfect matching problem. This mapping to maximum-weight perfect matching
was given by Mehlhorn [38, footnote 1].

3.1.3 Integer Programming (IP)

Our third model, IP, uses Integer Programming [57] and is valid for any value of m. It is

based on introducing variables xi,j that assume a value of 1 if genomic bin i interacts with

genomic bin j, and 0 otherwise. The goal of this model is to solve xi,j for all i, j. The

model is given in Mathematical Model 3. Similarly to the CP model, this model encodes a

combinatorial problem resulting in an exponential worst-case time complexity.
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maximize ∑
(i,j)∈E

Ai,jxi,j (9)

subject to: ∑
(i,j)∈E

xi,j +
∑

(j,i)∈E

xj,i ≤ m, ∀i ∈ V (10)

xi,j ∈ {0, 1}, ∀(i, j) ∈ E (11)

Mathematical Model 3: The IP model, for any m. V is the set {1, . . . , N} representing
the genomic bins. E is the set {(i, j) | i < j ∧ Ai,j > 0} representing the interactions and
the weights are given by A.

3.2 Implementations

Each mathematical model described above was implemented in a non-procedural language

(specifics are provided below) and tested with an existing fission yeast Hi-C dataset (GEO

accession number: GSM1379427 [42]). These implementations were run on a server-grade

computer with sufficient main memory to represent the entire problem. When the implemen-

tations were run on the complete fission yeast whole-genome contact map (results presented

in Subsections 3.2.3 and 3.2.4), there were only a few trans-chromosomal interactions within

the solution sets making it difficult to infer the organization of the chromosomes in relation

to each other. The low number of trans-chromosomal interactions is likely due to the fact

that cis-chromosomal interactions are known to have higher interaction frequencies than

trans-chromosomal interactions within the genome [12, 33]. This makes it more likely for

cis-chromosomal interactions to be included in the solution set since the goal of the math-

ematical models described above is to select a maximal subset of interaction frequencies.

To overcome this, a divide and conquer approach was used where each cis-chromosomal

and pairwise trans-chromosomal subproblem was locally solved. These solutions were then

merged to retain the selected cis- and trans-chromosomal interactions from each subproblem

(described in Subsection 3.2.1). Overall, this divide and conquer approach resulted in a

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392407doi: bioRxiv preprint 

https://doi.org/10.1101/392407
http://creativecommons.org/licenses/by-nc/4.0/


larger number of trans-chromosomal interactions being included in the final solution set.

3.2.1 Divide & Conquer

As mentioned above, the cis-chromosomal subproblems better represent the individual chro-

mosome structure while the trans-chromosomal subproblems represent how the chromosomes

are organized in relation to each other within the nucleus. In the case of the fission yeast

dataset six separate subproblems were generated: one for each chromosome’s cis-interactions

and one for each set of pairwise trans-chromosomal interactions (this division heuristic is de-

scribed below). Each subproblem was independently run and the results were merged to

generate the visualizations presented in Subsection 3.3. This is one of the first times a

divide-and-conquer approach has been applied to 3D genome prediction from Hi-C data (cf.

[48]).

Divide

A single whole-genome contact map can be naturally divided into a finite, organism spe-

cific number of subproblems representing its constituent cis-interactions and pairwise trans-

interactions. Each subproblem can be defined within the whole-genome contact map by

specifying the range of genomic bins that correspond to the cis- or trans-interactions for

each chromosome. In general, the number of subproblems for a whole-genome contact map

with k chromosomes is equal to k(k−1)
2

+ k where k(k−1)
2

represents the number of pairwise

trans-interaction subproblems and k represents the number of cis-interaction subproblems.

For example, because fission yeast has three chromosomes, its whole-genome contact map

can be naturally partitioned into six subproblems (three cis- and three trans-interaction sub-

problems) to be solved in parallel. The location of these subproblems within a fission-yeast

whole-genome contact map are depicted in Figure 4.
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Figure 4: Identification of subproblems within the fission yeast contact map. The large
grey triangle represents the portion of the contact map that does not need to be processed
since all contact maps are mirrored along the diagonal. The blue triangles represent the
subsections of the contact map that correspond to intra-chromosomal interactions, while
the orange squares represent the subsections of the contact map that correspond to the
inter-chromosomal interactions. The labels on the blue and orange areas represent the chro-
mosome(s) involved in the interactions within that subsection of the contact map. In terms
of the intra-chromosomal interactions, chromosome 1 contains the largest number of genomic
bins while chromosomes 2 and 3 account for 34 and 80 percent fewer bins, respectively.

