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Abstract7

Although neuropsychiatric disorders have a well-established genetic background, their spe-8

cific molecular foundations remain elusive. This has prompted many investigators to design9

studies that identify explanatory biomarkers, and then use these biomarkers to predict clinical10

outcomes. One approach involves using machine learning algorithms to classify patients based11

on blood mRNA expression from high-throughput transcriptomic assays. However, these en-12

deavours typically fail to achieve the high level of performance, stability, and generalizability13

required for clinical translation. Moreover, these classifiers can lack interpretability because14

informative genes do not necessarily have relevance to researchers. For this study, we hy-15

pothesized that annotation-based classifiers can improve classification performance, stability,16

generalizability, and interpretability. To this end, we evaluated the performance of four clas-17

sification algorithms on six neuropsychiatric data sets using four annotation databases. Our18

results suggest that the Gene Ontology Biological Process database can transform gene ex-19

pression into an annotation-based feature space that improves the performance and stability of20

blood-based classifiers for neuropsychiatric conditions. We also show how annotation features21

can improve the interpretability of classifiers: since annotation databases are often used to as-22

sign biological importance to genes, annotation-based classifiers are easy to interpret because23

the biological importance of the features are the features themselves. We found that using24

annotations as features improves the performance and stability of classifiers. We also noted25

that the top ranked annotations tend contain the top ranked genes, suggesting that the most26

predictive annotations are a superset of the most predictive genes. Based on this, and the27

fact that annotations are used routinely to assign biological importance to genetic data, we28

recommend transforming gene-level expression into annotation-level expression prior to the29

classification of neuropsychiatric conditions.30

1 Introduction31

The field of neuropsychiatry involves a collection of complex heterogeneous disorders with a known32

social and genetic aetiological basis. However, the specific molecular and genetic foundations of33

these disorders remain elusive. This has prompted a number of genomic studies which seek to34

identify the transcriptomic and genetic signatures associated with each disorder. As a corollary to35

this work, investigators have sought to use genomic data to build classifiers that can accurately36

predict neuropsychiatric conditions. To this end, some studies have used mRNA expression, mea-37

sured in the blood as biomarkers, to predict neuropsychiatric disorders like autism [10, 15, 35], as38

previously done for cancer [11, 1]. Since blood is easy to collect, an accurate blood-based classifier39

could have direct clinical utility. Although neuropsychiatric disorders are traditionally described40

as disorders of the brain, they are hypothesised to involve systemic processes [22], and blood has41

been shown to serve as a useful approximation for what happens in the brain [32].42

The classification of complex heterogeneous disorders using transcriptomic data is difficult.43

Such data tend to have properties that pose a challenge to building accurate and generalizable44

classifiers. First, these data are high-dimensional with many more features than samples (the45

“p >> N problem”). Second, individual features tend to have small explanatory effect sizes.46

Third, the binary class labels used to differentiate “cases” from “controls” often describe a vastly47
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heterogeneous phenotype. Fourth, there exists between-study differences in cohort demographics48

that compound the limitations already imposed by small sample sizes. Most often, the problem49

of high-dimensionality is addressed using feature selection (whereby features are prioritized by50

external or embedded methods). However, it is also possible to reduce feature space through feature51

engineering (a process which uses domain-specific knowledge to transform the measured feature52

space into a new feature space). Databases that map gene symbols to functional annotations53

typically have fewer annotations than annotated genes, and therefore offer a systematic way to54

perform feature engineering (as used successfully in the classification of cancer [8, 39]).55

The use of annotations for feature engineering is not without challenges. For example, there are56

many annotation databases available, all of which provide abstractions of biology that might not57

capture the full complexity of biological systems. Even if they do, the curation of these databases58

are ongoing endeavours, and therefore not necessarily exhaustive. Moreover, it remains an open59

question as to how best to engineer a gene-level feature space into an annotation-level feature60

space. Yet, despite these challenges, we hypothesize that annotation-based feature engineering61

would add value to classification. First, it ameliorates the “p >> N problem” (thus potentially62

improving classifier performance). Second, it aggregates individual signals into a higher-order ab-63

straction such that small effect sizes may accumulate and cohort differences may converge (thus64

potentially improving classifier stability and generalizability). Finally, these annotations, as ab-65

stractions of biology, reflect domain-specific knowledge with a clear meaning to biological scientists66

(thus improving classifier interpretability).67

There are two general approaches to developing an expert-curated annotation database. The68

first associates gene with biochemical pathways based on experimental evidence. The second as-69

sociates genes with phenotypes or disease states. However, with several databases available, and70

a number of ways to engineer features based on these databases, it is useful to assess empirically71

which approaches to annotation-based feature engineering, if any, work best. In this study, we72

assess whether annotation-based feature engineering maintains or improves performance across73

