
14 

 

Figure 3. Decoding abstract vs. concreteness from isolated visual words (Experiment 1). Results 

for abstract/concrete visual words presented in isolation. A) Average channel-wise evoked potentials 

across subjects and masked for significance (p < .05). B) Averaged difference wave (concrete minus 

abstract) across all channels. Above: for specific, representative times points, interpolated 

topographies demonstrate spatial structure. Channels belonging to significant clusters at the 

corresponding time point are highlighted in white. C) Generalization across time decoding with 

masked time points of significance (above chance; p < .05, threshold-free cluster enhancement/TFCE). 

 

Between-Experiment Decoding 

Finally, we tested whether the semantic predictions that – as our above-reported decoding 

results for the pause intervals suggest – are active prior to word presentation, share 

representational codes with the neural patterns elicited when words from these semantic 

categories are presented in isolation. This was tested using cross-decoding between 

experiments, i.e., training on the abstract-concrete classification in one of the single-word 

experiments and testing on pause-data from the sentence study. However, neither when training 

MVPA classifiers on the auditory, nor on the visual single word contrast could we find 

significant cross-decoding to EEG signals from the pause interval of the sentence experiment 
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(TFCE, all p > .05). Classifiers trained on isolated auditory words were also not able to decode 

concreteness from EEG signals elicited by isolated visual words (all p > .05), and vice versa 

(all p > .05). 

 

Interim Discussion 

To summarize, we found that a linear classifier could decode the categorical abstract vs. 

concrete nature of the expected word, from electrophysiological activity recorded during an 

unexpected silent period preceding the target word. This demonstrates the existence of pre-

stimulus neural representations that code semantic expectations, providing support for the 

operation of predictive coding mechanisms during language processing. This finding is in 

agreement with a strong hypothesis derived from predictive coding theory, i.e., that the 

prediction error carries specific information about the expected sensory input (Friston, 2010; 

Clark 2013, Kok and de Lange, 2015). Under this interpretation, our results indicate that 

specific multivariate response patterns elicited by prediction violations in the absence of 

sensory input carry important information about the expected stimulus. (For discussion of 

potential alternative accounts, see the main Discussion section below.) 

Interestingly, we found no evidence for a generalization between these omission-related 

semantic prediction errors and the neural representation of abstract/concreteness category 

elicited by words processed in isolation. This indicates that context-dependent semantic 

expectations are neurally computed in a different way than the semantic category membership 

of a word perceived without context. This is not unexpected. Isolated words are highly 

polysemous (compare, e.g., the many different kinds of banks; Hagoort, Hald, Bastiaansen, & 

Petersson, 2004), and sentence context quickly constrains processing paths, which is also 

reflected in neural signals (Federmeier et al., 2007). Thus, isolated words often activate much 

broader semantic information than context-embedded and disambiguated words. I.e., hearing 

the word “bank” in isolation activates all of the multiple meanings of bank; hearing “bank” in 
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the context of “I took a stroll to the park and sat on a …” however allows the brain to engage a 

much smaller conceptual-semantic network – not only in the degree of activation, but also in 

the qualitative shape (i.e., in the sense of different topographies of semantic networks). 

However, this line of argument is speculative and, admittedly, post-hoc. A different – 

albeit less likely – possibility is that some other, i.e., non-semantic aspect of the pre-omission 

context differed between sentence conditions and was picked up by our decoding algorithm. 

This type of confound would also lead to a lack of cross-experiment generalization because in 

that case, the signal decoded in sentences would not be a semantic signal. To exclude this 

possibility, a second experiment was conducted with the aim of replicating and extending the 

first study. Specifically, in this second study, we investigated whether a different semantic 

category could be read out from pre-target brain activity while controlling even better for pre-

stimulus context. 

 

METHODS EXPERIMENT 2: DECODING WORD ANIMACY FROM SILENCE-

EVOKED EEG 

In this second experiment, we tested if the semantic feature ‘animacy’ (i.e., living vs. non-

living) could also be decoded from pauses preceding predictable but unexpectedly delayed 

words in sentences. This semantic feature was chosen as (a) it can be decoded from words 

presented in isolation (Chan et al, 2011), and (b) N400 results (in Polish; cf. Szewcyk and 

Schriefers, 2013) are in principle compatible with the predictive activation of animacy status. 

We thus hypothesized that the semantic category ‘animacy’ has a specific neurophysiological 

representation that can be proactively elicited by a constraining sentence contexts – analogous 

to the conclusion we derived for concreteness based on the results of Experiment 1. As in 

Experiment 1, a pause of 1,000 ms was inserted prior to the target word in half of the critical 

sentences, and EEG measured during this silent period was the basis for the decoding analysis. 
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Given the lack of cross-decoding between sentences and isolated words in Experiment 1 (see 

also the Interim Discussion, above), this second study involved only the sentence experiment. 