Local Conquer

In order to solve the entire 3D-GRP, programs corresponding to the cis-interaction subprob-

lems and pairwise trans-interaction subproblems can be generated and run independently.

The results can then be combined using the merge step described below.

Merge

The solutions from each subproblem are combined to reconstruct the entire 3D genomic

model. This step is a heuristic which utilizes a novel coefficient (called the "dynamics coeffi-

cient") to account for the instances when a single genomic region participates in more than

m subproblem solutions; i.e. more than m interactions. Instead of eliminating interactions

from subproblem solutions involving the same genomic region (when this region has already

been selected in m interactions), each identified interaction is maintained and associated
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with a region-specific dynamics coefficient to encode the mobility (or lack of mobility) of

that genomic region. Briefly, the dynamics coefficient for each genomic region is calculated

by scanning all of the resultant files for each subproblem and counting how many times a

specific genomic bin is found across the subproblem solution sets. The more interactions

a genomic region is involved in, the higher its corresponding dynamics coefficient, and vice

versa. In general, the dynamics coefficient is an integer value in the range of 0 to k where k

is the number of chromosomes present in the genome. For example, in fission yeast (k = 3)

if genomic bin 1 was involved in an interaction in the solution sets of the chromosome 1

cis-interaction subproblem and the chromosome 1/2 trans-interaction subproblem it would

have a dynamics coefficient of 2, whereas if it was involved in an interaction in each of

the relevant trans-interaction subproblems and the cis-interaction subproblem it would have

an associated dynamics coefficient of 3. A higher dynamics coefficient suggests that the

corresponding genomic region was more mobile within the genome and that there was less

certainty about its fixed position within the model. This is similar to the B factor (also

known as the temperature factor or the Debye-Waller factor) generated with protein X-Ray

Crystallography experiments [32]. The B factor encodes the degree of uncertainty associated

with computed atomic positions in 3D space.

Utilizing the dynamics coefficient allows for the overall solution to the 3D-GRP to re-

tain the information associated with each subproblem’s optimal solution instead of having

to exclude interactions that involve genomic regions already selected m times as part of

the solution set. Although this violates the initial ploidy restriction used to constrain the

mathematical models, it is still biologically valid. As mentioned previously, it is possible for

a given genomic bin to be involved in more than one interaction in 3D space [8, 18], even

though Hi-C is only able to detect one pairwise interaction per restriction site within a single

haploid cell. Additionally, the dynamics coefficient allows the program to encode some of

the mobility of genome organization into the predicted model by representing the certainty

of whether an interaction is fixed within the population of cells. Finally, the dynamics co-
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efficient is also used to calculate relative distances between genomic bins which are used to

visualize the predicted model.

3.2.2 CP model

The CP mathematical model (depicted in Mathematical Model 1) was implemented in

MiniZinc [44] with the OR-Tools constraint solver from Google 2. An example MiniZinc

program (Program 1) and a corresponding example data file (Example Data File 4) with the

integral interaction frequencies from the hypothetical whole-genome contact map depicted

in Figure 3A are given in the Appendix. This model leverages the fact that the solution will

never contain more than m ×N interactions making it scalable to larger genomes in terms

of space complexity. It is worth noting that Equation (2) can be encoded by the inverse

global constraint 3, whereas Equation (1) is encoded with one element constraint per row of

A plus one sum constraint. These constraints are propagated by efficient algorithms in many

constraint programming solvers.

The MiniZinc program corresponding to the complete fission yeast genome could not be

solved to optimality after several days of run time on a server-grade computer. In an attempt

to overcome this, the divide-and-conquer approach described above was applied. A MiniZinc

program for each cis- or trans- subproblem was generated and run independently. Similarly

to the complete whole-genome contact map, not a single cis- or trans- problem could be

solved to optimality in several days.

3.2.3 GM Model

The GM mathematical model (depicted in Mathematical Model 2) was implemented in

SICStus Prolog 4 [6] using Kolmogorov’s Blossom V algorithm [28]. The implemented pro-

gram using this representation is presented in Program 2. An example associated data
2https://developers.google.com/optimization/
3http://www.minizinc.org/doc-lib/doc-globals-channeling.html
4http://sicstus.sics.se

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392407doi: bioRxiv preprint 

https://developers.google.com/optimization/
http://www.minizinc.org/doc-lib/doc-globals-channeling.html
http://sicstus.sics.se
https://doi.org/10.1101/392407
http://creativecommons.org/licenses/by-nc/4.0/


file for this program is given in Example Data File 5 and is based on the interaction fre-

quency values from the hypothetical whole-genome contact map depicted in Figure 3A. The

program is run by: (1) invoking the compile_adjacency predicate with a data file simi-

lar to that given in Example Data File 5 and (2) invoking the match_blossom5 predicate.