6 neuropsychiatric data sets, as benchmarked using 4 classification algorithms and 4 annotation74

databases. In addition, we measure whether annotation-based feature engineering improves the75

stability and generalizability of the classifiers. Our results show that annotation-based classifiers76

outperform gene-based classifiers in terms of accuracy and stability, and that the most predictive77

annotations contain the most predictive genes. We conclude by discussing how the use of anno-78

tations can improve the interpretability of a classifier because they represent the data in a space79

that captures how scientists conceptualize biology.80

2 Methods81

2.1 Data acquisition82

We acquired six blood-based microarray data sets from the NCBI Gene Expression Omnibus83

(GEO), all relevant to the field of neuropsychiatry. Three data sets compare the whole blood84

(GSE18123-GPL570; GSE18123-GPL6244 [15]) and lymphocytes (GSE25507 [2]) of autism spec-85

trum disorder (ASD) patients with typically developing (TD) controls. Another, GSE38484, com-86

pares the whole blood of schizophrenic patients with controls [7]. The fifth, GSE98793, compares87

the whole blood of major mood disorder (MDD) patients with controls [18]. The sixth, GDS5393,88

compares the peripheral blood of bipolar I patients before and after lithium treatment [5]. Data89

were acquired already normalized and were not modified further.90

2.2 Data preparation91

Source microarray data measure transcript expression using probes. We converted probe-level92

expression to gene-level measurements by aggregating mapped values by a median summary. For93

probe-level to gene-level mapping, we used the appropriate AnnotationDbi package [23].94

2.3 Feature engineering95

We then converted gene-level measurements to annotation-level measurements by aggregating96

mapped values using one of four methods: mean, median, sum, and variance. For this, we used the97

Gene Ontology Biological Process (BP) and Molecular Function (MF) [3, 34], Disease Ontology98
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(DO) [13], and Human Phenotype Ontology (HPO) [14] databases. We only included annotations99

that map to at least 5 genes, and did not exclude any probes, genes, or annotations due to mapping100

ambiguities. For the three ASD data sets, we only included genes (and annotations) represented101

across all microarray platforms.102

2.4 Classification103

We performed all machine learning using the R package exprso, a software tool that wraps complete104

machine learning pipelines for use in a high-throughput manner [26]. For this analysis, we trained105

binary classification models, defining class labels as “control” versus other.106

We applied two machine learning pipelines. The first measures within-study performance. The107

second measures across-study performance. These pipelines differ only in how the training set is108

defined and how classifier performance is calculated. Note that, in all cases, we selected features109

and built models on a training set that is separate from the test set, making the test set statistically110

independent.111

2.4.1 Feature input112

For each of the six microarray data sets, we represented transcript expression at the gene-level or at113

one of four annotation-levels. These annotation-level measurements are created from the gene-level114

measurements using one of four summary methods (described above). Each unique feature space115

contributes a unique data set upon which we applied the machine learning pipelines.116

2.4.2 Training set split117

For the within-study pipeline, all training sets contain a stratified random sample of the data,118

balanced by class label. This approach ensures that both the training and test sets have an equal119

number of cases and controls. Each training set has 67% of the balanced data. For the across-study120

pipeline, the training and test sets are separate microarray data sets.121

2.4.3 Feature selection122

For all pipelines, we selected gene-level and annotation-level features from the training set using123

Student’s t-test [30]. We also selected features by random sampling to provide a point of reference.124

2.4.4 Model building125

For all pipelines, we trained a model on the training set using a decision tree (DT) (via rpart::rpart126

[33]), logistic regression (LR) (via stats::glm), random forest (RF) (via randomForest::randomForest127

[20]), or support vector machine (SVM) (via e1071::svm [21]), with the top N = [2, 3, ..., 64, 128]128

selected features. For all implementations, we use the default arguments except when building129

decision trees (for which we prune with the argument cp = 0.2). For the purpose of this study, we130

do not tune hyper-parameters.131

2.4.5 Estimating performance132

For the within-study pipeline, we calculated classifier performance on a single data set by repeating133

the training set split, feature selection, and classifier construction procedure B = 100 times. This134

allows us to calculate a stable expected (i.e., average) accuracy. In the literature, this approach is135

sometimes called “Monte Carlo cross-validation” [24].136

For the across-study pipeline, we calculated the performance of a classifier built on one data137

set and then deployed on another. We did this by treating the entirety of the source data set as138

the training set and the entirety of the target data set as the test set. As such, we applied feature139

selection and classifier construction only once per data set pair.140

2.5 Measuring feature stability141

In this paper, we define stability as the likelihood that the same features would get selected from142

