
  

 

SureTypeSC - A Random Forest and Gaussian 

Mixture predictor of high confidence geno-
types in single cell data 

Ivan Vogel
1,2

 , Robert C. Blanshard
3,4

 and Eva R. Hoffmann
1,4 *

 
1DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health 

and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark,  

2Faculty of Information Technology, Brno University of Technology, Bozetechova 1/2, 616 66 Brno, Czech 

Republic,  
3Illumina UK Ltd., Capital Park, Fulbourn, Cambridge, CB21 5XE, UK, 

4Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, BN1 9RQ, 

UK. 

*To whom correspondence should be addressed. 

Abstract 

Motivation: Accurate genotyping of DNA from a single cell is required for applications such as de novo muta-

tion detection and linkage analysis. However, achieving high precision genotyping in the single cell environ-

ment is challenging due to the errors caused by whole genome amplification. Two factors make genotyping 

from single cells using single nucleotide polymorphism (SNP) arrays challenging. The lack of a comprehensive 

single cell dataset with a reference genotype and the absence of genotyping tools specifically designed to detect 

noise from the whole genome amplification step. Algorithms designed for bulk DNA genotyping cause signifi-

cant data loss when used for single cell applications.  

Results: In this study, we have created a resource of 28.7 million SNPs, typed at high confidence from whole 

genome amplified DNA from single cells using the Illumina SNP bead array technology. The resource is gener-

ated from 104 single cells from two cell lines that are available from the Coriell repository. We used mother-

father-proband (trio) information from multiple technical replicates of bulk DNA to establish a high quality 

reference genotype for the two cell lines on the SNP array. This enabled us to develop SureTypeSC - a two-

stage machine learning algorithm that filters a substantial part of the noise, thereby retaining of the majority of 

the high quality SNPs. SureTypeSC also provides a simple statistical output to show the confidence of a particu-

lar single cell genotype using Bayesian statistics. 

  

Contact: eva@sund.ku.dk 

 

 

1 Introduction  

Single cell genomics is an umbrella term for genotyping of individual 

cells from a heterogeneous population. The deconvolution of mixed 

populations allows detection of genetic diversity within a population of 

cells. Applications cover many disciplines from sequencing the complete 

genomes of microorganisms that are challenging to culture in the labora-

tory to de novo mutation detection in tumour cells isolated from circulat-

ing blood. Detecting genomic changes in single cells is a sensitive pro-

cedure, complicated by the often rare, unique and precious nature of the 

starting material, such as genetic testing of human embryos for diagnos-

tic purposes. 

Unlike sequencing of bulk DNA, single cell sequencing requires a 

whole genome amplification (WGA) step to generate sufficient material 

for genotyping by next-generation sequencing (NGS) or single-

nucleotide polymorphism (SNP) array (Gawad et al., 2016). A typical 

human cell contains 8 pg nuclear DNA that must be amplified to meet 

the input requirements for PCR- free sequencing (1 µg) or SNP array 

analysis (400 ng). The efficacy of genotyping from a single cell is criti-

cally dependent on the WGA method. Genome coverage, replication 

fidelity and the level of technical noise, such as systematic or stochastic 

amplification bias, are the main features considered when choosing the 

WGA method. However, all WGA methods deteriorate the signal from 

single cell. The signal deterioration potentially carries two risks: (a) sub-

optimally amplified signal can lead to a complete loss of information 

about a particular locus, (b) uneven signal amplification of two alleles in 

a heterozygous locus can lead to an erroneous homozygous genotype 

call. The latter is called allele drop out and its incidence is up to 30 % of 

all typed SNPs from a single cell (Blanshard et al., 2018). SNP array 

technology allows the analysis of a wide range of genetic variants with 

good coverage in a fast and cost-efficient manner. There is a plethora of 
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tools and algorithms currently available for genotyping bulk DNA 

(Ritchie et al., 2011; Li et al., 2012). These algorithms are optimized for 

SNPs on the array and perform very well in terms of both call rates and 

sensitivity. However, an algorithm that is specifically designed for 

single-cell variant calling is currently missing. This is important because 

it is unclear how well the genotyping platforms deal with the biases 

introduced by whole-genome amplification of DNA from single cells. 

One solution is to include only SNP calls that are similar in properties to 

those from bulk DNA. This causes a substantive loss of data, however. It 

is also unclear how accurate genotyping is after the whole-genome 

amplification. 