 

Participants 

Forty-four native speakers of German were recruited according to the same criteria as in 

Experiment 1, and participated after giving informed consent according to protocols approved 

by the local ethics committee. Three participants were excluded because more than 33% of 

trials had to be rejected during artefact correction. Six participants were excluded due to faulty 

equipment. The final sample consisted of n = 35 participants (mean age = 23.20; SD = 3.39; 

age range 18 to 30; 8 males).  

 

Experimental Design: Stimuli and Procedures 

Experimental procedures were identical to Experiment 1, including the synonymy judgment 

task. Stimuli consisted of 265 sentences, of which 108 contained a 1 s pause inserted directly 

preceding a target word. These sentences constrained for either an animate or an inanimate 

target noun (54 trials per condition; see Table 1). Sentence length varied between 4.01 and 7.98 

s (mean = 5.82, SD =.90). The number of words in the sentence ranged from 6 to 17 (animate: 

range 6 to 17, mean = 11.07, SD = 2.68; inanimate: range 7 to 16, mean = 10.65, SD = 2.07). 

The delayed word occurred 49 times in the sentence final position (animate: 24, inanimate: 25), 

17 in the penultimate (animate: 6, inanimate: 11), and 42 times in an earlier position (animate: 

24, inanimate: 18). Word frequencies for animate words were: mean = 6.39, SD = 2.40. 

Inanimate: mean = 6.00, SD = 1.94. 13 synonymous sentences were created for the synonymy 

judgment task (not included in the analysis), and the Potsdam Sentence Corpus (PSC; 144 

sentences; cf. Kliegl et al., 2004) was used as filler sentences. 

Critical sentences with animate vs. inanimate target nouns were constructed and rated 

for target word cloze probability by 29 independent participants. Mean target noun cloze 
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probability was .65 (SD = .29). There was no substantial difference between animate and 

inanimate cloze ratings (mean = .67, SD = .25 and mean = .62, SD = .32, respectively). 

Furthermore, the sentence context was highly constraining for the to-be-decoded semantic 

feature (i.e., animate vs. inanimate; mean = .93, STD = .13 vs. mean = .96, STD = .10, 

respectively). Finally, to minimize the potential for lingering effects of the pre-stimulus context 

(for the complexity of implicit matching, see Sassenhagen and Alday, 2016), sentences were 

created in pre-omission matched pairs across the conditions. Of course, it would not be possible 

to keep the pre-stimulus context exactly equal, as identical contexts would induce identical 

predictions. However, we constructed sentences so that the last word before the omission was 

identical within a pair; i.e., the same 54 words occurred in the final pre-omission position across 

the animate-constraining and the inanimate-constraining contexts (see Table 1). Additionally, 

for 22 sentences the last two words were identical, but it proved impossible to construct a 

sufficient number of stimuli according to this constraint.  

 

EEG Data Acquisition and Statistical Analysis 

Experiment 2 was measured in a different laboratory, so AFz was used as ground electrode. All 

other aspects of data acquisition and analysis were identical to the investigation of neural 

activity during pauses in Experiment 1. 

 

RESULTS EXPERIMENT 2 

ERPs elicited during pauses preceding expected animate vs. expected inanimate nouns did not 

differ (Figure 4A & B). However, time-generalized MVPA revealed significant decoding of 

animacy from 235 to 880 ms after the onset of the pause (TFCE; p < .05; see Figure 4C). Again, 

time-generalized decoding profiles showed substantial temporal generalization, most 

compatible with the sustained presence of just one discriminative pattern persisting throughout 

an extended time window. 
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Figure 4. Decoding target word animacy from silence (Experiment 2). Results for 

animate/inanimate target words, during the silent delay (1,000 ms) preceding the target word. A) 

Average channel-wise evoked potentials (animate minus inanimate) across subjects and masked for 

significance (p < .05), no significant differences were observed. B) Averaged difference wave 

(animate minus inanimate) across all channels. Above: for specific, representative times points, 

interpolated topographies demonstrate spatial structure.  C) Generalization across time decoding 

with masked time points of significance (above chance; p < .05, threshold-free cluster 

enhancement/TFCE). 