two separate training set splits of the same source data. For each data set and feature space, we143

measure the stability of feature selection across B = 100 training sets using two methods.144
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The first calculates the average Baroni-Urbani and Buser (BUB) Overlap [4] for each pair of145

the 100 ranked features (analogous to the Rand Index [27]):146

Stabilitybub = 2
k(k − 1)

k−1∑
i=1

k∑
j=i+1

nij +
√
nijdij

ni + nj − nij +
√
nijdij

where k is the number of training sets, ni is the number of features selected in training set i, nij147

is the number of features selected in training sets i and j, and dij is the number of features not148

selected in training sets i or j.149

For a given feature space f (gene- or annotation-level), Stabilitybub approaches 1 as the number150

of selected features (nf ) approaches the total number of features (Nf ). Although Stabilitybub151

depends on Nf by definition, it has an equivalent null distribution for a fixed number of features152

as a percentile of the total number of features (p = nf

Nf
) (see Supplemental Figures). Therefore, we153

can compare gene- and annotation-level feature selection for any percentile p of top ranked features154

to determine whether one feature space is more stable than another, independent of its size.155

The second calculates the average Spearman’s Rank Correlation Coefficient [29] for each pair156

of the 100 ranked features:157

Stabilityrho = 2
k(k − 1)

k−1∑
i=1

k∑
j=i+1

ρ(ri, rj)

where k is the number of training sets, ρ is Spearman’s Rank Correlation and ri is the ranked list158

of selected features for training set i.159

Visualizations of stability show all k(k − 1)/2 instances, not the average.160

2.6 Measuring generalizability161

We assess generalizability through the across-study pipeline, wherein the training and test sets are162

separate microarray data sets. Two of these are independent ASD data sets collected as part of163

the same larger study (GSE18123). The third is an ASD data set from another study (GSE25507).164

2.7 Measuring information capture165

Each annotation-level measurement is calculated by aggregating across a set of gene-level mea-166

surements. Feature selection reduces the total feature space to a subset of annotations. We define167

a “gene member set” as the set of the genes which correspond to a subset of annotations. We168

define “information capture” as the extent to which important annotation-based features contain169

the important gene-based features in their “gene member set”.170

To quantify the “information capture” for an annotation, we compared the “gene member171

set” for each subset of annotations (sized N = [2, 3, ..., 64, 128]) with its corresponding gene set.172

Specifically, we used the Fisher Exact Test to test the null hypothesis that a gene set and a “gene173

member set” are not jointly selected (one-tailed). We performed this test for each ASD data set,174

feature space, and number of features selected. Since the three ASD data sets contain the same175

“gene universe”, results are comparable across data sets.176

For the Fisher Exact Test, large odds ratios (ORs) suggest that the top selected annotations177

contain the top selected genes, and that the respective annotation-based classifier would capture the178

same information as its corresponding gene-based classifier. When comparing ORs with classifier179

performance, we used the average intra-study validation accuracy across bootstraps (i.e., for each180

classifier size, considering SVM classifiers only).181

3 Results182

3.1 Annotations as features improve performance183

We evaluated the performance of four classification algorithms on six neuropsychiatric data sets us-184

ing five feature spaces. Of these, four feature spaces were annotation-level summaries of gene-level185

expression. We repeated this by aggregating gene expression based on four summary methods186

(mean, median, sum, and variance), and compared the resultant cross-validation accuracies. We187
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found that, across all bootstrapped combinations of classification algorithms, classifier sizes, fea-188

ture spaces, and data sets, mean-based and sum-based summaries performed marginally better189

than median-based and variance-based summaries (p < .05, see Table 1). As such, all subsequent190

analyses, tables, and figures use mean-based summaries only.191

Next, we found that, across all bootstrapped combinations of classifier sizes, feature spaces,192

and data sets, support vector machines (SVM) were the highest performing classification algorithm193

(p < .05 by t-test, see Table 2), while decision trees (DT) were the worst. We also found that,194

across all bootstrapped combinations of classifier sizes and data sets, training SVMs with the BP195

feature space outperformed all other feature spaces (p < .05 by t-test, see Table 3). This also196

holds true across for the other classification algorithms (data in Supplement). Yet, in all cases,197

performance gains are marginal, with each optimal choice adding only about 1% to validation198

accuracies.199

Figure 1 shows the average performance of SVM classifiers, per classifier size, for each combi-200

nation of data set and feature space (features selected by t-test). Visually, we see that the BP201

tends to perform among the best, except possibly for one ASD data set (GSE18123-GPL570).202