Genotyping from SNP arrays relies on detection of emission intensities 

(X and Y). Thus, when X and Y are equally intense and above a certain 

threshold, the genotype is inferred as heterozygous (AB). In contrast, 

when only X or Y is detected above a certain threshold homozygous 

genotypes are assigned (AA or BB).  Current genotyping algorithms are 

based on two distinct approaches. Model-based algorithms do not require 

a training data set and assume that every SNP can be modeled from a 

linear combination of multiple multivariate components (Teo et al., 

2007, Giannoulatou et al., 2008). Reference-based algorithms work 

under presence of a comprehensive reference database prior to genotyp-

ing. Parameters of these algorithms are inferred from a training dataset 

(HapMap) and are used for normalization of the raw data (Ritchie et al., 

2009) or confidence measure of the genotype (Kermani, 2008). The 

training of the parameters can be performed via supervised machine 

learning methods, in particular neural networks (Kermani, 2008).    

Here, we present a comprehensive database of 104 single cell samples 

from two different cell lines that we SNP-typed and compared with their 

reference genotype. This allowed us to create a database with two classes 

of calls: (a) high quality single cell calls and (b) misclassified single cell 

calls caused by deteriorated signal. We used both classes to develop a 

two layered algorithm that combines supervised machine learning meth-

od with model-based algorithm that is able to identify the noise in the 

single cell data coming from erroneous whole genome amplification and 

then assign a probability score of a SNP being correctly genotyped. 

2 Materials and Methods 

2.1 Cell lines and molecular methods 

We generated genotypes from whole genome amplified DNA (from 

single cells) or genomic DNA from bulk extraction using the Infinium 

Karyomapping Assay Kit (Illumina Inc., California, US). We obtained 

EBV-lymphoblastoid cell lines GM07228 and GM12878 from the 

NIGMS Human Genetic Cell Repository at the Coriell Institute for 

Medical Research, New Jersey, USA, and cultured these according to the 

supplier‟s recommendation. All of the molecular methods and genotyp-

ing using GenCall for obtaining the SNP genotypes provided in the 

Supplemental information. Generation of high quality reference geno-

types are also described in the Supplemental information. 

2.2 MA transformation 

The MA transformation is an application of the Bland-Altman trans-

formation (Bland and Altman, 1999) that has been used extensively in 

the analyses of gene expression data when intensity values for two 

channels are compared using microarrays (red and green, referred to as X 

and Y, respectively). 

Formally, we apply a linear-log transformation for every SNP i carry-

ing a tuple of intensities         by calculating the values mi and ai, as 

follows: 

                     

   
 

 
                    

 

The m-feature has powerful discriminative ability to separate the three 

genotype clusters and is able to reduce variability between experiments 

and SNPs (Carvalho et al., 2007). The a-feature is a good general indica-

tor of the signal quality (Ritchie et al., 2011). 

2.3 Bioinformatics workflow for the machine learning 

algorithm 

We developed a bioinformatics workflow with a supervised machine 

learning core that filters out the noise from the single cell data. The 

reference training intensities as well as validation intensities are first 

extracted from the intensity data (*.idat) files and subsequently geno-

typed using the GenCall algorithm implemented in GenomeStudio.The 

training data is then exported from GenomeStudio, transformed using 

MA transformation and fitted to a two-layered machine learning model. 

The results are subsequently tested on a set of independent single cell 

samples. The details of the workflow are shown in Figure S1. 

2.4 Training and validation datasets 

We created a reference genotype for both single cell lines (GM07228 

and GM12878) using parental information and multiple technical repli-

cates from bulk DNA (Supplemental Methods). We subsequently com-

pared the reference genotype to our single cell datasets. More specifical-

ly, to every candidate single cell call for SNP i and sample s we assigned 

a label:                  , depending on the match or mismatch with 

the corresponding reference genotype call. The training dataset is then a 

triplet (                , whereas (          ) are input features and       is the 

output feature.  We included all single cell calls with GC score above 

0.01 totalling in 14,805,232 SNPs for training (GM07228) and 

11,799,864 SNPs for validation (GM12878). Lowering the cut-off (and 

therefore including potentially poorly amplified SNPs) allowed us to 

capture the full error pattern. Table 1 gives a detailed overview of the 

used datasets. At this stage of the workflow (process named “Building 

training dataset” in the workflow in Figure S1) we were able to observe 

the error pattern in the single cell data and display it in the form of 

contour plots (Figure 1B,C). Note that we omit sample index s in further 

explanation, as we do not distinguish between the origins of SNPs from 

the training data set. Throughout the text, we always use notation     

meaning that set of values is always written uppercase and element of the 

set is noted lowercase. 

