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Abstract 

The recently developed droplet-based single cell transcriptome sequencing (scRNA-seq) 

technology makes it feasible to perform a population-scale scRNA-seq study, in which the 

transcriptome is measured for tens of thousands of single cells from multiple individuals. 

Despite the advances of many clustering methods, there are few tailored methods for 

population-scale scRNA-seq studies. Here, we have developed a BAyesian Mixture Model for 

Single Cell sequencing (BAMM-SC) method to cluster scRNA-seq data from multiple individuals 

simultaneously. Specifically, BAMM-SC takes raw data as input and can account for data 

heterogeneity and batch effect among multiple individuals in a unified Bayesian hierarchical 

model framework. Results from extensive simulations and application of BAMM-SC to in-house 

scRNA-seq datasets using blood, lung and skin cells from humans or mice demonstrated that 

BAMM-SC outperformed existing clustering methods with improved clustering accuracy and 

reduced impact from batch effects. BAMM-SC has been implemented in a user-friendly R 

package with a detailed tutorial available on www.pitt.edu/~wec47/singlecell.html.  

 

1.  Introduction 

Single cell RNA sequencing (scRNA-seq) technologies have been widely used to measure gene 

expression for each individual cell, facilitating a deeper understanding of cell heterogeneity and 

better characterization of rare cell types (Gawad, et al., 2016; Tang, et al., 2009). Compared to 

early generation scRNA-seq technologies, the recently developed droplet-based technology, 

largely represented by the 10X Genomics Chromium system, has quickly gained popularity 

because of its high-throughput (tens of thousands of single cells per run), high efficiency (a 

couple of days), and relatively lower cost (< $2 per cell) (Macosko, et al., 2015; Zheng, et al., 

2017; Jaitin, et al., 2014; Pollen, et al., 2014). It is now feasible to conduct population-scale 

single cell transcriptomic profiling studies, where several to tens or even hundreds of individuals 

are sequenced (van der Wijst, et al., 2018). 
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A major task of analyzing droplet-based scRNA-seq data is to identify clusters of single cells 

with a similar transcriptomic profile. To achieve this goal, unsupervised clustering methods such 

as K-means clustering, hierarchical clustering, and density-based clustering approaches 

(Rodriguez, et al., 2014) have been widely used. Recently, single cell interpretation via multi-

kernel learning (SIMLR) (Wang, et al., 2017), CellTree (duVerle, et al., 2016), SC3 (Kiselev, et 

al., 2017) and DIMM-SC (Sun, et al., 2017) have been proposed for clustering droplet-based 

scRNA-seq data. However, it is still unclear how these methods can be scaled up to study 

population-scale droplet-based scRNA-seq data with tens of thousands of cells collected from 

many individuals and conditions. In addition, no existing clustering method is tailored for 

modeling multiple layers of heterogeneity imbedded in population studies. In the typical analysis 

of population-scale scRNA-seq data, reads from each individual are processed separately and 

then merged together for downstream analysis. For example, in 10X Genomics CellRanger 

pipeline, to aggregate multiple libraries, reads from different libraries are down-sampled such 

that all libraries have the same sequencing depth, leading to substantial information loss for 

individuals with higher sequencing depth. Alternatively, reads can be naively merged across all 

individuals without any library adjustment, leading to batch effect and unreliable clustering 

results. Although heterogeneity among multiple individuals can be reduced using the recently 

developed method implemented in Seurat (Satija, et al., 2015) and scran (Lun, et al., 2016), 

these methods require raw counts to be transformed to continuous numbers, leading to 

interpretation difficulty and potential over-correction.   

 

We first conducted an exploratory data analysis to demonstrate the existence of batch effect in 

multiple individuals using both public and in-house droplet-based scRNA-seq datasets from 

human. We isolated peripheral blood mononuclear cells (PBMCs) from whole blood obtained 

from 4 healthy donors and used the 10X Chromium system to generate scRNA-seq data. We 
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also included one additional healthy donor from a published PBMC scRNA-seq data (Zheng, et 

al., 2017) to increase the complexity of the testing dataset. Detailed sample information was 

summarized in Fig. 1a and Supplementary Table 1. In this cohort, sample 1 and sample 2 

were sequenced in one batch; sample 3 and sample 4 were sequenced in another batch; 

sample 5 was downloaded from the original study conducted by 10X Genomics (Zheng, et al., 

2017). As an exploratory data analysis, we made a t-SNE plot based on the first 50 PCs 

(Supplementary Fig. 1) of these 5 donors, and observed a clear batch effect: samples from the 

same batch tend to cluster together. This illustrative example demonstrates the importance and 

urgent needs of charactering different levels of variability and removing potential batch effect 

among droplet-based scRNA-seq datasets collected from multiple individuals. In the following 

sections, we will briefly describe our method, evaluate its performance in simulation studies, and 

apply it to three local scRNA-seq datasets including PMBC, skin, and lung tissues from human 

or mouse.  