Figure 2 projects these same data as a box plot (with each point representing a different classifier203

size). These data also show that the BP space tends to perform as well as (or better than) others,204

although there is variability across the six neuropsychiatric data sets. We refer the reader to the205

Supplementary Figures for a reproduction of Figure 1 using other aggregation summary methods206

and classification algorithms.207

3.2 Annotations as features improve stability208

When assembling a new classification pipeline, it is important to know not only how well the209

resultant classifier will perform, but also whether its design will be robust to random differences in210

the training set. Since our classification pipeline depends on feature selection to prioritize features211

for model building, we assess this “robustness” as stability by measuring the concordance of selected212

features across 100 bootstraps of the training set. We consider two measures of concordance:213

the Baroni-Urbani and Buser Overlap for the top quartile of ranked features (BUB25) and the214

Spearman’s Rank Correlation Coefficient for all ranked features (RHO100). For both measures,215

an average concordance score of 1 suggests that the features are equivalently ranked across 100216

unique cuts of the data sets, while a score of 0 suggests that the individual feature rankings never217

actually agree.218

Figure 3 shows a box plot of all BUB25 scores for each combination of feature space and data219

set (of top quartile features selected by t-test). Figure 4 shows a box plot of all RHO100 scores220

for each combination of feature space and data set (of all features selected by t-test). Both figures221

show that that annotation-based feature spaces have more stability than the gene-based feature222

space (p < .05 by t-test, see Tables 4 and 5). Tables 4 and 5 present the mean differences between223

BUB25 and RHO100 scores for each feature space across all data sets bootstraps, respectively.224

Table 6 shows that average BUB25 and RHO100 scores for each feature space, and their standard225

deviations. We refer the reader to the Supplementary Figures for a reproduction of Figures 3 and 4226

using randomly sampled features which demonstrate empirically that these concordance measures227

have equivalent null distributions.228

3.3 Annotations as features does not improve generalizability229

By using three independently collected ASD data sets (two of which comprise a single study), we can230

directly measure the generalized accuracy of a classifier built on one ASD data set and deployed on231

another. Figure 5 shows the performance of an SVM classifier trained on each data set and deployed232

on another (with test set positioned along the y-axis facet). Visually, we see that no approach to233

feature selection, regardless of the feature space, performs considerably better than randomly234

sampling genes. In fact, generalization is incredibly poor, especially across studies, whereby some235

classifiers perform no better than chance. Although annotation-based features improve cross-236

validation accuracies and feature selection stability, they do not improve the poor generalizability237

of ASD classifiers.238
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3.4 Annotations as features capture gene information239

If we intend to interpret annotation-based classifiers directly, we posit that the annotation feature240

space should meaningfully represent the gene feature space. To this end, we investigated whether241

the selected annotation features capture the same information as the selected gene features by242

measuring the overlap of each “gene member set” with its corresponding gene set. Figure 6 shows243

the “information capture” for the four annotation-level feature spaces across the three ASD data244

sets. Here, we see that the BP feature space performs consistently well, as evidenced by the small245

p-values that suggest good agreement between the annotation and gene sets. Indeed, the principle246

of “information capture” seems important not only for classifier interpretation, but also classifier247

performance. Figure 7 shows that classifiers built using annotation feature sets with better “gene248

member set” overlap perform significantly better (p < .05 by t-test).249

4 Discussion250

The classification of biological outcomes based on gene expression data is a growing area of re-251

search (reviewed thoroughly by [17] and [28]), where the ability to make accurate predictions from252

blood transcriptomes could serve as a non-invasive and clinically useful diagnostic test. Such tests253

would prove especially valuable to the field of neuropsychiatry, where diagnostic criteria do not254

have a strong molecular foundation, and where early diagnosis can improve patient outcomes (as255

previously demonstrated for children with autism spectrum disorders (ASD) [9]). Machine learning256

techniques, especially artificial neural nets (ANN) and support vector machines (SVM) [12], have257

grown in popularity, and have been used successfully for classifying neuropsychiatric conditions258

based on neuro-imaging [36] and gene expression [35].259

Typically, blood-based classifiers are built using gene expression as measured by microarray260

or next-generation sequencing. Genes included in a classifier are described as biomarkers, and261

investigators often wish to know the functional role of these biomarkers (e.g., based on gene set262

enrichment testing of annotations from established ontological databases [31]). For this study, we263

hypothesized that using annotations as the features themselves would improve the classification of264

neuropsychiatric conditions, while providing a clearer interpretation to the researcher. Indeed, we265

found that annotation-based classifiers were more accurate and more stable than gene-based clas-266

sifiers, although these gains were marginal. Specifically, we found that aggregating gene features267

into annotation features based on the mean (or sum) of the many-to-many mappings significantly268