In this example, this would be done by invoking: compile_adjacency(‘testMap.csv’,

testMap), followed by match_blossom5(testMap,[1],[1]). For the fission yeast results,

all of this has been automated in a "makefile" that is available on the project homepage

(https://github.com/kimmackay/SonHi-C).

The SICStus Prolog implementation of the GM mathematical model was able to predict

a fission yeast genomic organization in 1.088 seconds (m = 1; for the complete whole-

genome contact map where |V | = 1258, |E| = 745595). In this matching, only one edge

representing a trans-chromosomal interaction was included while the rest of the edges de-

picted cis-chromosomal interactions. This made it difficult to infer the organization of the

chromosomes in relation to each other. In order to overcome this the divide-and-conquer ap-

proach described above was applied. Specifically, six separate matchings were identified: one

for each chromosome’s cis-interactions and one for each set of pairwise trans-chromosomal

interactions. A SICStus Prolog program for each cis- or trans- subproblem was run indepen-

dently. For each subproblem, the time it took to identify the optimal solution is presented

in Table 1. These results were merged using the generate_gephi_input_subproblems.pl

script available at the project homepage. The merge step took less than 1 second of execution

time.

3.2.4 IP Model

The IP mathematical model (depicted in Mathematical Model 3) was implemented in

Prolog and solved using the mixed integer programming based Gurobi Optimizer 5 [25].

The implemented program using this representation with the hypothetical whole-genome
5http://www.gurobi.com/

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392407doi: bioRxiv preprint 

https://github.com/kimmackay/SonHi-C
http://www.gurobi.com/
https://doi.org/10.1101/392407
http://creativecommons.org/licenses/by-nc/4.0/


Subproblem Number of
Vertices (|V |)

Number of Edges
(|E|)

Local Conquer
Runtime
(seconds)

chromosome 1
cis-interaction

558 148734 0.164

chromosome 2
cis-interaction

454 96562 0.055

chromosome 3
cis-interaction

246 27255 0.008

chromosome 1/2
trans-interaction

454 241022 9.645

chromosome 1/3
trans-interaction

246 128472 7.203

chromosome 2/3
trans-interaction

246 103550 1.552

Table 1: Subproblem sizes and corresponding run times for the GM mathematical model
applied to the fission yeast whole-genome contact map.

contact map depicted in Figure 3A is shown in Program 3. This implementation uses

the same data file as the GM model (Example Data File 5). The program is run by:

(1) invoking the compile_adjacency predicate with a data file similar to that given in

Example Data File 5 and (2) invoking the solve_ip predicate. For this example, this

would be done by invoking: compile_adjacency(‘testMap.csv’, testMap), followed by

solve_ip(testMap,[1],[1]). For the fission yeast results, all of this has been automated

in a makefile that is available on the project homepage (https://github.com/kimmackay/

SonHi-C).

The Prolog program for the complete whole-genome fission yeast contact map was able

to predict a genomic organization in 294.44 seconds (m = 1; |V | = 1258, |E| = 745595).
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Similarly to the GM models’ solution, only one trans-chromosomal interaction was repre-

sented in the solution set. The same trans-chromosomal interaction was present in the GM

and IP solutions. The presence of only one trans-chromosomal interaction made it difficult

to infer the organization of the chromosomes in relation to each other. In order to overcome

this, the divide-and-conquer approach described above was used. Six separate subprograms

were generated and run independently (one for each chromosome’s cis-interactions and one

for each set of pairwise trans-chromosomal interactions). The size of each problem in terms

of V and E as well as the time it took to identify the optimal solution is presented in Table

2. In each case, the optimal solution identified was identical to the matching reported by the

GM model. These results were merged using the generate_gephi_input_subproblems.pl

script available at the project homepage. The merge step took less than 1 second of execution

time.

