
 1 

Reducing tau ameliorates behavioural and transcriptional deficits 
in a novel model of Alzheimer’s disease 

 
Eleanor K Pickett1, Abigail G Herrmann1, Jamie McQueen1, Kimberly Abt1, Owen Dando1, Jane Tulloch1, 

Pooja Jain1, Sophie Dunnett
1
, Sadaf Sohrabi

1
, Maria Fjeldstad1, Will Calkin

1
, Leo Murison

1
, Rosemary J 

Jackson
1
, Makis Tzioras1, Anna Stevenson1, Marie D’Orange1, Monique Hooley1, Caitlin Davies1, Iris 

Oren1, Jamie Rose1, Chris-Anne McKenzie3, Elizabeth Allison
1
, Colin Smith3, Oliver Hardt2, Christopher M 

Henstridge1, Giles Hardingham1, and Tara L. Spires-Jones
1
*  

 
 

1. The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research 
Institute, 1 George Square, Edinburgh, EH8 9JZ UK 

2. McGill Department of Psychology, Montreal QC H3A 1B1, Canada  
3. Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, 

Edinburgh EH16 4SB UK 
 
*Corresponding Author and lead contact: Tara L. Spires-Jones, D. Phil The University of Edinburgh 
Centre for Discovery Brain Sciences and UK Dementia Research Institute  1 George Square Edinburgh 
EH8 9JZ UK Phone: +44(0) 131 651 1895 Fax: +44(0) 131 651 1832 Tara.Spires-Jones@ed.ac.uk  
 

 

Summary 

One of the key knowledge gaps blocking development of effective therapeutics for Alzheimer’s disease 

(AD) is the lack of understanding of how amyloid beta (Aß) and tau cooperate in causing disease 

phenotypes.  Within a mouse tau deficient background, we probed the molecular, cellular and 

behavioural disruption triggered by wild-type human tau’s influence on human Aß-induced pathology. 

We find that Aß and tau work cooperatively to cause a hyperactivity phenotype and to cause 

downregulation of gene transcription including many involved in synaptic function. In both our mouse 

model and in human post-mortem tissue, we observe accumulation of pathological tau in synapses, 

supporting the potential importance of synaptic tau.  Importantly, tau depletion in the mice, initiated 

after behavioural deficits emerge, was found to correct behavioural deficits, reduce synaptic tau levels, 

and substantially reverse transcriptional perturbations, suggesting that lowering tau levels, particularly 

at the synapse, may be beneficial in AD. 
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Highlights 

- Expression of human familial Alzheimer’s associated mutant amyloid precursor protein and 

presenillin 1 with wild-type human tau in the absence of endogenous tau in a novel MAPT-AD 

mouse model results in behavioural deficits and downregulation of genes involved in synaptic 

function  

- Tau is present in pre and postsynaptic terminals in MAPT-AD mice and human AD brain.  In mice, 

lowering synaptic tau levels was associated with improved cognition and recovered gene 

expression. 

- These data suggest that Aß and tau act cooperatively in impairing synaptic function and that 

lowering tau at synapses could be a beneficial therapeutic approach in AD. 

 

Introduction 

Over 50 million people are living with dementia today, and approximately $800 billion per year is spent 

worldwide on their health and social care (Prince et al., 2015).  Alzheimer’s disease (AD) is the most 

common cause of dementia, and current drug treatments are only minimally effective and do not 

prevent brain degeneration or cognitive decline.  AD is defined pathologically by the accumulation of 

amyloid plaques made of aggregated Aß, neurofibrillary tangles which are intraneuronal deposits of 

hyperphosphorylated tau protein, and brain atrophy due to neuron and synapse loss.  The 

predominating hypothesis in the AD field, the amyloid cascade hypothesis, posits that changes in 

amyloid beta (Aß) initiate the disease (Hardy and Higgins, 1992). Recently, a more nuanced revision of 

the hypothesis has emerged that views soluble forms of Aß as the initiator of the cascade and tau as the 

effector of degeneration in AD (Hyman, 2011). Further, GWAS studies indicate that changes in the 

innate immune system are important in conferring disease risk (De Strooper and Karran, 2016).  How Aß 

leads to downstream tau pathology which is associated synapse and neuron degeneration and the role 

inflammation and the innate immune system plays in this cascade remain key knowledge gaps in the 

field.  We propose that amyloid beta and tau act together both in causing synapse 

dysfunction/degeneration and in causing neuroinflammation.   

Synapses are an important target to study in AD as synapse degeneration is the strongest correlate of 

cognitive decline (Terry et al., 1991) and synapses are important in disease pathogenesis and the spread 

of pathological proteins through the brain (Spires-Jones et al., 2017; Spires-Jones and Hyman, 2014). 