2.5 Supervised training using Random Forest 

Random Forest is an ensemble supervised training method that is built 

from the collection (forest) of classification (decision) trees (Breiman, 

2001). Each tree is trained on a different random subset of data and 

different subsets of input features. Although the training data only con-

tain two input features (  and  ) the preliminary analysis (Figure 1D) 

suggests that the function that separates the erroneous clusters (red areas) 

from the correct calls (blue areas) is non-linear. Random Forest (RF) has 

the ability to fit different trees to different parts of the input space and 

therefore approximate a non-linear separating function resulting in 
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increased classification accuracy. We used the implementation of Ran-

dom Forest from the scikit package (Pedregosa et al., 2011) for fitting 

the training data. We adjusted the following parameters of the algorithm: 

 the number of trees was set from 10 to 30; according to Oshiro et 

al., 2012  a theoretical upper limit  is 128 trees and further increase 

in number of trees does not contribute to higher accuracy; however 

our data suggest that forests with more than 30 trees contribute 

minimally to the accuracy of the model but increase the size of the 

model substantially (data not shown) 

 the number of features to consider when looking for the best split 

of the tree: 2 

The prediction was evaluated in two ways - by stratified 10-fold cross- 

validation and with an independent single cell dataset. As the training 

data is highly unbalanced (despite the bias that is omnipresent, there are 

always more correct calls than miscalls), stratification in the cross-

validation assures that there are same proportions of the correct calls and 

miscalls between the folds. 

 We used the following metrics for validation: 

 Recall (or sensitivity): 
  

     
 

 Precision: 
  

     
 

 Specificity:
  

     
 

 F1 score as the harmonic mean of precision and recall 

 Receiver Operating Characteristic curve (ROC), which shows 

sensitivity (true positive rate) as a function of 1-specificity (false 

positive rate) 

 ROC-AUC score – area under the ROC 

 Precision-Recall (PR) curve displays recall as function of precision 

 Posterior Probability Matrix is a custom-defined metric showing 

the posterior probabilities  (    |   ), where      is the reference  

call (in rows) and     is the single cell call (in columns); posterior 

probability in this context is a confidence measure of genotype     

having a truth value of      

 Allele drop-in (ADI) is an erroneous change from homozygous to 

heterozygous genotype and can by calculated from the Posterior 

Probability Matrix by applying:     |        |     

 Allele drop-out (ADO) is an erroneous change from heterozygous 

to homozygous genotype and can be calculated from the Posterior 

Probability Matrix by calculating     |           |     

    |           |     

TP, FN, TN and FP mean true positive, false negative, true negative 

and false positive respectively. The points of ROC and PR curve were 

drawn by applying various cut-offs of the algorithm. 

2.6 Cluster correction using Gaussian Discriminant 

Analysis 

The second stage of the algorithm  is Gaussian Discriminant Analysis 

(GDA) that formalizes the genotype clusters obtained from the RF step 

and potentially improves the precision. 

Let      |                ̂    denote a set of N vali-

dation SNPs that were classified by the trained Random Forest, where 

                ̂        ,  Therefore,                  ̂  is a 

quadruplet of the logarithmic difference, logarithmic average, genotype 

predicted by GenCall and class prediction by RF at the j-th SNP. We 

assume that both  positive (T), and negative (F) class that are represented 

by pairs             come from mixtures of multivariate normal 

distributions. Based on this, we define the following system  of  Gaussi-

an discriminants:   
 

 ̂              (1) 

 ( ̂)    ̂        ̂ (2) 

 (  | ̂   )    (  |  )  ∑     (   |         )

 

   

 (3) 

 (  | ̂   )    (  |  )  ∑     (   |         )

 

   

 (4) 

 

Where: 

   denotes probability of    ̂   |        

   is multivariate normal density function with parameters    

(which is mean   and covariance matrix    ) 

    is indicator variable that denotes the genotype class, whereas 

      ̂  

     is  the  mixture  component weight  representing  the probability  

that  a  random tuple (      ) was generated by component k  

The complete set of parameters for the presented Gaussian discrimi-

nants is given as: 

  ̂       {   ̂      ̂     ̂      ̂  } (5) 

 

Decomposing the definition of    , we obtain following  list of all 

components lying in two mixture models: 

• a cluster of true heterozygous SNPs (ABTRUE ) 

• a cluster of false heterozygous SNPs (ABFALSE ) 

• a cluster of true homozygous SNPs (AATRUE ) 

• a cluster of false homozygous SNPs (AAFALSE ) 

• a cluster of true homozygous SNPs (BBTRUE ) 

• a cluster of false homozygous SNPs (BBFALSE ) 

To estimate the parameters    we use maximum likelihood. The log-

likelihood function   for classes from  ̂ is defined as follows:  

 

       ∑      |  ̂ 

 

   

 (6) 

 
In the prototype version of SureTypeSC we use Expectation Maximiza-

tion algorithm (Dempster et al., 1977) to estimate the parameters    ̂ of 
positive and negative class that maximize their log-likelihood function 

(Eq. 6).  