 

 

DISCUSSION 

In this study, we adopted a predictive coding perspective on language processing and 

hypothesized that during sentence processing, expectations regarding upcoming linguistic input 

are built online, including at a semantic level. We reasoned that an unexpected delay of a word 

– as it frequently happens during natural language processing – is equivalent to a (temporary) 

omission of expected sensory input, and therefore well-suited to investigate the nature and 

neural realization of linguistic predictions. A strong hypothesis of the predictive coding model 
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is that error signals elicited by prediction violations represent the difference between input and 

internal prediction (Friston, 2010; Clark, 2013). Thus, absence of an expected stimulus should 

elicit a prediction error signal that represents nothing but the internal expectation (for empirical 

evidence, see e.g., Kok et al., 2014; Smith and Muckli, 2010; see Kok and de Lange, 2015, for 

review). Applying this line of reasoning to online sentence processing, we demonstrate in two 

experiments that word concreteness and word animacy, respectively, could be decoded from 

neural activity elicited during the unexpected delay preceding an expected target word. This 

indicates that sentence context activates category-level semantic information of a word not yet 

perceived.  

It is well-accepted that a constraining sentence context can support processing of 

subsequent words (Kutas and Federmeier, 2011). Current debates in language research are 

focused on whether this facilitatory effect results from predictive pre-activation of word-

specific features based on higher-level (e.g., semantic) information available before the word 

is actually perceived, as opposed to less effortful bottom-up integration of new input (e.g., 

Kuperberg and Jaeger, 2015; Lau et al., 2008). Evidence for predictive pre-activation is so far 

mostly indirect, for example relying on prediction violation effects on determiner words prior 

to the supposedly predicted target noun (DeLong et al., 2005). The assumption of predictive 

pre-activation, however, requires that predictable linguistic information is neuronally encoded 

online while the sentence unfolds and before it is actually conveyed by linguistic input. Our 

data provide direct evidence for the predictive activation of category-level semantic 

expectations. 

A possible alternative explanation for this finding is that our analyses may have decoded 

not the intended semantic feature, but some other word feature not controlled. However, having 

observed similar effects in two experiments on two different semantic categories greatly 

reduces this risk. Furthermore, even if such a confound existed, it effectively would not weaken 

our primary conclusion, i.e., that some aspect of an omitted word can be decoded before the 
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word itself has been presented. A further alternative would be that above-chance decoding 

reflects lingering neural consequences of the preceding sentence context. In this case, decoding 

would not reflect internally generated linguistic predictions, but (uncontrolled) differences 

between pre-omission features of the sentences. This also appears unlikely, for two reasons: 

First, the actual words directly preceding the pause are not themselves nouns differing in 

animacy or concreteness. In Experiment 1, only one out of 150 pre-omission words was a noun; 

in Experiment 2, no nouns occurred here and the same pre-omission words were used in both 

conditions. Second, decoding performance is maximal starting 200-300 ms after pause onset, 

and not at the beginning of the delay (as would be expected for some kind of ‘spill-over’ effect). 

The timing of our decoding results is more consistent with the interpretation that we decode 

some latent change in brain state, induced by the pre-pause sentence context, which is 

systematically related to the semantics of the word. This is, arguably, best described as a 

predictive process of some form. Even though our study, across two experiments, supports the 

existence of category-level semantic predictions during online sentence processing, it is 

necessary to follow-up this initial result and map out in more detail the nature of semantic 

predictions active during sentence processing. Our study demonstrates a novel approach to 

investigating which aspects of the preceding sentence context (reviewed, e.g., by Kuperberg 

and Jaeger, 2015) are causal for eliciting the semantic prediction.  

While we introduced the decoded brain pattern as an omission-related prediction error, 

pre-word decoding of semantic categories could alternatively also reflect the neural 

instantiation of the linguistic prediction itself. In the absence of further evidence, our decoding 

results cannot unambiguously distinguish between these two alternatives (see Kok and De 

Lange, 2015, for a similar discussion). However, the general conclusion that can be drawn from 

our results, i.e., that semantic representations are proactively evoked during linguistic 

processing, is compatible with both interpretations. This supports our hypothesis that predictive 

coding theory – in its narrow sense – applies to language processing, including high-level 
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linguistic phenomena like semantics and that language processing is inherently predictive. This 

entails that during language processing, the brain constantly builds up – predicts – complex, 

multi-level representations for upcoming input. Framed differently, the role of semantics in 

predictive processing is not simply to enable predictions (e.g., to guide visual search based on 

meaning; see, e.g., Huettig et al., 2012), but semantic features themselves are one of the units 

of predictive processing.  

This finding dissociates semantic predictions from other well-known classes of 

predictive processes in the brain, such as the reward prediction error implemented by the 

subcortical dopamine system (e.g., Schultz et al., 1997; Holroyd and Coles, 2002), where only 

magnitude and sign of the prediction mismatch are encoded – suggesting that different, i.e. 

cortical mechanisms underlie semantic predictions. Much recent research has focused on the 

precise shape of the prediction error function – e.g., as Bayesian surprisal (Kuperberg and 

Jaeger, 2015; Frank et al., 2015) – and whether or not specific word forms are predicted based 

on preceding sentence context (DeLong et al., 2005; Nieuwland et al., 2017). In this context, a 

number of principled arguments have also been forwarded against predictive processing in 

language comprehension, including the potential costs of failed predictions (e.g., van Petten 

and Luka, 2012). Our results, however, provide very direct evidence for the online generation 

of category-level linguistic predictions, prior to the actual perception of the respective words. 