 

2.  Methods 

2.1  Statistical model 

We propose a Bayesian hierarchical Dirichlet multinomial mixture model to explicitly 

characterize different levels of variability in population scale scRNA-seq data. Specifically, let 

𝑥!"#  represent the number of unique UMIs for gene 𝑖  in cell 𝑗  from individual 𝑙  (1 ≤ 𝑖 ≤ 𝐺 , 

1 ≤ 𝑗 ≤ 𝐶!, 1 ≤ 𝑙 ≤ 𝐿). Here 𝐺, 𝐶! and 𝐿 denote the total number of genes, cells in individual 𝑙 

and individuals, respectively. Our goal is to perform simultaneously clustering for all 𝐿 

individuals. We assume that among each individual, all single cells consist of 𝐾 distinct cell 

types. Here 𝐾 is pre-defined according to prior biological knowledge, or will be estimated from 

the model, and 𝐾 is the same among all 𝐿 individuals.  
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Assume that 𝒙∙𝒋𝒍 = (𝑥!!" , 𝑥!!" ,… , 𝑥!"#), the gene expression for cell 𝑗 in individual 𝑙, follows a 

multinomial distribution 𝑀𝑢𝑙𝑡𝑖 𝑇!" ,𝒑∙𝒋𝒍 .  Here 𝑇!" = 𝑥!"#!
!!!  is the total number of UMIs, 

𝒑∙𝒋𝒍 = (𝑝!!" , 𝑝!!" ,… , 𝑝!"#) is the gene expression vector. In addition, let 𝑧!" ∈ {1,2,… ,𝐾} represent 

the cell type label for cell 𝑗  in individual 𝑙 , where 𝑧!" = 𝑘  indicates that cell 𝑗  in individual 𝑙 

belongs to cell type 𝑘. Given 𝑧!" = 𝑘, we assume that 𝒑∙𝒋𝒍 follows a Dirichlet prior 𝐷𝐼𝑅 𝜶∙𝒍(𝒌) , 

where 𝜶∙𝒍(𝒌) = 𝛼!!(!),𝛼!!(!),… ,𝛼!"(!)  is the Dirichlet prior parameter for cell type 𝑘 in individual 

𝑙. Taken together, after integrating 𝒑∙𝒋𝒍 out, we have: 

𝑃 𝒙∙𝒋𝒍|𝑧!" = 𝑘,𝜶∙𝒍(𝒌) =
𝑇!"!
𝑥!"#!!

!!!

Γ(𝑥!"# + 𝛼!"(!))
Γ(𝛼!"(!))

!

!!!

Γ(|𝜶∙𝒍(𝒌)|)
Γ(𝑇!" + |𝜶∙𝒍(𝒌)|)

, 𝜶∙𝒍 𝒌 = 𝛼!"(!)

!

!!!

. 

The joint distribution of 𝒙∙𝒋𝒍 and 𝑧!" is: 

𝑃 𝒙∙𝒋𝒍, 𝑧!" 𝜶∙𝒍 ∙ =
𝑇!"!
𝑥!"#!!

!!!
𝐼(𝑧!" = 𝑘)

!

!!!

Γ(𝑥!"# + 𝛼!"(!))
Γ(𝛼!"(!))

!

!!!

Γ(|𝜶∙𝒍(𝒌)|)
Γ 𝑇!" + 𝜶.∙ 𝒌

. 

We then assume that all 𝐶! cells in individual 𝑙 are all independent, then the joint distribution for 

individual 𝑙 is as follows: 

𝑃 𝒙∙∙𝒍, 𝒛∙𝒍|𝜶∙𝒍(∙) = 𝑃 𝒙∙𝒋𝒍, 𝑧!" 𝜶∙𝒍 ∙

!!

!!!

. 

We further assume that all 𝐿 individuals are independent, then the overall joint distribution is as 

follow 

𝑃 𝒙∙∙∙, 𝒛∙∙|𝜶∙∙(∙) = 𝑃 𝒙∙∙𝒍, 𝒛∙𝒍|𝜶∙𝒍(∙)

!

!!!

∝ 𝐼 𝑧!" = 𝑘
!

!!!

Γ 𝑥!"# + 𝛼!" !
Γ 𝛼!" !

!

!!!

Γ 𝜶∙𝒍 𝒌
Γ 𝑇!" + 𝜶∙𝒍 𝒌

!!

!!!

!

!!!

. 
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In this model, the two sets of parameters of interest are 𝒛∙∙ = 𝑧!" !!!!!!,!!!!!, the cell type label 

for cell 𝑗 in individual 𝑙, and 𝜶∙∙(∙) = 𝛼!" ! !!!!!,!!!!!,!!!!!, the Dirichlet parameters for gene 𝑖 in 

cell type 𝑘 in individual 𝑙. We adopt a full Bayesian approach and use Gibbs sample for the 

statistical inference. Specifically, the joint posterior distribution for 𝒛∙∙ and 𝜶∙∙(∙) are: 

𝑃 𝒛∙∙,𝜶∙∙(∙)|𝒙∙∙∙ ∝ 𝑃 𝒙∙∙∙, 𝒛∙∙|𝜶∙∙ ∙ ×𝑃𝑟𝑖𝑜𝑟 𝜶∙∙ ∙ . 

Since all 𝛼’s are strictly positive, we adopt a log-normal distribution as the prior distribution for 

𝛼!" ! . We assume that for gene 𝑖 in cell type 𝑘, 𝛼!"(!) from all 𝐿 individuals share the same prior 

distribution 𝐿𝑁(𝜇!" ,𝜎!"! ).   

𝑃𝑟𝑖𝑜𝑟 𝜶𝒊∙𝒌 =
1

𝛼!"# 2𝜋𝜎!"!
exp −

log𝛼!"# − 𝜇!" !

2𝜎!"!

!

!!!

. 

Here 𝜇!"  can be estimated by the mean of 𝛼!"# ’s: 𝜇!" =
!
!

𝛼!"#!
!!! . Estimation of 𝜎!"!  can be 

challenging due to limited number of individuals. We can assume all 𝜎!"! ’s follow a hyper-prior: 

Gamma distribution 𝐺𝑎𝑚𝑚𝑎(𝑎! , 𝑏!), to use information across all genes to estimate variance. In 

addition, we assume a non-informative prior for 𝜇!! ’s. Taken together, we have the full posterior 

distribution as follows: 

𝑃 𝒛∙∙,𝜶∙∙(∙)|𝒙∙∙∙ ∝ 𝑃 𝒙∙∙∙, 𝒛∙∙|𝜶∙∙ ∙ × 𝑃𝑟𝑖𝑜𝑟 𝜶𝒊∙𝒌

!