improved Monte Carlo cross-validation accuracy across six data sets. Of the five feature spaces269

tested, we found that the Gene Ontology Biological Process (BP) annotation feature space outper-270

formed others in terms of accuracy, stability, and information capture. We also found that SVM271

outperformed other methods (consistent with others [25]).272

Although we observed some modest improvements in classifier accuracy and stability, we had273

expected overall larger gains. We offer a few suggestions as to why our annotation-based classifiers274

did not greatly outperform the gene-based classifiers. First, annotation databases are based on275

available experimental evidence and thus incomplete. As such, mapping gene-level expression to276

annotation-level expression always results in a loss of information. Second, annotation databases277

can draw from studies on non-human subjects, specific tissues, or cell lines. Such evidence may278

not meaningfully organize the gene expression of clinical blood samples. Third, this study only279

considered simple aggregations of gene-level expression (i.e., based on summary statistics). We280

did not test complex feature engineering methods as an alternative (e.g., [8, 37]). Fourth, this281

study only considered univariate feature selection methods. By design, these methods may select282

redundant annotations which individually predict the outcome accurately, but jointly add no value283

to the classifier. In light of these limitations, we believe that the modest improvements reported284

here justify further exploration into the use annotation-based features for the classification of285

transcriptomic data.286

Although we did find that annotation-based classifiers were accurate and stable, we did not see287

the improvement in generalizability that we expected. Instead, we observed low generalizability for288

all classifiers in general. We suggest a few reasons for why our ASD models did not generalize across289

studies. First, the ASD label encompasses a broad spectrum of phenotypes (possibly representing290

a broad spectrum of aetiology). If each study recruited patients with different phenotypes, the291

classifier could overfit phenotype-specific signatures. Second, study differences with regard to292

the prevalence of medical co-morbidities could confound the ASD label. Third, study differences293
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with regard to technical processes, including the use of different microarray platforms and data294

pre-processing methods, could place patient samples on an incongruous scale. Fourth, the Kong295

et al. data measured whole blood expression while the Alter et al. data measured lymphocyte296

expression, and cell type composition could confound the ASD signature [38]. Finally, it is possible297

that some of the intra-study accuracy observed in ASD classification is driven by the presence of298

confounding batch effects not present in other studies. Whatever the cause, it is apparent that299

ASD biomarker signatures do not reproduce across studies, as further evidenced by inconsistencies300

in the differential expression (DE) analysis of ASD transcriptomes. Indeed, one meta-analysis of301

ASD data sets found no overlap among significant DE genes across all studies [6], while another302

found that, even among genes significantly DE by meta-analysis, none showed even nominal DE303

across all studies [19]. The inability to identify consistent ASD biomarkers remains a major barrier304

to translating machine learning methods into clinical practice, but the problem is not apparently305

resolved by using annotation-based classifiers.306

Although the primary purpose for building classifiers is to predict outcomes accurately, classi-307

fiers also enable an understanding of the data through the post-hoc evaluation of trained models.308

We believe that the use of annotation-based features better facilitates classifier understanding be-309

cause it represents the data in a space that captures how scientists conceptualize biology. The310

annotations used here, notably BP and MF, form the foundation of gene set enrichment anal-311

ysis, the most popular method for determining the biological importance of disorder-associated312

biomarkers. The principles of gene set enrichment analysis forms the foundation of virtually all313

downstream transcriptomic analyses (including DE analysis [31] and gene co-expression analysis314

[16]). Indeed, it is also used to assess the biological importance of features within classifiers, con-315

stituting part of the study from which the Kong et al. data derive [15]. By using annotation-based316

classifiers, the biological importance of the features are the features themselves.317

5 Conclusion318

In summary, we found that using annotations to engineer features improves classification accuracy319

and stability across six neuropsychiatric blood-based data sets. Through systematically bench-320

marking a bias-free classification pipeline, we found that the Gene Ontology Biological Process321

(BP) annotation feature space improves classifier performance in terms of accuracy and stability.322

We also noted that the top ranked annotations tend contain the top ranked genes, suggesting that323

the most predictive annotations are a superset of the most predictive genes. Based on this, and324

the fact that these annotations are otherwise used routinely to assign biological importance to325

genetic data, we recommend transforming gene-level expression into annotation-level expression326

prior to classification. We hypothesize that further research into annotation-based classifiers, es-327

pecially with regard to multivariate or embedded feature selection, could result in even greater328

improvements to the blood-based classification of neuropsychiatric conditions.329
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1 This figure shows the average Monte Carlo cross-validation accuracies for SVM470

classifiers (y-axis) built with the top N features (x-axis) across five feature spaces471