3.3 Visualization

Since the results for the GM and IP models were identical, only one visualization is shown

here. The results were converted into an undirected graph and visualized using Gephi (Fig-

ure 5A) [53, 54]. These images are graph-based visualizations of the predicted model based

on the graphical representation of Hi-C data described in GrapHi-C [37]. Briefly, the nodes

in the network represent the individual genomic bins of the whole-genome contact map and

the edges represent either selected interactions between bins or known linear interactions

between adjacent bins. Linear interactions add additional biological constraints by repre-

senting the bonafide in vivo linear connections between bins (i.e. the linear extent of the

chromosome). Each edge was weighted using either: the interaction frequency divided by

the dynamics coefficient (for cis- and trans- interactions) or the experimental resolution (for

linear interactions). The Force Atlas 2 layout was then applied to the network and the nodes

were coloured according to their chromosome number or genomic feature. We would like to

stress that this graph-based visualization is not a polymer model of the DNA chain that is
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Subproblem Number of
Vertices (|V |)

Number of Edges
(|E|)

Local Conquer
Runtime
(seconds)

chromosome 1
cis-interaction

558 148734 15.75

chromosome 2
cis-interaction

454 96562 9.26

chromosome 3
cis-interaction

246 27255 2.06

chromosome 1/2
trans-interaction

454 241022 4.90

chromosome 1/3
trans-interaction

246 128472 4.70

chromosome 2/3
trans-interaction

246 103550 3.40

Table 2: Subproblem sizes and corresponding run times for the IP mathematical model
applied to the fission yeast whole-genome contact map.

often seen in other 3D genome prediction tools. Therefore, the smoothness of the edges is

not a result of any bending rigidity constraints. Instead, it is a result of the visualization

tool (Gephi) and the network layout applied.

One of the most well–documented features of fission yeast genomic organization is the

3D clustering of centromeres and telomeres within the nucleus [9, 19]. In order to determine

whether the predicted yeast model was able to recapitulate these features, the genomic bins

corresponding to centromeres and telomeres were coloured in the Gephi visualization. Fig-

ure 5B provides a visual depiction of the location of the centromeres and telomeres in the

predicted genomic model. This figure provides further evidence that the predicted genome

model is consistent with established principles of mitotic fission yeast chromosomal orga-
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A B 

Figure 5: Visualization of the Predicted Genome Model Using the GM/IP Models and
Identification of Genomic Features Indicative of Fission Yeast Mitotic Chromosomal Orga-
nization. Circles depict the genomic bins, grey lines represent cis- and trans-interaction
edges selected by the GM/IP models, and line lengths are proportional to the associated
dynamics coefficient and the inverse of the interaction frequency (Ai,j). In Panel A, circles
are coloured according to their corresponding chromosome (CHR1: purple, CHR2: orange,
CHR3: green). In Panel B, the following genomic features are highlighted: telomeres (red),
centromeres (green) and nuclear DNA (blue).

nization including: (1) chromosomal organization into a hemispherical region, (2) a single

centromere cluster and (3) the presence of two telomere clusters (chromosome 1/2) located

near the nuclear periphery, opposite the centromere cluster [55]. The clustering of the regions

appears to be conserved in the predicted model providing confidence in the biological accu-

racy that was achieved using the GM and IP mathematical models and the corresponding

non-procedural implementations.

3.4 Effect of m on Genome Organization in Fission Yeast

As mentioned previously, it is possible that each genomic region could be involved with more

than one interaction within the genome but is restricted to m Hi-C interactions (where the

value of m is based on organism ploidy). To determine whether or not relaxing this ploidy

restriction would result in a more comprehensive genomic model, the implemented program

for the IP model was tested with values of m from 1 to 6 for the same fission yeast Hi-C

dataset used above (GSM1379427 [42]). As mentioned previously, this mathematical model
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allows for a single genomic bin to be involved in more than one Hi-C mediated interaction

in the predicted genome organization. For each value of m, the program was able to find

an optimal solution in 294.44 seconds, 13.20 seconds, 104.46 seconds, 15.31 seconds, 38.79

seconds, and 16.94 seconds for m = 1..6, respectively. Similarly to what was described

above, the results for each value of m were converted into a graph and visualized using

Gephi (Figure 6). Each edge was weighted using either: the interaction frequency divided by

the dynamics coefficient (for cis- and trans- interactions) or the experimental resolution (for

linear interactions). The Force Atlas 2 layout was then applied to the network and the nodes

were coloured according to their chromosome number. The nodes in the graph represent the

individual genomic bins of the whole-genome contact map and the edges represent either

selected interactions between bins or known linear interactions between adjacent bins.

Figure 6: Visualization of the Predicted Genome Model Using the IP Model with Various m
Values. Circles depict the genomic bins, grey lines represent trans-interaction edges selected
by the IP model, and line lengths are proportional to the associated interaction frequency
(Ai,j). Circles are coloured according to their corresponding chromosome (CHR1: purple,
CHR2: orange, CHR3: green). The results for each m values are presented in the following
panels: A (m = 1), B (m = 2), C (m = 3), D (m = 4), E (m = 5), F (m = 6).