!!!

!

!!!

× 𝑃𝑟𝑖𝑜𝑟 𝝁∙𝒌

!

!!!

× 𝑃𝑟𝑖𝑜𝑟 𝝈∙𝒌𝟐
!

!!!

. 

We use Gibbs sample to iteratively update 𝛼!" !  and 𝑧!" . Details can be found in 

Supplementary Material Section 1. 

 

2.2  Sequencing library construction 

10X Genomics has recently released a commercialized droplet-based Chromium system, which 

is a microfluidics platform based on Gel bead in EMulsion (GEM) technology (Zheng et al., 

2017). Cells mixed with reverse transcription reagents were loaded into the Chromium 
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instrument. This instrument separated cells into mini-reaction "partitions" formed by oil micro-

droplets, each containing a gel bead and a cell, known as GEMs. GEMs contain a gel bead, 

scaffold for an oligonucleotide that is composed of an oligo-dT section for priming reverse 

transcription, and barcodes for each cell and each transcript as described (Zheng et al., 2017). 

GEM generation takes place in a multiple-channel microfluidic chip that encapsulates single gel 

beads. Reverse transcription takes place inside each droplet. Approximately 1,000-fold excess 

of partitions compared to cells ensured low capture of duplicate cells. The reaction 

mixture/emulsion was removed from the Chromium instrument, and reverse transcription was 

performed. The emulsion was then broken using a recovery agent, and following Dynabead and 

SPRI clean up cDNAs were amplified by PCR (C1000, Bio-Rad). cDNAs were sheared (Covaris) 

into ~200 bp length. DNA fragment ends were repaired, A-tailed and adaptors ligated. The 

library was quantified using KAPA Universal Library Quantification Kit KK4824 and further 

characterized for cDNA length on a Bioanalyzer using a High Sensitivity DNA kit. All sequencing 

experiments were conducted using Illumina NextSeq 500 in the Genomics Sequencing Core at 

the University of Pittsburgh.  

 

2.3  Data description 

2.3.1 Human PBMC dataset: Peripheral blood was obtained from healthy donors by 

venipuncture. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood by 

density gradient centrifugation using Ficoll-Hypaque. PBMC were then counted and re-

suspended in phosphate buffered saline with 0.04% bovinue serum albumin, and were 

processed through the Chromium 10X Controller according to the manufacturers’ instructions, 

targeting a recovery of ~2,000 cells. The following steps were all performed under the 

aforementioned protocol developed by 10X Genomics. 
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2.3.2 Human Skin dataset: Skin samples were obtained by performing 3 mm punch biopsies 

from the dorsal mid-forearm of healthy control subjects after informed consent under a protocol 

approved by the University of Pittsburgh Institutional Review Board. Skin for scRNA-seq was 

digested enzymatically (Miltenyi Biotec Whole Skin Dissociation Kit, human) for 2 hours and 

further dispersed using the Miltenyi gentleMACS Octo Dissociator. The resulting cell suspension 

was filtered through 70 micron cell strainers twice and re-suspended in PBS containing 0.04% 

BSA. Cells from biopsies were mixed with reverse transcription reagents then loaded into the 

Chromium instrument (10X Genomics). ~2,600-4,300 cells were loaded into the instrument to 

obtain data on ~1,100-1,800 cells, anticipating a multiplet rate of ~1.2% of partitions. The 

following steps were all performed under the aforementioned protocol developed by 10X 

Genomics. 

 

2.3.3 Mouse lung dataset: Lung single cell suspension from naïve and infected C57BL/6 mice 

were subject to scRNA-seq library preparation protocol. Briefly, left lobs of both naïve and 

infected mice were removed and digested by Collagenase/DNase to obtain single cell 

suspension. Mononuclear cells after filtration with a 40µM cell strainer were separated into mini-

reaction "partitions" or GEMs formed by oil micro-droplets, each containing a gel bead and a cell, 

by the Chromium instrument (10X Genomics). The reaction mixture/emulsion with captured and 

barcoded mRNAs were removed from the Chromium instrument followed by reverse 

transcription. The cDNA samples were fragmented and amplified using the Nextera XT kit 

(Illumina). The following steps were all performed under aforementioned  the protocol developed 

by 10X Genomics. 

 

3.  Results 

In this study, we propose a BAyesian Mixture Model for Single Cell sequencing (BAMM-SC) to 

simultaneously cluster droplet-based scRNA-seq data from multiple individuals. BAMM-SC 
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directly works on the raw counts without any data transformation and models the heterogeneity 

internally by learning variation of signature genes in a Bayesian hierarchical model framework.  

 

Figure 1. (a) Sample information of three droplet-based scRNA-seq datasets. (b) Overview of 
clustering with BAMM-SC. 
 

Specifically, BAMM-SC adopts a Bayesian hierarchical Dirichlet multinomial mixture model, 

which explicitly characterizes three levels of variabilities (i.e., genes, cell types and individuals) 

(Fig. 1b and Methods). Our method has the following three key assumptions. First, cell type 

clusters are discrete, and each cell belongs to one cell type exclusively. Second, heterogeneity 

a 

b 
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exists among different individuals, but the variability of same cell type among different 

individuals is much lower than the variability of different cell types among the same individual. 