(gene-level or annotation-level) and six data sets (facet). Classifiers were built using472

features selected by a t-test. The black lines show baseline classifier performances473

for a set of randomly selected genes. . . . . . . . . . . . . . . . . . . . . . . . . . . 12474

2 This figure shows the average Monte Carlo cross-validation accuracies for SVM475

classifiers (y-axis) across six data sets (x-axis) built with the top N features of five476

feature spaces (gene-level or annotation-level). Classifiers were built using features477

selected by a t-test. Boxplots pool results irrespective of classifier size. . . . . . . . 13478

3 This figure shows the BUB25 scores (y-axis) of t-test selected features from each479

feature space (x-axis) and data set (facet). For a random sample of features, the480

BUB25 score has equal means irrespective of feature space. . . . . . . . . . . . . . 14481

4 This figure shows the RHO100 scores (y-axis) of t-test selected features from each482

feature space (x-axis) and data set (facet). For a random sample of features, the483

RHO100 score has equal means irrespective of feature space. . . . . . . . . . . . . 15484

5 This figure shows the accuracies for SVM classifiers (y-axis) built with the top N485

features (x-axis) across five feature spaces (gene-level or annotation-level) using one486

ASD data set as the training set (x-axis facet) and another ASD data set as the487

test set (y-axis facet). Classifiers were built using features selected by a t-test. The488

black lines show baseline classifier performances for a set of randomly selected genes. 16489

6 This figure shows the p-value of “gene member set” and get set overlap (x-axis) for490

the top N t-test selected features (y-axis) across four annotation-level feature spaces491

and three ASD data sets (facet). We found that annotation-based feature spaces,492

especially the Gene Ontology Biological Process annotation feature space, captures493

similar biological information to their corresponding gene-based feature spaces. The494

black lines indicate a p-value of α = .05. . . . . . . . . . . . . . . . . . . . . . . . . 17495

7 This figure shows the Monte Carlo cross-validation accuracy for SVM classifiers (y-496

axis) built with an annotation-based feature space having significant “information497

capture” or not (x-axis) across four annotation-level feature spaces and three ASD498

data sets (facet). For each ASD data set, accuracies are higher for those classifiers499

that have significant “information capture” (p < .05 by t-test). Boxplots pool results500
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Figure 1: This figure shows the average Monte Carlo cross-validation accuracies for SVM classifiers
(y-axis) built with the top N features (x-axis) across five feature spaces (gene-level or annotation-
level) and six data sets (facet). Classifiers were built using features selected by a t-test. The black
lines show baseline classifier performances for a set of randomly selected genes.
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Figure 2: This figure shows the average Monte Carlo cross-validation accuracies for SVM classifiers
(y-axis) across six data sets (x-axis) built with the top N features of five feature spaces (gene-level
or annotation-level). Classifiers were built using features selected by a t-test. Boxplots pool results
irrespective of classifier size.
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Figure 3: This figure shows the BUB25 scores (y-axis) of t-test selected features from each feature
space (x-axis) and data set (facet). For a random sample of features, the BUB25 score has equal
means irrespective of feature space.
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Figure 4: This figure shows the RHO100 scores (y-axis) of t-test selected features from each
feature space (x-axis) and data set (facet). For a random sample of features, the RHO100 score
has equal means irrespective of feature space.
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Figure 5: This figure shows the accuracies for SVM classifiers (y-axis) built with the top N features
(x-axis) across five feature spaces (gene-level or annotation-level) using one ASD data set as the
training set (x-axis facet) and another ASD data set as the test set (y-axis facet). Classifiers were
built using features selected by a t-test. The black lines show baseline classifier performances for
a set of randomly selected genes.
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Figure 6: This figure shows the p-value of “gene member set” and get set overlap (x-axis) for
the top N t-test selected features (y-axis) across four annotation-level feature spaces and three
ASD data sets (facet). We found that annotation-based feature spaces, especially the Gene On-
tology Biological Process annotation feature space, captures similar biological information to their
corresponding gene-based feature spaces. The black lines indicate a p-value of α = .05.
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Figure 7: This figure shows the Monte Carlo cross-validation accuracy for SVM classifiers (y-axis)
built with an annotation-based feature space having significant “information capture” or not (x-
axis) across four annotation-level feature spaces and three ASD data sets (facet). For each ASD
data set, accuracies are higher for those classifiers that have significant “information capture”
(p < .05 by t-test). Boxplots pool results irrespective of annotation-based feature space.
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List of Tables502

1 This table shows the 95% confidence intervals for the mean differences of classifier503

performance between annotation-based classifiers aggregated by mean, median, sum,504

or variance summary statistics. We found that, across all bootstrapped combinations505

of classification algorithms, classifier sizes, feature spaces, and data sets, mean-506

based and sum-based summaries performed marginally better than median-based507

and variance-based summaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20508