Substantial amounts of evidence implicate oligomeric Aß in synapse degeneration in model systems and 
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in human post-mortem tissue (Klein, 2013; Koffie et al., 2012; Koffie et al., 2009; Li et al., 2009; Mucke 

and Selkoe, 2012; Spires et al., 2005; Spires-Jones et al., 2007; Spires-Jones et al., 2009).  Some of the 

toxic effects of Aß appear to be mediated by cascades which are normally involved in the innate 

immune system including complement and TREM2 (Hong et al., 2016; Jay et al., 2017; Yeh et al., 2016). 

Pathological forms of tau are also sufficient to induce synapse loss and circuit dysfunction in models of 

tauopathy (Crimins et al., 2013; Fox et al., 2011; Hoover et al., 2010; Kopeikina et al., 2012; Menkes-

Caspi et al., 2015; Zhou et al., 2017). Recently, immune/inflammatory gene changes have also been 

observed to contribute to tau toxicity (Leyns et al., 2017; Shi et al., 2017b).   

 

There is accumulating evidence that Aß and tau may act synergistically to cause synapse and neural 

circuit degeneration (Ittner et al., 2010; Jackson et al., 2016; Roberson et al., 2011; Shipton et al., 2011; 

Vargas-Caballero et al., 2017). However, much of the previous work was confounded by the complex 

differences between mouse and human tau and the inability to precisely control tau expression. To 

overcome these limitations, we have designed a new model lacking endogenous mouse tau (MAPTnull) 

and expressing both the APP/PS1 transgene, which causes well-characterized plaque-associated synapse 

loss (Jankowsky et al., 2004; Koffie et al., 2009), and the rTg21221 line which reversibly expresses wild-

type human tau under the control of an inducible promotor (Hoover et al., 2010).  This new 

MAPTnull+APP/PS1+rTg21221 AD model (MAPT-AD) allows control over tau levels by suppression of tau 

transgene expression with doxycycline.   

 

Here we examined the behaviour, pathology, synaptic plasticity, synapse degeneration, transcriptional 

changes and accumulation of Aβ and tau at synapses in this new model and compared these data to 

observations of synapses in human post-mortem brain using the high resolution array tomography 

imaging technique (Kay et al., 2013). MAPT-AD mice develop an age-related hyperactivity phenotype 

during ageing along with increased expression of genes involved in the innate immune system and 

decreased expression of genes involved in synaptic function.  Pathologically, we observe tau in both pre 

and post synapses in both human brain and in our MAPT-AD model. Tau was very rarely colocalised with 

Aß within individual synapses.   Lowering tau levels with doxycycline in the MAPT-AD model reduced 

synaptic tau levels and ameliorated the behavioural and gene expression phenotypes.  Together, these 

data support the hypothesis that Aβ and tau act together to cause synapse dysfunction. However, this 

interaction is not likely to be due to physical co-localization of these pathological proteins within the 
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same synapses, at least within the limits of our detection.  The presence of tau in synapses appears to 

mediate toxicity and lowering synaptic tau levels is thus a promising therapeutic target. 

 

Results 

MAPT-AD mice develop an age-related behavioural phenotype  that recovers with tau reduction 

The MAPT-AD line is a novel model of AD that combines human mutant APP and PS1 expression 

(APP/PS1) with regulatable human wild-type tau expression (rTg21221) without the presence of 

endogenous mouse tau (MAPTnull) (Figure 1A).  To understand the effects of combining plaque 

pathology with human tau expression, we examined pathology and behaviour during ageing in MAPT-AD 

mice and 3 littermate control genotypes: control (MAPTnull), APP/PS1 only (MAPTnullxAPP/PS1), and 

human tau only (MAPTnullxrTg21221, Figrure 1B). MAPT-AD mice develop progressive amyloid plaque 

pathology in the absence of tau pathology (Figure 1C-E).  In both genotypes of mice expressing the 

APP/PS1 transgene, amyloid plaques begin to appear in cortex and hippocampus by 6 months of age and 

plaque burden increases with age. Plaque deposition differs between APP/PS1 mice and MAPT-AD mice 

with surprisingly lower plaque burden and smaller individual Thioflavin S positive plaques in mice 

expressing human tau (Figure 1D, Supplemental Figure 1).  Although human tau mRNA and protein 

could be detected in the two genotypes expressing both the human tau responder gene and the CkTta 

activator transgene, no tau pathology was observed at any age with staining for phosphorylated or 

misfolded tau epitopes (AT8, PHF1, Alz50) or with histological staining of fibrils with thioflavin S (Figure 

1E).  The efficacy of tau staining was confirmed using rTg4510 mouse brain sections (which express a 

form of tau associated with frontotemporal dementia and develop tangle pathology), verifying that all 

tau antibodies stained neurofibrillary tangles.  MAPT-AD mice did not exhibit age-related atrophy in 

cortex or hippocampus (Figure S1). 