The  EM algorithm is divided into Expectation-Step (E-Step) and 

Maximization-Step (M-Step). These are run in iterations until conver-

gence is reached.   ̂ is total number of SNPs in the particular class. 

Algorithm: 

For every SNP i   with label  ̂ in ̂: 

1. E-step - calculate membership weights - probabilities of 

(mi,ai) belonging to a cluster k using either initialization 

parameters   ̂
     if this is the first iteration, otherwise   ̂

    

      ̂   (      ̂   |     ̂
 )= 

 
  (  |      ̂    ̂)      ̂

∑  (  |      ̂      ̂)      ̂
 
   

 

for               

(7) 

 

2. M-step 

• Calculate new component weights for the next 

iteration 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/393256doi: bioRxiv preprint 

https://doi.org/10.1101/393256


Vogel et al. 

     ̂
    

∑       ̂
  ̂

   

  ̂

 (8) 

• calculate new means for the next iteration 

    ̂
    

∑       ̂  
  ̂

   

∑       ̂
  ̂

   

 (9) 

 

• calculate new covariances for the next iteration: 

    ̂
    

∑       ̂          ̂
            ̂

       ̂

   

    ̂

 (10) 

at the end of the M-step we obtain new parameter estimates 

Θt+1 

3. Calculate log likelihood using Equation 6 and if the rela-

tive change in the overall likelihood is smaller than a 

threshold, halt. Otherwise proceed with the E-step with pa-

rameters from Θt+1.  

Note that we use two different categories of weights - membership 

weights ( ) and  component weights ( ). Membership weights are 

related to a particular SNP, whereas component weights represent the 

relative call rate of a particular genotype. After the parameters of both 

classes have been estimated by the EM algorithm, they are subjected to a 

second run. Here, the class membership  ̂ is hidden from the algorithm 

and every SNP is evaluated for both Gaussian discriminants using the 

following formula: 

                   (  |  ̂) (11) 

 

The final classification (membership to a positive or a negative class) is 

determined by higher value from the pair                 .  An exam-

ple of a division of the feature space consisting of   and   by an EM 

algorithm is shown in Figure 1E. The SNPs were labeled according to 

the  winning likelihood score and highest membership weight to a par-

ticular component of the winning class. In the implementation of  Sure-

TypeSC, we used variational Bayesian estimation algorithm with Di-

richlet process (Blei and Jordan 2006) for the parameter inference im-

plemented in scikit (Pedregoza et al., 2014). This allowed us to infer the 

number of actual components per class  directly from the data and only 

give an input on maximum number of components per class (   ). In 

case of a haploid single cell sample this would lead to the weight of the 

heterozygous component being close to zero.  

2.7 Scoring function 

The key role of a genotyping algorithm is to report the likelihood of a 

certain genotype in form of a score or a posterior probability. Besides the 

GenCall having its own scoring scheme, we propose following equations 

to estimate the probability of a certain SNP being correctly genotyped: 

1. Random Forest: the probability of a correct genotype of  

the ith SNP    
      |    is given as a proportion of the 

trees in the forest that voted for a particular genotype being 

correct 

2. SureTypeSC: we apply Bayes rule to express the class-

conditional posterior probability of a genotype falling into 

positive class T 

        
               

∑                     

 (12) 

 

3 Results 

3.1 Generation of 28.7 million high confidence SNPs 

from single cells 

We typed nearly 28.7 million SNPs from 104 cells from two individu-

als (GM12878 and GM07228) using the HumanKaryoMap-12 array 

(Illumina Inc., California, USA). To amplify the DNA from the single 

cells, we used multiple displacement amplification (MDA), a first-

generation WGA method that is commonly used and relies on Phi (Φ) 29 

polymerase. Its 3‟→5‟ activity allows proofreading and therefore im-

proves the fidelity of amplification. This allows high precision genotyp-

ing with a mutation rate of 10−7 − 10−9. Furthermore, the ability to dis-

place secondary DNA structures, such as hairpin loops that would cause 

other polymerases to stall or dissociate from the template DNA, allows 

the amplification of long DNA fragments (2-10 kb). 