Third, cells of the same cell type share a similar gene expression pattern. Compared to other 

clustering methods which ignore individual level variability, BAMM-SC has the following three 

key advantages: (1) BAMM-SC accounts for data heterogeneity among multiple individuals, 

such as unbalanced sequencing depths and technical biases in library preparation, and reduces 

the false positives of detecting individual-specific cell types. (2) BAMM-SC borrows information 

across different individuals, leading to improved power for detecting individual-shared cell types 

and higher reproducibility as well as stability of clustering results. (3) BAMM-SC provides a 

statistical framework to quantify the clustering uncertainty for each cell in the form of posterior 

probability for each cell type. 

 

We have conducted comprehensive simulation studies to benchmark the performance of 

BAMM-SC. Specifically, we simulated droplet-based scRNA-seq data collected from multiple 

individuals from the posited Bayesian hierarchal Dirichlet multinomial mixture model (Methods 

and Supplementary Material Section 2). We considered two experimental designs, including 

(1) different heterogeneities among multiple individuals; and (2) different sequencing depths 

among multiple individuals. We applied BAMM-SC to each synthetic dataset, and compared the 

inferred cell type label of each single cell with the ground truth, measured by adjusted Rand 

index (ARI) (Rand, 1971) and normalized mutual information (NMI) (Supplementary Material 

Section 3). As a comparison, we also applied K-means clustering and DIMM-SC to synthetic 

dataset in two modes: (1) in mode 1, we pooled single cells from different individuals together 

while ignoring each individual label, and then applied K-means clustering / DIMM-SC to the 

pooled data; (2) in mode 2, we first applied K-means clustering / DIMM-SC to each individual 

separately, and then matched the inferred cell type label empirically. Specifically, we first 

obtained the cell clusters of the first individual and used it as a reference. Then, we matched 
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each cell cluster of the rest individuals with the corresponding reference cell cluster, which has 

the highest Pearson correlation with its average gene expression profile. We denoted the two 

methods in mode 1 as K-means (Pooled) and DIMM-SC (Pooled), respectively, and the two 

methods in mode 2 as K-means (Sep) and DIMM-SC (Sep), respectively. Noticeably, our 

previous work has shown that DIMM-SC outperforms Seruat and CellTree when clustering 

scRNA-seq data from a single individual; therefore, we did not include Seruat and CellTree in 

our simulation studies. We simulated 100 datasets and applied clustering methods on each of 

them to evaluate the variability of the clustering results.  

 

In the first experimental design, we simulated scRNA-seq data with different heterogeneities 

among multiple individuals. In our posited hierarchical model, the log normal prior distribution 

𝐿𝑁(𝜇!" ,𝜎!"! ) measures the heterogeneity of gene 𝑖  in cell type 𝑘  among multiple individuals. 

Without loss of generality, we used the mean of 𝜎!"!  across all genes and all cell types to 

quantify the individual level heterogeneity. In the second experimental design, we simulated 

scRNA-seq data from multiple individuals with different sequencing depths. Specifically, we 

simulated data from 10 individuals and equally divided them into two groups, in which each 

group consists of 5 individuals. We set the sequencing depth of group 1 as half of the 

sequencing depth of group 2, and denoted these 10 individuals as the “Unequal” dataset. To 

avoid batch effect due to imbalanced sequencing depth, we down-sampled the sequencing 

depth of group 2 by half to match the sequencing depth of group 1, and denoted them as the 

“Equal” dataset. We applied BAMM-SC and the other four competing clustering methods, 

including K-means clustering (Pooled), DIMM-SC (Pooled), K-means clustering (Sep) and 

DIMM-SC (Sep), to both the “Unequal” and “Equal” datasets, and reported the corresponding 

ARIs and NMIs. 
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BAMM-SC consistently outperformed the other four competing methods across a variety of 

individual level heterogeneities by achieving higher average ARI and lower variation of ARI 

among 100 simulations as shown in Fig. 2a. As a comparison, K-means clustering and DIMM-

SC are robust to different levels of individual heterogeneity. Noticeably, K-means-Sep and 

DIMM-SC-Sep provided more variable clustering results when 𝜎! is small, since it is sub-optimal 

to cluster each individual separately when individuals are relatively homogeneous. Fig. 2b 

shows that among all five clustering methods, BAMM-SC performed best by obtaining the 

highest average ARI and the lowest variation of ARI, for both  “Unequal” and “Equal” datasets. 

Noticeably, K-means clustering performed worst for the “Unequal” dataset, as the unbalanced 

sequencing depths lead to systematic differences between individuals in group 1 and group 2. 

As a result, K-means clustering wrongly separated group 1 and group 2 as two distinct cell 

types, and failed to identify true cell types.  

 

Furthermore, we performed comprehensive simulation analysis by generating simulated scRNA-

seq datasets from different number of individuals (Supplementary Fig. 2a), different number of 

cell types (i.e., cluster) (Supplementary Fig. 2b), different overall sequencing depths 

(Supplementary Fig. 2c), different total number of cells (Supplementary Fig. 2d) and different 

cell-type-specific heterogeneities (i.e., the difference of gene expression profile between two 

distinct cell types) (Supplementary Fig. 2e), and obtained consistent results. BAMM-SC 

consistently outperformed other methods in terms of accuracy and robustness. We reached the 

same conclusion based on NMI (Supplementary Fig. 3a – 3g). Taken together, our 

comprehensive simulation studies have demonstrated that BAMM-SC is able to adaptively 

borrow information across multiple individuals, account for unbalanced sequencing depths, and 

provide more accurate and robust clustering results than other competing methods. 
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Figure 2. Boxplots of ARI for five clustering methods across 100 simulations, investigating how 
different heterogeneity among multiple individuals (a) and individuals with different sequencing 
depths (b) affect clustering results. 
 