In addition to plaque accumulation and human tau expression, MAPT-AD mice exhibit an age-related 

hyperactivity phenotype (figure 1F-I).  In a cohort of mice tested at 3, 6, and 9 months of age, there was 

a significant effect of both genotype and age on the distance travelled in the open field (repeated 

measures ANOVA effect of age F[2,60]=3.5, p=0.038, effect of genotype F[3,30]=3.10, p=0.041).  Post-

hoc testing revealed a significant increase in open field distance travelled by MAPT-AD mice compared 

to control mice (Tukey’s multiple comparisons test p=0.026). To test the role of tau in this hyperactivity 

phenotype, another cohort of mice was aged to 10.5 months and half were treated with doxycycline 
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(dox) from 10.5 to 14.5 months to suppress tau transgene expression. Before treatment, MAPT-AD mice 

in this cohort travelled significantly further in the open field than the other genotypes (Figure 1F-H, 

ANOVA effect of genotype F[3,79]=16.87, p<0.0001; Post-hoc Tukey’s multiple comparisons tests show 

significant increase in the total distance travelled by MAPT-AD mice compared to each of the other 

genotypes).   Treatment with doxycycline for 4 months ameliorates the hyperactivity phenotype in 

MAPT-AD mice bringing the distance travelled by these mice back to similar levels as all control 

genotypes (Figure 1G, H).  These data suggest vehicle treated mice with both amyloid-beta and tau 

exhibit increased activity in the open field, which recovers with reduction of tau levels.  

 

To examine whether the increased distance travelled by MAPT-AD mice was due to anxiety, we 

examined the distance travelled in the inner versus outer portions of the arena.  Mice of all genotypes 

spend approximately 10 times more time in the outer than inner arena indicating a typical avoidance of 

open areas (supplemental Figure 1).  At 14.5 months of age (after treatment), there was no significant 

effect of genotype or treatment on distance travelled in the inner arena (2-way ANOVA genotype 

F[3,69]=1.854, treatment F[1,76]=0.204, interaction F[2,69]=0.153, p>0.05).  In the outer arena, there 

were significant effects of genotype, treatment, and an interaction between genotype and treatment on 

distance travelled (Fig 1I). MAPT-AD vehicle treated mice travelled significantly further in the outer 

arena than all other groups (Fig 1I).  This indicates a potential anxiety phenotype as well as hyperactivity, 

which recovers with doxycycline treatment. 
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Figure 1. Progressive plaque pathology and reversible hyperactivity phenotype in MAPT-AD mice. The 
MAPT-AD mouse model was generated by breeding two feeder lines to produce four experimental 
genotypes of F1 littermates on a consistent outbred strain background (A). Behavior, pathology, and 
recovery with tau transgene suppression were characterized over time (B). Staining with ThioflavinS (C) 
shows progressive plaque accumulation in MAPT-AD and APP/PS1 mice.  MAPT-AD mice have 
significantly lower cortical plaque burden that APP/PS1 mice (D, 2 way ANOVA effect of genotype 
F[2,26]=8.454, p=0.007). Tau is present in MAPT-AD mice but tau pathology does not accumulate in cell 
bodies or in dystrophic neurites around plaques as shown by staining with total tau, phospho-tau (PHF1 
and AT8), or misfolded tau (Alz50) antibodies, which all label tangle pathology in rTg4510 positive 
control sections (E). The open field test was used as a measure of spontaneous activity. Representative 
traces from a mouse from each genotype at 10.5 months of age (F), demonstrate the excess activity of 
the MAPT-AD mice compared to the other three genotypes.  This hyperactivity phenotype recovers with 
dox treatment as seen in representative traces from a MAPT-AD mouse treated with vehicle and one 
treated with doxycycline and the trace from the same mice after treatment (G) and in the quantification 
of open field activity (H, repeated measures ANOVA effect of genotype F[3,69]=24.117, p<0.0001; 
treatment F[1,69]=4.17, p=0.045, interaction F[3,69]=3.58, p=0.018; *  Tukey’s multiple comparisons 
tests vehicle treated MAPT-AD mice are significantly different from control vehicle treated mice 
(p<0.0001). At 14.5 months of age, MAPT-AD mice travel over 2 times farther in the outer portion of the 
arena (outside the green box, G) than other genotypes, a phenotype which recovers with dox treatment 
(2-way ANOVA genotype F[3,69]=19.548, p<0.0001; treatment F[1,69]=3.9990, p=0.0497, interaction 
F[2,69]=4.770, p=0.004. *, ** Tukey’s multiple comparisons tests p=0.002, p<0.0001). Data shown are 
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means +/- standard error.  Dots on bar graphs represent means of individual animals. Scale bars 
represent 1mm (C, insets 100x100 um), 30 um (E). The dotted lines in H and J represent doxycycline 
treatment to suppress tau expression from 10.5 – 14.5 months, and the break in the lines indicates a 
different cohort of mice was used for the 3-6-9 months study and the 10.5-14.5 month study.  See also 
figure S1. 