The results presented in Figure 6 indicate that relaxing the ploidy restriction (by increas-

ing the value of m) does not result in a more comprehensive genomic model. Similarly to
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the GM and IP whole-genome predictions, minimal trans-chromosomal interactions were

selected by the model regardless of what the parameter m was set to. Specifically the follow-

ing number of trans-chromosomal interactions were observed in each solution set: 1 (m = 1),

0 (m = 2), 1 (m = 3), 2 (m = 4), 2 (m = 5), 3 (m = 6). It is clear that regardless of the

number of interactions allowed per genomic bin, separating the 3D-GRP into cis- and trans-

subproblems is a more viable strategy for predicting genome organization when using the IP

mathematical model. This is likely due to the fact that cis-chromosomal interactions occur

more frequently than trans-chromosomal interactions within the genome (resulting in higher

interaction frequency values) [12].

3.5 Application to Organisms with Higher Ploidies and/or Larger

Genomes

The IP mathematical model described above could be easily applied to organisms with higher

ploidies. As mentioned previously, the m parameter defines the number of Hi-C mediated

interactions in which each genomic bin can actively be participating within the solution

set. Therefore, this model could be easily applied to organisms with higher ploidies by

specifying the value of the m parameter. For instance, m could be modified in the following

ways according to the number of chromosome copies present: m = 2 (diploid; common

in mammals), m = 4 (tetraploid; common in plants), and so on. One issue that would

need to be addressed in organisms with higher ploidies is phasing the interactions to each

chromosome copy. This could potentially be solved using existing phasing tools [10] and

additional biological data [4, 51].

Utilizing the divide-and-conquer approach described in Section 3.2 allows one to take

advantage of coarse-grained parallelism ensuring the mathematical models are scaleable to

organisms with larger genomes (for m ≥ 1). This type of parallelism is easy to obtain on

many types of computational infrastructure. As an example, it could be easily applied to

a whole-genome contact map from Homo sapiens. This contact map would result in the
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generation of 276 subproblems (given k = 23 and the number of subproblems = k(k−1)
2

+ k).

It would not be hard to find 276 cores in the current environment of computer grids and

multi-core machines to run the problems representing the subproblems in parallel. Since

each subproblem can be run in parallel and the merge step has a linear time complexity (in

terms of the number of genomic bins), the associated average runtime of the computation

is expected to be polynomial in the number of genomic bins. In general the complexity will

depend on the chromosome size and the associated experimental resolution).

4 Future Work

Future work will focus on the validation, modification and extension of the 3D-GRP solutions

presented in this manuscript. Specifically, an extensive biological validation of the predicted

genome models will be performed to better characterize the biological accuracy of the de-

veloped mathematical models. The formulation for the CP mathematical model will be

modified to adjust the proportion of cis- and trans-chromosomal interactions in the solution

set. Additionally, different types of data transformations will be investigated to better ac-

commodate the proportion of cis- and trans-chromosomal interactions in the whole-genome

contact map. The GM model will be parameterized so that it can be used with different

values of m. The IP mathematical model will be utilized as a computational framework

which will be extended and further developed to incorporate a variety of additional genomic

datasets and information types into the prediction process. The non-procedural representa-

tion utilized in this computational framework will allow additional datasets to be naturally

incorporated into the prediction of the 3D genome. For example, each genomic bin could

have an associated list of variables representing the genes found within that bin and their

corresponding gene expression values. Constraints could then be applied to favour interac-

tions between regions with similar expression profiles. The IP mathematical model will also

be utilized as a starting point for predicting the 3D genomic structure of organisms with
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higher ploidies by applying the modifications suggested in the subsection above. Finally, the

IP model could be adapted and used for detecting topologically associated domains [13, 22]

within a whole-genome contact map.

5 Conclusion

This is the first time a non-procedural programming approach has been used to model the

3D genome organization from Hi-C data. Specifically, we developed three novel mathemat-

ical models for predicting the 3D genome from Hi-C data. Each mathematical model was

implemented in a non-procedural language and tested with an existing Hi-C dataset from

fission yeast. The CP model was not able to solve the 3D-GRP to optimality after sev-

eral days of execution. The GM model was able to optimally solve the 3D-GRP for fission

yeast in 1.088 seconds. The IP model was able to optimally solve the 3D-GRP in fission

yeast for m = 1 in 294.44 seconds resulting in the same solution as the GM model. In

this solution, only one trans-chromosomal interaction was selected making it difficult to in-

fer the organization of the chromosomes in relation to each other. A divide-and-conquer

approach was used to overcome this where six separate subproblems (one for each set of

cis-chromosomal interactions and one for each set of pairwise trans-chromosomal interac-

tions) were independently solved, combined and visualized. The cis-chromosomal matchings

better represent individual chromosome structure while the trans-chromosomal matchings

represent how the chromosomes are organized in relation to each other within the nucleus.