 
To evaluate the performance of BAMM-SC in real applications, we further generated three 

scRNA-seq datasets including mouse lung, human PBMC and human skin tissues using 10X 

Chromium system at the University of Pittsburgh (see detailed data description in methods). The 

data are available for download (see data availability). 

 

For aforementioned human PBMC samples, we first pooled cells from 5 donors together, filtered 

lowly expressed genes that were expressed in less than 1% cells. We then extracted the top 

1,000 highly variable genes based on their standard deviations. As shown in Supplementary 

Fig. 4, we identified 7 types of PBMCs based on the biological knowledge of cell-type-specific 

gene markers (Supplementary Table 2). Using these gene markers, >70% single cells can be 

assigned to a specific cell type. Since there is no gold standard for clustering analysis in this 

real dataset, we used the labels of these cells as the approximated truth to benchmark the 

clustering performance for different clustering methods. Cells with uncertain cell types are 

removed when calculating ARIs and NMIs. 

a	 b	
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We applied five clustering methods on these samples and repeated each method 10 times to 

evaluate the stability of its performance. In addition to K-means clustering, SC3, DIMM-SC and 

BAMM-SC, we also used scran (Lun, et al., 2016) to remove the batch effect among 5 samples 

and then applied K-means clustering on the normalized data (scran+K-means). The total 

number of clusters was set as 7, matching the biological knowledge from cell-type-specific gene 

markers. Fig. 3a (left figure) and Fig. 3a (right figure) show the t-SNE plots with each cell 

colored by their classification based on specific gene markers and cluster labels inferred by 

BAMM-SC, respectively. Despite some dendritic cells were wrongly identified as CD16+ 

Monocytes, these two plots are similar to each other (ARI=0.535, NMI=0.582) suggesting that 

BAMM-SC performed very well in human PBMC samples.  

 

Based on the clustering results from BAMM-SC, we calculated the averaged cell proportions of 

each cell type among 10 runs for each PBMC sample. Fig. 4a shows that the proportions 

inferred from BAMM-SC is close to the proportions from the approximated truth based on gene 

markers, suggesting that BAMM-SC can account for batch effect. As shown in Fig. 5a, BAMM-

SC achieved the highest ARI and NMI among all clustering methods. scran + K-means 

clustering slightly outperformed K-means clustering in terms of accuracy. We also generated t-

SNE projection plots colored by cluster labels inferred by K-means clustering (Supplementary 

Fig. 5a), scran + K-means clustering (Supplementary Fig. 5b), SC3 (Supplementary Fig. 5c), 

DIMM-SC (Supplementary Fig. 5d) and BAMM-SC (Supplementary Fig. 5e). Noticeably, K-

means clustering performed the worst for the combined PBMC datasets. 
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Figure 3. The t-SNE projection of cells from human PBMC (a), mouse lung (b) and human skin 
(c) tissues, colored by the approximated truth and BAMM-SC clustering results, separately. 
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In addition to human PBMC samples, we also collected lung mononuclear cells from 4 mouse 

samples under 2 conditions: naive and streptococcus pneumonia (SP) infected. Among them, 

Sample 1 and Sample 2 are SP infected samples. Sample 3 and Sample 4 are naïve samples. 

Supplementary Fig. 6 shows the t-SNE plot of lung mononuclear cells from 4 mouse samples. 

Similar to the analysis of PBMC samples, after filtered lowly expressed genes, we pooled cells 

from 4 mice together and extracted the top 1,000 highly variable genes. As shown in 

Supplementary Fig. 7, we identified 6 types of cells based on the biological knowledge of cell-

type specific gene markers (Supplementary Table 3). Taken together, >66% of single cells can 

be assigned to a specific cell type. Therefore, we used the labels of these cells as the 

approximated truth and removed cells with uncertain cell types from downstream analysis. 

 

 

Figure 4. Bar plots of proportions of cell types among all individuals for human PBMC (a), 
mouse lung (b) and human skin (c) tissues, separately. 

a	 b	 c	
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Figure 5.  Boxplots of ARI and NMI from five clustering methods across 10 simulations for dataset human PBMC (a), mouse lung (b) 
and human skin (c), respectively.   
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Fig. 3b (left figure) and Fig. 3b (right figure) shows the t-SNE plot with each cell colored by 

their cluster label based on cell-type-specific gene markers and cluster labels inferred by 

BAMM-SC, respectively. These two are highly similar (ARI=0.861, NMI=0.840), indicating the 

good performance of BAMM-SC. Fig. 5b (left figure) and Fig. 5b (right figure) shows that 

BAMM-SC outperformed other four clustering methods in terms of ARI and NMI. We also 

generated the t-SNE plots colored by cluster labels inferred by K-means clustering 

(Supplementary Fig. 8a), scran + K-means clustering (Supplementary Fig. 8b), SC3 

(Supplementary Fig. 8c), DIMM-SC (Supplementary Fig. 8d) and BAMM-SC 

(Supplementary Fig. 8e). As shown in Supplementary Fig. 13, the proportions of neutrophils 

in SP infected samples (sample 1 and sample 2) are much higher than the proportions in naïve 

samples (sample 3 and sample 4). This is consistent with the fact that infections by bacteria and 

viruses may increase the number of neutrophils, which is a necessary reaction by the body 

(Chen, et al., 2013; Weiser, 2010). Interestingly, the proportion of cell types in naïve sample 3 is 

different from others, which may due to unsatisfied sample quality or unexpected bacterial 

infections. 