3.2 Noise characterization of genotypes from single 

cells 

To characterize the noise associated with genotyping from whole-

genome amplified DNA from single cells, we compared the 28.7 million 

SNP genotypes from the two single cell datasets to their reference geno-

types obtained from bulk, genomic DNA. To this end, we created high 

confidence reference genotypes from bulk DNA using nine independent 

gDNA samples hybridized against the HumanKaryomap-12 array and 

inferred genotypes using either the full parental information (GM07228, 

Supplemental Table 1) or multiple technical replicates of bulk DNA and 

sequence data (GM12878, Supplemental Methods and Eberle et al., 

2017). This allowed us to identify 272,640 SNPs (98.9% autosomal 

SNPs) on the HumanKaryomap-12 array that called correctly in every 

replicate from bulk DNA. Using the standard QC cutoff from GenCall 

(0.15), 20.9 million SNPs from the two single-cell datasets called cor-

rectly, whereas 2.74 million generated false positives in GenCall, result-

ing in an incorrect genotype. 5.05 million SNPs gave „no calls‟ (Table 

1), having failed to fall within genotype clusters defined by bulk, DNA 

genotypes (a visualization of genotype clusters for one SNP is in Fig. 

1A). The true positive rate was higher when we used a minimal QC 

(0.01) compared to the standard QC (44% and 40%, respectively, for cell 

line GM07228 and 36% to 33% for GM12878, Table 1, Supplemental 

Table 4). This suggests that the GenCall algorithm rejects about 7% 

correct genotypes from WGA DNA from single cells.  

We displayed the pattern of the noise from the genotyping of SNPs 

from bulk and WGA DNA from single cells by first transforming the 

fluorescence intensities (X and Y) of each SNP into the logarithmic 

difference   and logarithmic average    (MA plot; Fig. 1B, C). The 

patterns of correctly called SNPs are similar between genotypes obtained 

from bulk or WGA DNA from single cells (blue contours, Fig. 1B, C). 

However, the noise distribution differed in several critical aspects. Three 

clusters of miscalls (false positives) became apparent in the single-cell 

data. Two clusters were from allele drop out (ADO), where AB geno-

types were incorrectly genotyped as AA or BB. A smaller cluster of  

allele drop in (ADI) also appeared. The ADI cluster was clearly separat-

ed from the true AB genotypes. Most of the errors, however, occur in the 

transition area between AB to AA or AB to BB (ADO) but nevertheless 

suggest good separability of the correct calls from miscalls, since the 

centers of the clusters are non-overlapping (Fig. 1C). 
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Table 1. Summary of genotype calls from single cells 

GM07228 

 
Region Positivec 

SNPsc 

Negatived 

SNPsd 
No callse 

Minimal QCa 

AB 2,507,149 218,684 

1,186,470 AA,BB 10,139,650 1,939,749 

all 12,646,799 2,158,433 

Standard 

Illumina QCb 

AB 1,762,134 108,607 

2,830,096 AA,BB 9,794,074 1,496,791 

all 11,556,208 1,605,398 

     
GM12878 

 
Region Positivec 

SNPsc 

Negatived 
dSNPsd 

No callse 

Minimal QCa 

AB 1,835,293 108,269 

920,424 AA,BB 8,443,004 1,413,298 

all 10,278,297 1,521,567 

Standard 

Illumina QCb 

AB 1,258,426 44,237 

2,219,787 AA,BB 8,106,969 1,090,869 

all 9,365,395 1,135,106 

 

 

3.3 Design and implementation of the SureTypeSC   

algorithm 

The characterization of the patterns of noise in a comprehensive da-

taset allowed us to employ a supervised machine learning method to 

classify and separate high quality genotypes from miscalls in the WGA 

DNA from single cells (Fig. S1). We combined a non-parametric (Ran-

dom Forest) and parametric method (Gaussian mixture model) and 

developed a scoring strategy that assigns probabilities that a specific 

SNP from a single-cell dataset has been correctly genotyped (Methods, 

Eq. 5). The approach of using a Random Forest prevents over-fitting of 

the data and provides good estimates of the positive and negative class 

for the Gaussian discriminant analysis (Methods). We implemented the 

RF-GDA, termed SureTypeSC, and the testing procedures in Python 

using the scikit library (Pedregoza et al., 2014) and pandas (McKinney, 

2010). SureTypeSC‟s input is compatible with GenomeStudio and 

allows the user to import the results of the analysis back to GenomeStu-

dio for further investigation.    