In the case of the GM and IP models, the predicted genome organizations represent the

interactions of a population-averaged consensus structure where the most likely interactions

are present (this is determined by maximizing the sum of the interaction frequencies of the

selected interactions). Each predicted genome organization was then biologically validated

through literature search which verified that the prediction recapitulated key documented

features of the yeast genome. The divide-and-conquer solution strategy lends itself to ad-
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ditional speed improvements due to the potential for running the defined subproblems in

parallel. Furthermore, a novel coefficient was defined (the dynamics coefficient) which al-

lowed a level of positional uncertainty to be encoded into the predicted genomic organization.

Overall, the mathematical models and programs developed here demonstrate the power of

non-procedural applications for modelling the 3D genome and are a step towards a better

understanding of the relationship between genomic structure and function.
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A Implemented Programs

Program 1: The MiniZinc implementation of the CP mathematical model.
1 %% Load the relevant libraries
2 include "globals.mzn";
3

4 %% Variable Declarations
5 int: N;
6

7 %% first chromosome of interest
8 set of 1..N: Chr1;
9

10 %% second chromosome of interest
11 set of 1..N: Chr2;
12

13 %% the given frequency map , assumed symmetric , main diagonal = 0
14 array [1..N,1..N] of int: map;
15

16 %% main decision variables
17 array [1..N] of var 1..N: match;
18

19 %% objective per row
20 array [1..N] of var int: rowobj;
21

22 %% total objective , N.B. counting each binding twice
23 var int: dobj;
24

25 %% mask out all entries not connecting Chr1 and Chr2
26 int: masked_map (1..N: i, 1..N: j) =
27 if i in Chr1 /\ j in Chr2 then
28 map[i,j]
29 else if i in Chr2 /\ j in Chr1 then
30 map[i,j]
31 else 0 endif endif;
32

33 %% assertion: frequency map is symmetric
34 constraint
35 forall(i in 1..N, j in 1..N where i<j)
36 (assert(masked_map(i,j) = masked_map(j,i), "Asymmetry!"));
37

38 %% constrain the objective , one slice per row
39 constraint
40 forall(i in 1..N)
41 (rowobj[i] = [masked_map(i,j) | j in 1..N][match[i]]);
42

43 %% constrain the total objective
44 constraint
45 dobj = sum(i in 1..N)( rowobj[i]);
46
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47 %% domination: prevent zero -frequency edges
48 constraint
49 forall(i in 1..N)
50 (match[i] in {i} union {j | j in 1..N where masked_map(i,j)>0});
51

52 %% domination: prevent obviously suboptimal solutions
53 constraint
54 forall(i in 1..N, j in 1..N where
55 masked_map(i,j)>0)( rowobj[i] + rowobj[j] >= 1);
56

57 %% essential matching constraint
58 constraint
59 inverse(match , match) :: domain;
60

61 %% Solve
62 solve :: int_search(rowobj , max_regret , indomain_max , complete)
63 maximize(dobj);
64

65 %% output the results
66 output
67 ["edge (\(i),\(match[i])). % benefit = \( rowobj[i])\n" |
68 i in 1..N where fix(match[i])>i] ++
69 ["objective (\( dobj div 2)).\n"] ++
70 [];

Program 2: The implemented program using the GM mathematical model.
1 %% Note: this program assumes a local version of BlossumV
2 %% exists on the computer. The majority of this program formats the
3 %% input file in order to pass the data to BlossumV and parses
4 %% the output generated by that solver. The program makes use of the
5 %% temporary files /tmp/all.in and /tmp/all.out.
6 %% The call to BlossumV is highlighted in red.
7

8 :- use_module(library(lists )).
9 :- use_module(library(csv )).