2 This table shows the 95% confidence intervals for the mean differences of classifier509

performance between mean-based classifiers built with a logistic regression (LR),510

decision tree (DT), random forest (RF), or support vector machine (SVM). We511

found that, across all bootstrapped combinations of classifier sizes, feature spaces,512

and data sets, SVMs were the highest performing classification algorithm. . . . . . 21513

3 This table shows the 95% confidence intervals for the mean differences of classifier514

performance between mean-based and SVM-based annotation-level classifiers (built515

with the Gene Ontology Biological Process (BP) and Molecular Function (MF),516

Disease Ontology (DO), and Human Phenotype Ontology (HPO) databases), and517

gene-level classifiers. We found that, across all bootstrapped combinations of clas-518

sifier sizes and data sets, training SVMs with the BP feature space outperformed519

all other feature spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22520

4 This table shows the 95% confidence intervals for the mean differences of BUB25521

scores between mean-based and SVM-based annotation-level classifiers (built with522

the Gene Ontology Biological Process (BP) and Molecular Function (MF), Disease523

Ontology (DO), and Human Phenotype Ontology (HPO) databases), and gene-524

level classifiers. We found that annotation-based feature spaces are more stable525

than the gene-based feature space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23526

5 This table shows the 95% confidence intervals for the mean differences of RHO100527

scores between mean-based and SVM-based annotation-level classifiers (built with528

the Gene Ontology Biological Process (BP) and Molecular Function (MF), Disease529

Ontology (DO), and Human Phenotype Ontology (HPO) databases), and gene-530

level classifiers. We found that annotation-based feature spaces are more stable531

than the gene-based feature space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24532

6 This table shows that average BUB25 and RHO100 scores for each feature space,533

and their standard deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25534
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mean vs. median vs. sum vs. var vs.
mean — -0.0104 to -0.0091 -0.00026 to 0.00100 -0.0034 to -0.0022
median 0.0091 to 0.0104 — 0.0095 to 0.0108 0.0063 to 0.0076
sum -0.00100 to 0.00026 -0.0108 to -0.0095 — -0.0038 to -0.0025
var 0.0022 to 0.0034 -0.0076 to -0.0063 0.0025 to 0.0038 —

Table 1: This table shows the 95% confidence intervals for the mean differences of classifier per-
formance between annotation-based classifiers aggregated by mean, median, sum, or variance sum-
mary statistics. We found that, across all bootstrapped combinations of classification algorithms,
classifier sizes, feature spaces, and data sets, mean-based and sum-based summaries performed
marginally better than median-based and variance-based summaries.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2018. ; https://doi.org/10.1101/393082doi: bioRxiv preprint 

https://doi.org/10.1101/393082
http://creativecommons.org/licenses/by-nc-nd/4.0/


buildLR vs. buildDT vs. buildRF vs. buildSVM vs.
buildLR — -0.069 to -0.067 0.025 to 0.027 0.027 to 0.030
buildDT 0.067 to 0.069 — 0.093 to 0.095 0.096 to 0.098
buildRF -0.027 to -0.025 -0.095 to -0.093 — 0.0019 to 0.0041
buildSVM -0.030 to -0.027 -0.098 to -0.096 -0.0041 to -0.0019 —

Table 2: This table shows the 95% confidence intervals for the mean differences of classifier per-
formance between mean-based classifiers built with a logistic regression (LR), decision tree (DT),
random forest (RF), or support vector machine (SVM). We found that, across all bootstrapped
combinations of classifier sizes, feature spaces, and data sets, SVMs were the highest performing
classification algorithm.
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bp vs. do vs. gene vs. hpo vs. mf vs.
bp — -0.016 to -0.011 -0.016 to -0.011 -0.027 to -0.022 -0.0117 to -0.0068
do 0.011 to 0.016 — -0.0025 to 0.0023 -0.014 to -0.009 0.0015 to 0.0065
gene 0.011 to 0.016 -0.0023 to 0.0025 — -0.0140 to -0.0089 0.0017 to 0.0066
hpo 0.022 to 0.027 0.009 to 0.014 0.0089 to 0.0140 — 0.013 to 0.018
mf 0.0068 to 0.0117 -0.0065 to -0.0015 -0.0066 to -0.0017 -0.018 to -0.013 —