 

To evaluate the clustering performance of BAMM-SC in solid tissue, we collected skin samples 

from 5 healthy donors that are part of a systemic sclerosis study (Tabib, et al., 2018). Fig. 1a 

lists the detailed sample information and Supplementary Fig. 9 shows the t-SNE plot of cells 

from 5 human skin samples. Similar to previous analyses, we first pooled cells from 5 samples 

together, removed lowly expressed genes, and then extracted the top 1,000 highly variable 

genes. As shown in Supplementary Fig. 10, we identified 8 major types of cells based on the 

biological knowledge of cell-type-specific gene markers (Supplementary Table 4). Taken 

together, >67% of single cells can be assigned to a specific cell type. We used the labels of 

these cells as the approximated truth and removed cells with uncertain cell types from 

downstream analysis. 
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As shown in Fig. 3c, BAMM-SC performed well in human skin samples, since the t-SNE plot 

with each cell colored by their cell type label based on gene markers is highly similar to the plot 

generated from the clustering result of BAMM-SC (ARI=0.786, NMI=0.810). Also, BAMM-SC 

achieved higher ARI and NMI compared with other clustering methods (t-test P-value < 0.01) 

(Fig. 5c). As comparisons, we generated the t-SNE plots colored by cluster labels inferred by K-

means clustering (Supplementary Fig. 11a), scran + K-means clustering (Supplementary Fig. 

11b), SC3 (Supplementary Fig. 11c), DIMM-SC (Supplementary Fig. 11d) and BAMM-SC 

(Supplementary Fig. 11e). 

 

4.  Software and data availability 

BAMM-SC is available as an R package at http://www.pitt.edu/~wec47/BAMMSC.html. All the 

real data (human PBMC, mouse lung and human skin tissues) used in this study have been 

deposited at http://www.pitt.edu/~wec47/BAMMSC.html. 

 

5.  Discussion  

In summary, we developed a novel Bayesian framework for clustering population-scale scRNA-

seq data. BAMM-SC retains the raw data information by directly modeling UMI count without 

data transformation or normalization, facilitating straightforward biological interpretation. The 

Bayesian hierarchical model enables the joint characterization of multiple levels of uncertainty, 

including sampling variability, single cell level heterogeneity and individual level heterogeneity. 

Furthermore, BAMM-SC can borrow information across different individuals, leading to 

improved clustering accuracy. BAMM-SC is based on probabilistic models, thus providing the 

quantification of clustering uncertainty for each single cell.  
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Our model coupled with a computationally efficient MCMC algorithm is able to cluster large-

scale droplet-based scRNA-seq data with feasible time cost. For example, it takes a couple 

hours to cluster over 10,000 cells from 5 individuals using the top 1,000 highly variable genes. 

Additionally, we can pre-define the number of clusters based on prior knowledge on the tissue 

or determine it using some model checking criteria such as AIC or BIC. As shown in 

Supplementary Fig. 12, AIC and BIC work as expected in the analysis of simulated datasets 

and provide a reliable range of cluster numbers for real data analysis based on prior knowledge. 

BAMM-SC is currently implemented in R/Rcpp with satisfactory computing efficiency to 

accommodate population scale scRNA-seq data. Further speed-up can be made through 

parallel computing.  

 

There are several limitations of BAMM-SC. First, we filter out genes with excessive zeros from 

the analysis with the assumption that lowly-expressed genes do not contribute much to 

clustering. This may be a problematic for rare cell type identification. Second, we do not 

explicitly model a zero-inflation pattern, which may or may not affect clustering accuracy. A 

refined model needs to be further developed with a consideration of computational complexity 

and model flexibility. Third, in our model, we assume that each cell belongs to one distinct 

cluster. The posterior probability measures the clustering uncertainty, which cannot be 

interpreted as quantification of cell cycle or developmental stage. Our method has a potential to 

be extended to perform trajectory analysis (Trapnell, et al., 2014; Trapnell, 2015), which is 

beyond the scope of this paper.  

 

We have applied BAMM-SC to three in-house datasets to showcase its feasibility of use with 

different tissue types and species. Consistent patterns of improvement were observed across 

different applications. We will test our method in many other datasets that are being rapidly 

generated at the University of Pittsburgh. With the increased popularity of population scale 
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scRNA-seq studies, we expect that BAMM-SC will become a useful tool for elucidating single 

cell level transcriptomic heterogeneity.   
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Supplementary Material 
 
Section 1: Details of Gibbs sample 
 
Based on Bayes formula, we have the full posterior distribution as follows: 
 

𝑃 𝒛∙∙,𝜶∙∙(∙)|𝒙∙∙∙ ∝ 𝑃 𝒙∙∙∙, 𝒛∙∙|𝜶∙∙ ∙ × 𝑃𝑟𝑖𝑜𝑟 𝜶𝒊∙𝒌

!

!!!

!

!!!

× 𝑃𝑟𝑖𝑜𝑟 𝝁∙𝒌

!

!!!

× 𝑃𝑟𝑖𝑜𝑟 𝝈∙𝒌𝟐
!

!!!

. 

 
The complete log likelihood is: 
 

log𝑃 𝒛∙∙,𝜶∙∙(∙)|𝒙∙∙∙ = 𝐼 𝑧!" = 𝑘 ∗ log
Γ(𝑥!"# + 𝛼!"(!))

Γ(𝛼!"(!))

!

!!!

Γ(|𝜶∙𝒍(𝒌)|)
Γ(𝑇!" + |𝜶∙𝒍(𝒌)|)

!

!!!

!!

!!!

!

!!!

 

+ − log𝛼!"# −
log𝛼!"# − 𝜇!" !

2𝜎!"!

!