10 :- use_module(library(system3 )).
11

12 chromosome(testMap , 1, 1, 6).
13

14 genome_size(testMap , 6).
15

16 scale_factor(testMap , 1.0E1).
17

18 compile_adjacency(Path , Species) :-
19 retractall(adjacency(_,_,_,_,_)),
20 see(Path),
21 read_record(_),
22 repeat ,
23 read_record(Record),
24 ( Record = end_of_file -> true
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25 ; parse_record(Record , B1, B2, F),
26 bin2chr(B1, Species , Chr1),
27 bin2chr(B2, Species , Chr2),
28 assertz(adjacency(B1, B2, F, Chr1 , Chr2)),
29 fail
30 ), !,
31 seen ,
32 save_predicates ([ adjacency /5], Species ).
33

34 match_blossom5(Species , Set1 , Set2) :-
35 load_files(Species),
36 retractall(edge(_,_,_)),
37 ( adjacency(B1 , B2, F, Chr1 , Chr2),
38 B1 < B2,
39 ( member(Chr1 , Set1), member(Chr2 , Set2) -> true
40 ; member(Chr1 , Set2), member(Chr2 , Set1) -> true
41 ),
42 assertz(edge(B1, B2 , F)),
43 fail
44 ; true
45 ),
46 findall(edge(I,J,W), edge(I,J,W), Edges),
47 length(Edges , E),
48 genome_size(Species , N),
49 scale_factor(Species , Scale),
50 tell('/tmp/all.in'),
51 NN is 2*N,
52 EEN is 2*E+N,
53 print_tab ([NN,EEN]),
54 ( foreach(edge(I1,J1,W1),Edges),
55 param(Scale)
56 do I11 is I1 -1,
57 J11 is J1 -1,
58 W11 is integer(-Scale*W1),
59 print_tab ([I11 ,J11 ,W11])
60 ),
61 ( foreach(edge(I2,J2,W2),Edges),
62 param(N,Scale)
63 do I21 is I2+N-1,
64 J21 is J2+N-1,
65 W21 is integer(-Scale*W2),
66 print_tab ([I21 ,J21 ,W21])
67 ),
68 ( for(K,1,N),
69 param(N)
70 do K1 is K-1,
71 K2 is K+N-1,
72 print_tab ([K1,K2 ,0])
73 ),
74 told ,
75 system('blossom5 -e /tmp/all.in -w /tmp/all.out '),
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76 see('/tmp/all.out'),
77 retractall(solution(_,_,_)),
78 read_line(_),
79 repeat ,
80 read_line(Codes),
81 ( Codes = end_of_file -> true
82 ; append(Icodes , [0' |Jcodes], Codes),
83 number_codes(I0, Icodes),
84 number_codes(J0, Jcodes),
85 I is I0+1,
86 J is J0+1,
87 edge(I, J, W),
88 assertz(solution(I,J,W)),
89 fail
90 ), !,
91 seen ,
92 findall(W, solution(_,_,W), Ws),
93 length(Ws, Size),
94 sumlist(Ws, Weight),
95 format('% Blossom V computed a matching of size ~d and weight ~w\n',
96 [Size ,Weight]),
97 findall(0, (solution(I,J,W), print_tab ([I,J,W])), _).
98

99 print_tab(L) :-
100 (foreach(X,L) do write(X), write(' ')),
101 nl.
102

103 parse_record(Record , B1, B2, F) :-
104 Record = [integer(B1,_), integer(B2,_), float(F,_)].
105

106 bin2chr(Bin , Species , Chr) :-
107 chromosome(Species , Chr , A, B),
108 Bin >= A,
109 Bin =< B, !.

Program 3: The implemented program using the IP mathematical model.
1 %% Note: this program assumes a local version of the Gurobi solver
2 %% exists on the computer. The majority of this program formats the
3 %% input file in order to pass the data to Gurobi and parses
4 %% the output generated by that solver. The program makes use of the
5 %% temporary files /tmp/all.lp and /tmp/all.sol.
6 %% The call to Gurobi is highlighted in red.
7

8 :- use_module(library(lists )).
9 :- use_module(library(csv )).