3.4  Validation of SureTypeSC on cross-validated data 

To assess whether our algorithm captures noise from the single cell 

SNPs after undergoing WGA and to exclude the possibility of overtrain-

ing, where the model fits well to the training data but is not capable of 

generalizing to independent, unseen data, we first ran stratified 10-fold 

cross-validation on the single-cell dataset from cell line GM12878. The 

stratification ensures the same proportions of correctly genotyped SNPs 

and miscalls in all folds or samples. This is critical as the data are highly 

unbalanced, i.e. there are always more correctly genotyped SNPs than 

miscalls (Table 1). We trained the algorithm on 90% of the data and 

tested the performance of the remaining 10%. Due to stratification such 

that miscalls and correct calls were equally represented, in effect the 

training datasets contained 11,448,258-11,448,260 SNPs. As shown in 

Table 2, both the Random Forest on its own and SureTypeSC (the Ran-

dom Forest in combination with the GDA) showed minimal deviations 

between the folds. This implies that the algorithms are invariant to SNP 

selection, since we sampled the SNPs randomly. The RF performs well 

across a range of measures, whereas SureTypeSC performs exceeding 

well for precision but at the expense of recall. 

3.5  Validation of SureTypeSC on an independent 

dataset 

We next addressed how well SureTypeSC or RF alone performed on 

an independent dataset of WGA data. To this end, we used the SNP 

genotypes obtained from 58 single cells after WGA from cell line 

GM07228 for training and the SNP genotypes obtained from WGA DNA 

from 46 single cells from a different cell line, GM12878 (Table 1), for 

testing (‘tester set’). The genotyping data from the tester set were ob-

tained at an independent time, with different batches of WGA reactions 

and genotyping arrays. This avoids systematic errors introduced by the 

chemistry used to obtain the genotypes. We evaluated the performance 

separately for heterozygous SNPs, homozygous SNPs and then for all 

SNP genotypes (Table 3). The results suggest that the RF alone can 

correctly genotype 91% of the heterozygous sites, which is about 20% 

greater than GenCall, whilst retaining a similar precision (96%). In 

contrast, the SureTypeSC algorithm consisting of both the RF and the 

GDA improved precision (99%) of the heterozygous sites, while still 

improving recall by 4 % compared to GenCall (Table 3). The ROC 

curves were shifted to the left for both the RF and SureTypeSC (Figure 

2A) and the ROC-AUC (area-under-the-curve) was also increased after 

implementation of the two different algorithms compared to GenCall 

(Table 3).  

 

Table 2. Results of the cross-fold validation on dataset GM12878
a
 

             Metrics 

Algorithm 
precision recall accuracy f1 score 

RF 0.92 ± 0.001 0.95 ± 0.003 0.88 ± 0.002 0.93 ± 0.001 

SureTypeSC
b
 0.95 ± 0.001 0.87 ± 0.01 0.85 ± 0.007 0.90 ± 0.005 

a
the dataset was subjected to minimal QC (GenCall score cutoff 0.01) and then randomly 

split into 10 subsets, 9 subsets were used for training and the rest was used for testing, this 

procedure was repeated 10 times, then the average and standard deviation was calculated; 

results are displayed as proportions 
b
SureTypeSC combines RF and GDA. 

 

 

Table 3. Performance of tested classifiers on GM12878a 

          Algorithm    

Metrics 
GenCallb  RFc  SureTypeSCd 

 het homo all  het homo all  het homo all 

precision 0.97 0.88 0.89  0.96 0.89 0.9  0.99 0.93 0.94 

recall 0.69 0.96 0.91  0.91 0.97 0.96  0.73 0.9 0.87 

f1-score 0.8 0.92 0.9  0.94 0.93 0.93  0.84 0.92 0.9 

roc-auc score 0.71 0.66 0.64  0.8 0.77 0.77  0.87 0.83 0.81 
a
data subjected to minimal QC with GenCall cutoff 0.01; values are proportions 

b
GenCall score cutoff 0.15 

c
RandomForest score cutoff 0.5 

d
SureTypeSC is combination of RF and GDA with score cutoff 0.9 

a
GenCall cutoff 0.01 

b
GenCall cutoff  0.15 

c
concordant with the reference genotype 

d
not concordant with the reference genotype 

e
calls that did not meet the defined threshold 
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Fig. 2 SureTypeSC improves the performance for single cell genotyping. ROC curve 

for heterozygous (A) and homozygous SNPs (B). P and N are the numbers of correctly (P, 

positive) and incorrectly (N, negative) typed SNPs. The dotted line in the ROC curves is 

the diagonal (random classification). 

 

For homozygous genotypes, the RF and SureTypeSC also shifted the 

ROC curves to the left (Figure 2B) and increased the ROC-AUC score 

(Table 3). The SureTypeSC improved precision compared to both Gen-

Call and the RF alone (93%), but at the expense of nearly 7% fewer 

typed SNPs (recall, 88%). Collectively our results show that improved 

precision can be obtained when genotyping both heterozygous and 

homozygous SNPs from WGA DNA by using our algorithms.   