!!!

!

!!!

!

!!!

+ −
𝐿
2
log 𝜎!"!

!

!!!

!

!!!

 

+𝑁𝑜𝑛𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑖𝑜𝑟 𝜇∙∙ + 𝑙𝑜𝑔𝐺𝑎𝑚𝑚𝑎𝑃𝐷𝐹(𝜎!"! , 𝑎! , 𝑏!)
!

!!!

!

!!!

. 

 
Here the hyper-prior parameters 𝑎! and 𝑏! can be pre-specified, or estimated from data via an 
empirical Bayes approach. 
 
We will use Gibbs sample to iteratively update 𝑧!" !!!!!!,!!!!!, 𝛼!" ! !!!!!,!!!!!,!!!!! . For a 
given pair of 𝑙 and 𝑗, the conditional distribution for 𝑧!" is a multinomial distribution, where  
 

𝑃 𝑧!" = 𝑘 =
1

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
∗

Γ 𝑥!"# + 𝛼!" !
Γ 𝛼!" !

!

!!!

Γ 𝜶∙𝒍 𝒌
Γ 𝑇!" + 𝜶∙𝒍 𝒌

. 

 
Where the normalization constant is: 
 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
Γ(𝑥!"# + 𝛼!!(!))

Γ(𝛼!"(!))

!

!!!

Γ 𝜶∙𝒍 𝒌
Γ 𝑇!" + 𝜶∙𝒍 𝒌

!

!!!

. 

 
We will use random walk Metropolis within Gibbs to iteratively update 𝛼!"(!). For a given triple of 
𝑖, 𝑙 and 𝑘, the conditional log likelihood for 𝛼!"(!) is: 
 

log𝑃 𝛼!" ! 𝒙∙∙∙, 𝒛∙∙ ∝ 𝐼 𝑧!" = 𝑘 ∗ log
Γ 𝑥!"# + 𝛼!" !

Γ 𝛼!" !

!

!!!

Γ 𝜶∙𝒍 𝒌
Γ 𝑇!" + 𝜶∙𝒍 𝒌

!!

!!!

− log𝛼!"# −
log𝛼!"# − 𝜇!" !

2𝜎!"!
. 

 
Similarly, we will use random walk Metropolis within Gibbs to iteratively update 𝜎!"! . For a given 
pair of 𝑖 and 𝑘, the conditional log likelihood for 𝜎!"!  is: 
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log𝑃(𝜎!"! |… ) ∝ −
log𝛼!"# − 𝜇!" !

2𝜎!"!

!

!!!

−
𝐿
2
log 𝜎!"! + 𝑙𝑜𝑔𝐺𝑎𝑚𝑚𝑎𝑃𝐷𝐹(𝜎!"! , 𝑎! , 𝑏!) 

 
In random walk Metropolis algorithm, we adaptively select the step size of proposal distribution, 
to make sure that the acceptance rate is 20% ~ 30%. 
 
Label switching issue. We can first run DIMM-SC on all single cells pooled from all individuals, 
to get initial values for 𝑧!" and 𝛼!" ! . To get the initial values of 𝜎!"! , we apply DIMM-SC to each 
individual separately and get 𝛼! !  for each individual. Then we can match 𝛼! !  from the same 
cell type across different individuals based on calculating Pearson correlation and L1 norm of 
the difference between 𝛼! !  from different individuals. Specifically, each cell cluster was 
assigned to the cluster from another individual, which has the highest correlation with its gene 
expression profile and the lowest L1 norm of the difference between 𝛼! !  from different 
individuals. 
 
Section 2: Data generation in simulation studies 
 
We simulated drop-seq data with different heterogeneity among multiple individuals. In our 
posited hierarchical model, the log normal prior distribution 𝐿𝑁(𝜇!" ,𝜎!"! )  measures the 
heterogeneity of gene 𝑖 in cell type 𝑘 among multiple individuals and we also assume all 𝜎!"! ’s 
follow a hyper-prior 𝐺𝑎𝑚𝑚𝑎(𝑎! , 𝑏!). For simplicity, we used the mean of 𝜎!"!  across all genes 
and all cell types to quantify the individual level heterogeneity. 
 
In our simulation set-up, the UMI count matrix was sampled from a proposed Dirichlet mixture 
model. Specially, for a fixed total number of cell clusters 𝐾, we first pre-defined the values of 𝜇!", 
𝑎!  and 𝑏!  for each cell cluster, and then sampled the 𝜎!"!  from the Gamma distribution 
𝐺𝑎𝑚𝑚𝑎 𝑎! , 𝑏! . Next, we sampled 𝛼!. !  from a Log Normal distribution 𝐿𝑁(𝜇!" ,𝜎!"! ) for each 
gene and each cell cluster. Proportion 𝒑∙𝒋𝒍 = (𝑝!!" , 𝑝!!" ,… , 𝑝!"#) was sampled from a Dirichlet 
distribution with parameter vector 𝜶∙𝒍(𝒌) = 𝛼!!(!),𝛼!!(!),… ,𝛼!"(!) . Last, we sampled the UMI 
count vector 𝒙∙𝒋𝒍 = (𝑥!!" , 𝑥!!" ,… , 𝑥!"#)  for the cell 𝑗  and individual 𝑙  from the multinomial 
distribution 𝑀𝑢𝑙𝑡𝑖 𝑇!" ,𝒑∙𝒋𝒍 . We fixed 𝑇!" as a constant across all cells and individuals. 
 