10 :- use_module(library(system3 )).
11

12 chromosome(testMap , 1, 1, 6).
13

14 solve_ip(Species , Set1 , Set2 , M) :-
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15 load_files(Species),
16 retractall(edge(_,_,_)),
17 ( adjacency(B1 , B2, F, Chr1 , Chr2),
18 B1 < B2,
19 ( member(Chr1 , Set1), member(Chr2 , Set2) -> true
20 ; member(Chr1 , Set2), member(Chr2 , Set1) -> true
21 ),
22 assertz(edge(B1, B2 , F)),
23 fail
24 ; true
25 ),
26 % findall(edge(I,J,W), edge(I,J,W), Edges),
27 findall(I-J, (edge(I,J,_); edge(J,I,_)), Pairs0),
28 keysort(Pairs0 , Pairs1),
29 keyclumped(Pairs1 , Pairs2),
30 tell('/tmp/all.lp'),
31 write('Maximize\n obj:'),
32 ( foreach(I1-J1,Pairs1),
33 fromto(' ',S1,S2,_)
34 do ( I1>J1 -> S1 = S2
35 ; edge(I1 , J1, F1),
36 format('~a~w X_~d_~d', [S1,F1,I1,J1]),
37 S2 = ' + '
38 )
39 ), nl,
40 write('Subject To\n'),
41 ( foreach(I2-J2s ,Pairs2),
42 param(M)
43 do ( length(J2s ,Len), Len =< M -> true
44 ; ( foreach(J2,J2s),
45 fromto(' ',S3,' + ',_),
46 param(I2)
47 do sort2(I2, J2, I3 , J3),
48 format('~aX_~d_~d', [S3,I3,J3])
49 ),
50 format(' <= ~d\n', [M])
51 )
52 ),
53 write('Binary\n'),
54 ( foreach(I4-J4,Pairs1)
55 do ( I4>J4 -> true
56 ; format(' X_~d_~d\n', [I4,J4])
57 )
58 ),
59 write('End\n'),
60 told ,
61 system('gurobi_cl ResultFile=/tmp/all.sol /tmp/all.lp'),
62 parse_solution.
63

64 parse_solution :-
65 see('/tmp/all.sol'),
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66 retractall(solution(_,_,_)),
67 read_line(_),
68 read_line(_),
69 repeat ,
70 read_line(Codes),
71 ( Codes = end_of_file -> true
72 ; tok_sol_line(I, J, 1, Codes , []),
73 edge(I, J, W),
74 assertz(solution(I,J,W)),
75 fail
76 ), !,
77 seen ,
78 findall(W, solution(_,_,W), Ws),
79 length(Ws, Size),
80 sumlist(Ws, Weight),
81 format('% Gurobi computed a set of ~d edges and weight ~w\n',
82 [Size ,Weight]),
83 findall(0, (solution(I,J,W), print_tab ([I,J,W])), _).
84

85 tok_sol_line(I, J, Z01) --> "X_",
86 tok_int(0, I), "_",
87 tok_int(0, J), " ",
88 tok_int(0, Z01).
89

90 tok_int(Int0 , Int) --> [D], {D >= 0'0, D =< 0'9}, !,
91 {Int1 is 10* Int0 + D - 0'0},
92 tok_int(Int1 , Int).
93 tok_int(Int , Int) --> [].
94

95 print_tab(L) :-
96 (foreach(X,L) do write(X), write(' ')),
97 nl.
98

99 parse_record(Record , B1, B2, F) :-
100 Record = [integer(B1,_), integer(B2,_), float(F,_)].
101

102 bin2chr(Bin , Species , Chr) :-
103 chromosome(Species , Chr , A, B),
104 Bin >= A,
105 Bin =< B, !.
106

107 sort2(X, Y, X, Y) :- X =< Y, !.
108 sort2(X, Y, Y, X).

B Example Data Files
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Example Data File 4: An example data file (.dzn file) depicting the integral interaction

frequencies from the hypothetical whole-genome contact map depicted in Figure 3A utilized

by the CP model.
1 N = 6;
2 map = [|0, 5, 2, 1, 1, 1,
3 |5, 0, 4, 4, 1, 1,
4 |2, 4, 0, 3, 5, 2,
5 |1, 4, 3, 0, 6, 4,
6 |1, 1, 5, 6, 0, 4,
7 |1, 1, 2, 4, 4, 0,
8 |];

Example Data File 5: An example data file (testMap.csv) depicting the interaction fre-

quencies from the hypothetical whole-genome contact map depicted in Figure 3A utilized by

the GM and IP models.
1 bin_label_1 , bin_label_2 , interaction_frequency
2 1, 2, 0.5
3 1, 3, 0.2
4 1, 4, 0.1
5 1, 5, 0.1
6 1, 6, 0.1
7 2, 3, 0.4
8 2, 4, 0.4
9 2, 5, 0.1

10 2, 6, 0.1
11 3, 4, 0.3
12 3, 5, 0.5
13 3, 6, 0.2
14 4, 5, 0.6
15 4, 6, 0.4
16 5, 6, 0.4

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392407doi: bioRxiv preprint 

https://doi.org/10.1101/392407
http://creativecommons.org/licenses/by-nc/4.0/

	Abstract
	Background
	Results & Discussion
	Mathematical Modelling
	Constraint Programming (CP)
	Graph Matching (GM)
	Integer Programming (IP)

	Implementations
	Divide & Conquer
	CP model
	GM Model
	IP Model

	Visualization
	Effect of m on Genome Organization in Fission Yeast
	Application to Organisms with Higher Ploidies and/or Larger Genomes

	Future Work
	Conclusion
	Implemented Programs
	Example Data Files