In addition, the present findings support previous proposals of proactive semantic processing 

(Szewcyk and Schriefers, 2013, 2018; Kwon et al., 2017) and indicate that the content of 

prediction error signals can be queried to address outstanding questions in language processing.  

Contrary to our initial expectation, neural patterns representing semantic features of 

isolated words did not generalize to sentence-internal semantic predictions/prediction errors 

(Exp. 1). One possible reason for this failure could be a lack of statistical power for detecting 

small effects (Yarkoni, 2009), despite a sample size that is comparatively high for functional 

neuroimaging studies. A further possibility is that cross-decoding failed because semantic 
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representations activated prior to words in sentence contexts are different from semantic 

representations elicited by words out of context. As discussed above (Interim Discussion), this 

is not entirely surprising due to, e.g., the inherent polysemy of most lexical material (Hagoort 

et al., 2004) and the rapidity with which it is fundamentally shaped by sentential constraint 

(Federmeier et al., 2007). Thus, context not only simplifies but fundamentally and qualitatively 

changes semantic processing. 

Finally, in both experiments, the decoding effects are small in magnitude (i.e., 

significant but only barely above chance) and highly uneven (consider the jagged edges in 

Figures 1C, 2C, 3C, and 4C), prohibiting specific temporal or spatial localisation of the 

decoding effects. This seems to dissociate from potentially more robust pre-activation effects 

reported recently in semantic priming experiments (e.g., Dikker and Pylkkänen, 2013; Lau et 

al., 2013; Fruchter et al., 2015), but may not be surprising as we decoded from silence-evoked 

EEG signals in a much more naturalistic language processing context. However, this 

observation implicates that the observed results will be easily affected by small variations of 

experimental or methodological parameters. In consequence, higher-powered replication 

efforts are required to establish the degree of robustness of this effect. The theoretical 

implication of this observation is that against the background noise of the ongoing EEG, the 

semantic content of neural correlates of predictive processing is comparatively small. 

Interestingly, we observe significant decoding based on multivariate pattern analysis in 

contrasts where mass univariate analysis of the ERP did not indicate any differences – neither 

descriptively nor in the form of statistical significance. Multivariate decoding, accordingly, 

showed higher sensitivity than the ERP, even though both are based on the same data. 

Potentially, this is because MVPA decoding identifies subject-specific patterns, thus showing 

more sensitivity to subtle and variable effects (King and Dehaene, 2014). For example, this 

situation could arise when the topography of semantic prediction error signals shows a high 
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degree of variability between persons, so that the actual effect is not preserved during group 

averaging, while subject-specific decoders could still identify it.  

To conclude, we provide evidence (1) for the operation of predictive coding mechanisms 

during on-line sentence processing, and (2) that prediction error signals do not simply indicate 

the magnitude of the deviance between prediction and actual input, but carry specific – in the 

present case: semantic – information about the expected stimulus. This strengthens predictive 

coding theory as a likely candidate for the principled neural mechanisms underlying online 

processing of language, including in the domain of (non-combinatoric, word-level) semantics.  
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Tables 

 

Table 1. Examples of critical sentences used in each experiment, with inserted pauses 

indicated by square brackets.  

Condition Example Sentence 

Experiment 1  

Abstract In einem Leserbrief bringt sie ihre […] Meinung zum Ausdruck. 

 In a letter to the editor, she expresses her opinion. 

Concrete Sie stellte den Teller auf dem Tisch ab und nahm Messer und […] Gabel in die Hand. 

 She set the plate down on the table and picked up the knife and fork. 

  

Experiment 2  

Animate 
Um sich auszuheulen, ruft Anne ihre beste […] Freundin an. 

To herself cry-out, calls Anne her best […] friendfemale on. 

 To talk it out and get it off her chest, Ann calls her best friend. 

Inanimate Weil die Sonne sie blendet, setzt Kira ihre beste […] Sonnenbrille auf. 

Because the sun her blinds, puts Kira her best […] sunglasses 

on. 

Because the sun blinds her, Kira puts on her best sunglasses. 

Bold print indicates the target words for which cloze probability was determined (see text). 

Square brackets indicate the positions preceding these target nouns, where a delay of 1,000 ms 

was inserted, and underlined words denote the identical pre-target words preceding the delay 

in Experiment 1. Literal translations are printed in italics, and word-for-word translations 

(indicating the identical context word preceding the pause in Experiment 2) are given in courier 

font.  
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