 
Section 3: Normalized mutual information 
 
The mutual information (MI) of two random variables is a measure of the mutual dependence 
between the two variables. It measures the information these two variables share and how 
much knowing one of these variables reduces uncertainty about the other. Mutual information 
can be expressed as  
 

𝐼 𝑋;𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋 , 
 
where 𝐻 𝑋  and 𝐻 𝑌  are the marginal entropies, 𝐻 𝑋 𝑌  and 𝐻 𝑌 𝑋  are the conditional 
entropies. The normalized mutual information (NMI) can be expressed as 
 

𝑁𝑀𝐼 𝑋,𝑌 =
2[𝐻 𝑋 − 𝐻 𝑋 𝑌 ]
[𝐻 𝑋 + 𝐻(𝑌)]

 . 
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It represents the harmonic mean of !(!;!)
! !

  and  !(!;!)
! !

 (Witten, et al., 2015). Since it’s normalized, 
we can measure and compare the NMI between different clustering results having different 
number of clusters. 
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Supplementary Figure 1. The t-SNE projection of human PBMC dataset, colored by 
different sample IDs. 
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Supplementary Figure 2. The Boxplots of ARI for five clustering methods across 100 
simulations, investigating how different number of individuals (a), number of clusters (b), 
sequencing depth (c), number of cells in each cluster of each individual (d) and cell-type-
specific heterogeneities (e) affect clustering results. 
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Supplementary Figure 3. The Boxplots of NMI for five clustering methods across 100 
simulations, investigating how different heterogeneity among multiple individuals (a), 
individuals with different sequencing depths (b), number of individuals (c), number of 
clusters (d), sequencing depth (e), number of cells in each cluster of each individual (f) 
and cell-type-specific heterogeneities (g) affect clustering results.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a	 b	

c	 d	

e	 f	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392662doi: bioRxiv preprint 

https://doi.org/10.1101/392662


29	
	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

g	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/392662doi: bioRxiv preprint 

https://doi.org/10.1101/392662


30	
	

Supplementary Figure 4. The t-SNE projection of cells from human PBMC, colored by 
different types of PBMCs based on the biological knowledge of cell-type-specific gene 
markers. 
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Supplementary Figure 5. The t-SNE projection of cells from human PBMC, colored by the 
K-means clustering (a), scran + K-means clustering (b), SC3 clustering (c), DIMM-SC 
clustering (d) and BAMM-SC clustering assignment. 
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Supplementary Figure 6. The t-SNE projection of mouse lung dataset, colored by 
different sample IDs. 
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Supplementary Figure 7. The t-SNE projection of cells from mouse lung dataset, colored 
by different types of PBMCs based on the biological knowledge of cell-type-specific gene 
markers. 
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Supplementary Figure 8. The t-SNE projection of cells from mouse lung dataset, colored 
by the K-means clustering (a), scran + K-means clustering (b), SC3 clustering (c), DIMM-
SC clustering (d) and BAMM-SC clustering assignment.  
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Supplementary Figure 9. The t-SNE projection of cells from human skin dataset, colored 
by different sample IDs. 
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Supplementary Figure 10. The t-SNE projection of cells from human skin dataset, colored 
by different types of PBMCs based on the biological knowledge of cell-type-specific gene 
markers. 
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Supplementary Figure 11. The t-SNE projection of cells from human skin dataset, colored 
by the K-means clustering (a), scran + K-means clustering (b), SC3 clustering (c), DIMM-
SC clustering (d) and BAMM-SC clustering assignment.  
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Supplementary Figure 12. The dot plots of AIC and BIC for the final clustering results in 
the simulated dataset, where the true number of clusters is 4. Blue dots and red dots 
denote values of BIC and AIC, respectively. Black dots denote ARIs. 
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Supplementary Figure 13. Bar plots of proportions of cell types for each individual in 
mouse lung dataset. 
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Supplementary Table 1. The version of Cell Ranger used when analyzing samples from 
three droplet-based scRNA-seq datasets. 

 

Dataset Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 
Human PBMC 2.0.0 2.0.0 1.2.0 1.2.0 1.1.0 
Mouse Lung 1.2.0 1.2.0 1.2.0 1.2.0  
Human Skin 1.3.0 1.3.0 2.0.0 2.0.0 2.0.0 
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Supplementary Table 2. Gene markers used to specify cell types in human PBMC 
samples. 
 
 

Cell Types Genes 
CD8+ T cells CD3+CD8A+CD4- 
CD4+ T cells CD3+CD8-CD4+IL2RA-IL7R+ 

B cells CD3-CD19+MS4A1+ 
NK cells NCAM1+NKG7+CD3- 

CD14+ monocytes CD3-CD19-CD14+HLA- 
CD16+ monocytes CD3-CD19-FCGR3A+ 

Dendritic cells CD1C+CD14-HLA-FCER1A+ 
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Supplementary Table 3. Gene markers used to specify cell types in mouse lung cell 
samples. 
 

Cell Types Genes 
Macrophages Ctss+Chil3+ 
Neutrophils S100a8+S100a9+Il1b+ 
Endothelial Lyve1+Egfl7+ 

Small airway Epithelial Sftpc+Sftpd+Lyz1+ 
Club Cells Scgb1a1+Scgb3a1+ 

Lymphocytes Cd79b+Ms4a1+ / Gzma+Nkg7+ 
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Supplementary Table 4. Gene markers used to specify cell types in human skin samples. 
 
 

Cell Types Genes 
Smooth muscle cells DES+ 

Suprabasal keratinocytes KRT1+KRT10+ 
Basal keratinocytes KRT14+KRT5+ 

Endothelial cells VWF+ 
Fibroblasts COL1A1+ 
Pericytes RGS5+VWF- 

Melanocytes PMEL+ 
Mecrophages/Dendritic cells AIF1+ 
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