 

 

Tau in synapses may mediate cognitive impairment 

To examine the brain changes underpinning the recovery of behaviour with tau suppression, post-

mortem studies of pathological and molecular changes were carried out in the cohort of mice that had 

undergone treatment.  Treatment of MAPT-AD mice with doxycycline lowered tau mRNA levels by 65% 

in both MAPT-AD mice and Tau littermates (Figure 2A). APP mRNA levels were 30% higher in MAPT-AD 

mice than APP/PS1 mice and recovered to normal levels with dox treatment (Figure 2B). In contrast to 

recovery of APP mRNA, amyloid plaque pathology is unchanged with tau suppression (Figure 2C). The 

ThioS plaque burden, cross sectional area of individual ThioS stained plaques, AW7 immunostained 

plaques (which label both the dense core and oligomeric halo surrounding the core), and the area of the 

oligomeric Aß halo surrounding plaques were all unchanged with dox treatment.  These data indicate 

that the behavioural recovery was not mediated by reducing amyloid plaque pathology. 

Synapse density around plaques and the accumulation of synaptic Aß and tau were determined using 

array tomography. More than 673,000 postsynaptic densities labelled with PSD95 and 415,000 

presynaptic terminals labelled with synaptophysin were analysed from cortical samples from 4-11 mice 
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per group (average 13,000 PSDs and 9,655 presynaptic puncta per mouse). Density of both 

synaptophysin (figure 2L) and PSD95 (figure 2M) labelled puncta was decreased near plaques in both 

genotypes that have plaques (APP/PS1 and MAPT-AD mice, 3-way ANOVA effect of plaque distance 

synaptophysin F[1,42]=60.49, p<0.0001, PSD95 F[1,50]=8.15, p=0.006).  Treatment with doxycycline to 

reduce tau levels did not prevent this plaque-associated synapse loss. The density of pre and post 

synapses near plaques was not significantly different between treatment groups or genotypes.  

Oligomeric Aß accumulated in a subset of synapses near plaques in both APP/PS1 and MAPT-AD mice 

(median presynaptic terminals near plaques containing Aß 1.9% in APP/PS1 mice, 0.8% in MAPT-AD 

mice, median postsynaptic terminals 1.0% in APP/PS1 mice, 2.4% in MAPT-AD mice).  The percentage of 

both pre and postsynaptic terminals containing Aß was higher near plaques than far from in both 

APP/PS1 and MAPT-AD mice (independent samples Mann-Whitney U test PSD95 p<0.01, synaptophysin 

p<0.0001 for all groups near vs far from plaques). The percentage of synapses containing Aß near 

plaques was not different between APP/PS1 and MAPT-AD mice (independent samples Mann-Whitney U 

test p>0.05). There was also no effect of lowering tau levels on accumulation of Aß in synapses near 

plaques (independent samples effect of genotype, Mann-Whitney U test p>0.05).   

Tau was detected in median of 1.2% of PSDs (figure 2O) and 0.4% of presynapses (figure 2Q) in vehicle 

treated MAPT-AD mice and 0.6% of PSDs and 1.1% of presynapses in vehicle treated Tau mice (the only 

genotypes expressing tau). Unlike Aß, the percentage of synapses containing tau was not different near 

plaques in the MAPT-AD group.  The percentage of synapses containing tau were significantly different 

between genotypes (independent samples Mann-Whitney U test for genotype p<0.0001). Doxycycline 

treatment significantly lowered synaptic tau levels only in the MAPT-AD group (data split by genotype, 

effect of treatment independent samples Mann-Whitney U test p=0.004 for PSD95, p=0.004 

synaptophysin). The approximate 30-fold reduction in presynaptic and 8-fold reduction in postsynaptic 

tau levels in MAPT-AD mice may contribute to the improved hyperactivity phenotype observed in mice 

treated with doxycycline. Only very rare PSDs stained for both Aß and tau (<0.006% of pre <0.005% post 