3.6 Call confidence in the single-cell environment. 

Our observations that recall of heterozygous SNPs increases from 69% 

to 91% suggest that the RF retains a much larger proportion of heterozy-

gous SNPs that are rejected in GenCall. Furthermore, precision is im-

proved to 99% in SureTypeSC, at a similar recall rate as GenCall (Table 

3). The precision can be viewed as a confidence metrics that a particular 

genotype is called correctly. We extended this approach and developed a 

statistical toolkit that shows a detailed view of confidence in AA, BB or 

AB calls using a transition matrix consisting of posterior probabilities. 

The posterior probabilities (elements of Table 4) show the probability 

that a certain genotype from the single cell application (SC in column) is 

being called correctly as reference genotype (Ref, row).  To demonstrate 

this, we generated genotypes from our single cell datasets (GM12878) 

using GenCall (minimal QC 0.01) and then applied GenCall with a QC 

0.15 or SureTypeSC (with a SureTypeSC threshold of 0.9).  Table 4 

shows that we improved the confidence in single-cell AA and BB calls 

by 7% (or by 5% compared with standard GenCall genotyping), respec-

tively.  The confidence in single-cell AB calls is concordant with the 

precision obtained in the validation analysis in Table 3 (99%). We were 

furthermore interested whether we could improve precision with our 

algorithm after genotyping with standard GenCall parameters (QC 0.15). 

Supplemental Table 2 shows that this configuration still outperforms 

GenCall QC 0.15 but gives lower precisions for homozygous regions 

than SureTypeSC with GenCall QC 0.01 (Table 4). This suggests that 

the specificity of GenCall is suboptimal when applying the standard 

thresholding framework in the single cell environment. This is further 

supported by the ROC curve (Figure 2).   

 

  

Fig. 1. Signal-noise detection in whole-genome amplified DNA from single cells. (A) The 

GenCall algorithm in GenomeStudio classifies genotyping calls based on the normalized 

intensities of the X and Y channels (A and B allele, respectively). The genotyping space for 

homozygous AA calls is shown in blue, heterozygous genotypes fall within the purple area 

and homozygous BB genotypes are in red. The white lines represent the absolute cut-offs 

for distinct genotyping areas, whereas the lighter shades around the main genotyping areas 

represent lower confidence areas, where the specific SNP was correctly typed, but fell 

below the QC threshold of 0.15. The centroid of each genotyping space is shown as a 

circle. The genotyping space is specific to each SNP and based on bulk DNA. Green 

points: genotypes from bulk DNA, purple points: correct genotypes from single cell, 

black points: genotyping calls from single cells below the QC threshold of GenCall; blue 

points: misclassified genotype from single cells. (B) Contour MA plot of all SNPs from 

one bulk DNA sample (gDNA-01) from GM07228; AA, BB and AB clusters are labeled 

accordingly. Correctly typed SNPs are rendered in blue, whereas incorrectly typed SNPs 

are shown in red (C) Contour MA plot of all SNPs from  one single-cell sample (sc-21) 

from GM07228; AA, BB and AB clusters are labeled accordingly. (D) MA plot of 10,000 

randomly selected SNPs from 10 single cell samples from GM07228. (E) Cluster labeling 

of 10,000 randomly selected SNPs from (D) 
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SureTypeSC – precise single cell genotyping 

Table 4. Precision rates with GenCall and SureTypeSC on single cell 

line from GM12878a 

Minimal QCb 

          SC 

    Ref 
AA AB BB NC Call rate 

AA 0.85 0.008 4.2×10-5 0.09 0.37 

AB 0.15 0.94 0.13 0.61 0.15 

BB 0.0001 0.05 0.87 0.08 0.41 

NC 0.004 0.009 0.005 0.22 0.07 

GenCallc 

          SC 

    Ref 
AA AB BB NC Call rate 

AA 0.87 0.003 1.7×10-5 0.12 0.34 

AB 0.12 0.96 0.11 0.66 0.1 

BB 4.4×10-5 0.03 0.89 0.12 0.38 

NC 0.004 0.009 0.005 0.1 0.17 

SureTypeSCd 

          SC 

    Ref 
AA AB BB NC Call rate 

AA 0.92 0.002 1.8×10-5 0.13 0.31 

AB 0.08 0.99 0.06 0.59 0.11 

BB 1.85×10-5 0.005 0.94 0.2 0.34 

NC 0.003 0.008 0.003 0.07 0.25 
a
elements of the table show confidence (precision) rates of a particular SC genotype 