Table 3: This table shows the 95% confidence intervals for the mean differences of classifier per-
formance between mean-based and SVM-based annotation-level classifiers (built with the Gene
Ontology Biological Process (BP) and Molecular Function (MF), Disease Ontology (DO), and
Human Phenotype Ontology (HPO) databases), and gene-level classifiers. We found that, across
all bootstrapped combinations of classifier sizes and data sets, training SVMs with the BP feature
space outperformed all other feature spaces.
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bp vs. do vs. gene vs. hpo vs. mf vs.
bp — -0.00340 to -0.00014 -0.022 to -0.019 -0.00073 to 0.00291 -0.0036 to -0.0002
do 0.00014 to 0.00340 — -0.020 to -0.017 0.0011 to 0.0046 -0.0017 to 0.0015
gene 0.019 to 0.022 0.017 to 0.020 — 0.020 to 0.023 0.017 to 0.020
hpo -0.00291 to 0.00073 -0.0046 to -0.0011 -0.023 to -0.020 — -0.0048 to -0.0012
mf 0.0002 to 0.0036 -0.0015 to 0.0017 -0.020 to -0.017 0.0012 to 0.0048 —

Table 4: This table shows the 95% confidence intervals for the mean differences of BUB25 scores
between mean-based and SVM-based annotation-level classifiers (built with the Gene Ontology
Biological Process (BP) and Molecular Function (MF), Disease Ontology (DO), and Human
Phenotype Ontology (HPO) databases), and gene-level classifiers. We found that annotation-
based feature spaces are more stable than the gene-based feature space.
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bp vs. do vs. gene vs. hpo vs. mf vs.
bp — 0.0063 to 0.0134 -0.080 to -0.073 -0.0021 to 0.0056 -0.0091 to -0.0017
do -0.0134 to -0.0063 — -0.089 to -0.083 -0.0118 to -0.0045 -0.019 to -0.012
gene 0.073 to 0.080 0.083 to 0.089 — 0.074 to 0.081 0.067 to 0.074
hpo -0.0056 to 0.0021 0.0045 to 0.0118 -0.081 to -0.074 — -0.0109 to -0.0034
mf 0.0017 to 0.0091 0.012 to 0.019 -0.074 to -0.067 0.0034 to 0.0109 —

Table 5: This table shows the 95% confidence intervals for the mean differences of RHO100 scores
between mean-based and SVM-based annotation-level classifiers (built with the Gene Ontology
Biological Process (BP) and Molecular Function (MF), Disease Ontology (DO), and Human
Phenotype Ontology (HPO) databases), and gene-level classifiers. We found that annotation-
based feature spaces are more stable than the gene-based feature space.
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id feature GDS5393 GSE18123-GPL570 GSE18123-GPL6244 GSE25507 GSE38484 GSE98793
bub25 bp 0.620 +/- 0.07 0.662 +/- 0.07 0.726 +/- 0.09 0.650 +/- 0.07 0.803 +/- 0.03 0.579 +/- 0.10
bub25 do 0.622 +/- 0.08 0.643 +/- 0.08 0.718 +/- 0.08 0.606 +/- 0.08 0.784 +/- 0.05 0.658 +/- 0.08
bub25 gene 0.613 +/- 0.04 0.603 +/- 0.07 0.730 +/- 0.05 0.628 +/- 0.05 0.804 +/- 0.03 0.539 +/- 0.07
bub25 hpo 0.644 +/- 0.07 0.671 +/- 0.09 0.716 +/- 0.09 0.659 +/- 0.08 0.827 +/- 0.04 0.530 +/- 0.10
bub25 mf 0.635 +/- 0.06 0.632 +/- 0.09 0.729 +/- 0.07 0.647 +/- 0.07 0.802 +/- 0.03 0.584 +/- 0.09
rho100 bp 0.375 +/- 0.14 0.559 +/- 0.18 0.649 +/- 0.19 0.463 +/- 0.16 0.776 +/- 0.07 0.292 +/- 0.22
rho100 do 0.374 +/- 0.17 0.544 +/- 0.19 0.584 +/- 0.20 0.445 +/- 0.18 0.723 +/- 0.10 0.503 +/- 0.19
rho100 gene 0.358 +/- 0.08 0.349 +/- 0.14 0.667 +/- 0.11 0.393 +/- 0.11 0.676 +/- 0.04 0.215 +/- 0.14
rho100 hpo 0.397 +/- 0.12 0.531 +/- 0.19 0.712 +/- 0.13 0.466 +/- 0.14 0.807 +/- 0.05 0.211 +/- 0.20
rho100 mf 0.387 +/- 0.13 0.490 +/- 0.21 0.666 +/- 0.15 0.457 +/- 0.14 0.779 +/- 0.06 0.303 +/- 0.20

Table 6: This table shows that average BUB25 and RHO100 scores for each feature space, and
their standard deviations.
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