(column) being genotyped as in reference (row), the last column shows the call rates in 

the single cell data 
b
GenCall score cutoff 0.01 
c
GenCall score cutoff 0.15 
d
GenCall score cutoff 0.01 and SureTypeSC score cutoff 0.9 

3.7 Allele-drop out and allele-drop in rates are reduced 

using SureType SC 

Incorrect genotype calls arise predominantly from imbalances in the 

allele frequencies during the chemical reaction when the whole genome 

is amplified. The deviation from a 1:1 allele ratio of heterozygous SNPs 

can lead to allele drop out (ADO). Analogously, mistyping of a homozy-

gous SNP results in allele drop in (ADI). We estimated the ADO and 

ADI rates before and after implementation of the Random Forest and 

SureTypeSC algorithm using the transition matrices of the posterior 

probabilities (Table 4; Methods).  

Table 5 shows that the RF and GenCall had similar ADI and ADO 

rates (3% and 10-12%, respectively), with similar call rates. In contrast, 

ADI rate was reduced from 5% to 0.7% and the ADO rate decreased 

from 14% to 7% after SureTypeSC. Thus, SureTypeSC significantly 

reduces ADO and ADI rates, but at a cost of the call rate, which was 

decreased from 83% (QC 0.15) to 75%. Thus, the improvement in cor-

rect genotype detection in the single-cell environment comes with a 

certain data loss. 

 

Table 5. Allele drop-in, allele drop-out and call rate with GenCall 

and SureTypeSC 

 Min. QCa GenCall
b
 RFa,c SureTypeSC

a,d
 

ADI 0.05 0.03 0.03 0.007 

ADO 0.14 0.12 0.1 0.07 

Call rate 0.93 0.83  0.85 0.75 
a
GenCall score cutoff 0.01 
b
GenCall score cutoff 0.15 

c
RandomForest score cutoff 0.5 
d
SuretypeSC score cutoff 0.9 
e
SuretypeSC score cutoff 0.9 

Discussion 

In this study, we have typed nearly 30 million SNPs from 104 single 

cells from two independent cell lines and developed an algorithm to 

distinguish signal from noise in whole-genome amplified DNA. The 

algorithm has two layers that are organized in a cascade. The first layer 

of SureTypeSC accepts nearly all SNPs (QC of 0.01) in the dataset. This 

helps the Random Forest in the first layer to learn the full error pattern 

from the single-cell data. As Table 3 suggests this improves the rate of 

correctly identified SNPs, since recall increased from 69% (GenCall) to 

91% for heterozygous SNPs. Resolving most of the heterozygous SNPs 

makes the first layer highly relevant and applicable when heterozygosi-

ties are needed, such as tag SNPs during linkage analysis of transmission 

of monogenic diseases and aneuploidy detection. The second layer of the 

SureTypeSC algorithm is a system of two GMMs, which aims to maxim-

ize the precision at cost of potential data loss. Having high precision 

makes it feasible to explore rare events across populations of cells. This 

includes assessing clonal expansion in tumour evolution, linage tracing, 

or detecting rare de novo mutations in single cells that are averaged out 

and lost in bulk analyses (Cooper et al., 2015; Lu et al., 2012; Chen et 

al., 2017).  

Analysing a large number of single cells allows the decomposition of 

heterogeneous populations. Furthermore, having a robust algorithm of 

genotyping from WGA DNA from single cells improves the certainty of 

genotype calling when only few cells are available. This is important in 

both basic biomedical research as well as clinical settings such as in 

preimplantation genetic testing. Whereas there are specialised tools for 

single cell genotyping from  next-generation sequencing (Zafar et al., 

2016) that improve precision, in the field of single-cell SNP array analy-

sis this has been only achieved by systematic increase of the genotyping 

algorithms‟s thresholds and causes a substantial data loss (Zamani et al., 

2015).    Although genotyping from SNP arrays cover only a fraction of 

the genome compared to next-generation sequencing, the cost of de novo 

genome assembly is prohibitive even for bulk, genomic DNA when 

assessing a large number of cells. The sequencing depth, or coverage, 

needed in one recent reference genome assembly for the detection of de 

novo mutations was nearly 50 (Besenbacher, 2015). For single-cell 

applications, the coverage to accurately identify new mutations from the 

noise and bias introduced by the whole-genome amplification step is in 

excess of this (Behjati et al., 2014). Thus, SureTypeSC allows a cost-

effective approach to improving genotype precision using SNP arrays. 
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