synapses in vehicle treated MAPT-AD mice). 
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Figure 2:  Tau suppression reduces synaptic accumulation of tau. Tau transgene suppression with dox 
treament reduced tau mRNA levels by approximately 65% as measured by qPCR (A, * 2-way ANOVA 
effect of treatment F[1,31]=42.22, p<0.0001).  APP mRNA levels (B) were increased by 30% in MAPT-AD 
mice, an effect which was ameliorated by dox treatment (2-way ANOVA genotype F[3,31]=153.5, 
p<0.0001, treatment F[1,31]=7.912, p=0.0084, interaction F[3,31]=3.468, p=0.0279, * post-hoc Tukey‘s 
test p<0.01).  Tau suppression did not change amyloid pathology in MAPT-AD mice. Fibrillar plaques 
were measured with ThioS, total Ab with AW7 immunostaining, and oligomeric Ab halos were measured 
by subtracting the fibrillar cores from total Ab staining (G).   To investigate synapse loss and synaptic 
proteins, array tomography ribbons were stained for presynaptic terminals (H, synaptophysin, green), or 
postsynaptic densities (I, PSD, green) along with human tau (red), and amyloid beta (AW7, cyan). 
Maximum intensity projections of 10 serial 70 nm sections are shown in H and I.  Three-dimensional 
reconstructions of 5 consecutive serial sections from processed image stacks of a MAPT-AD mouse 
demonstrate presynaptic (J) and postsynaptic (K) terminals positive for tau (arrows) or Aß (arrowheads). 
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Quantification reveals significant pre (L) and post (M) synapse loss near plaques in APP/PS1 and MAPT-
AD mice which is not rescued by lowering tau levels with doxycycline (dox) treatment. The percentage of 
presynapses (N) and postsynapses (P) positive for Aß is not different between MAPTnullxAPP/PS1 mice 
and MAPT-AD mice, nor is it affected by dox treatment.   The percentage of presynapses (O) and 
postsynapses (Q) containing tau is significantly lowered by dox treatment in MAPT-AD mice (* Mann-
Whitney U test p=0.004). Data represent mean + SEM (L, M) and median + interquartile range (N-Q). 
Scale bars represent 1 mm in B, 30 µm in C, 10 µm in H and I, 1 µm in J and K. 

 

Tau suppression reverses transcriptional changes 

In addition to targeted studies of synapses, Aß, and tau postmortem, we performed unbiased RNAseq 

experiments to look for transcriptional changes in MAPT-AD mice and whether these recover with tau 

transgene suppression (Raw data available in Supplemental table 2 and ***ADD DOI after 

acceptance***). MAPT-AD mice had 1531 transcripts that were detected with FPKM >1 which were 

significantly altered compared to MAPTnull control mice and 127 of these were changed by greater than 

2 fold (Figure 3C).  The gene changes in MAPT-AD mice compared to control are much larger than either 

APP/PS1 mice (Figure 3A, 81 transcripts with significant >2 fold change) or Tau mice (Figure 3B, 6 

transcripts with significant >2 fold change) compared to controls. Gene Ontology enrichment analysis 

indicates that the upregulated genes in MAPT-AD mice are dominated by an inflammatory response 

(including Trem2, Gfap, Cd68, C1q, and H2-Eb1), while downregulated genes are involved in synaptic 

function including glutamate signalling (AMPA and NMDA receptor subunits, Gria2, Gria3, Gria4, Grin2a, 

Homer2 and Camk2b).  One synaptic transcript that was significantly upregulated is cellular prion 

protein (Prnp), which is very interesting since it is a known synaptic binding partner of Aß (Um et al., 

2012).  

Upregulation of genes in MAPT-AD mice appears to be driven by Aß and tau independently without an 

additive effect since the fold induction of upregulated genes is very similar in MAPT-AD mice to the 

maximum fold induction in either APP/PS1 or Tau mice, illustrated by the fact that most of these genes 

correlate strongly between MAPT-AD and the maximum fold change in either APP/PS1 or Tau (Figure 

3D).  There are a few interesting genes upregulated more in MAPT-AD mice than in APP/PS1 or Tau mice 

including several involved in inflammation (Lilrb4, Ccl3, and Cst7).  Cst7 is interesting as it is upregulated 

in disease associated microglia in APP/PS1 mice (Keren-Shaul et al., 2017). In contrast to the relatively 

few changes seen in upregulated genes, Aß and tau act additively in downregulating gene expression.  

The fold downregulation compared to controls in MAPT-AD mice is more than the maximum change in 
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either APP/PS1 mice or Tau mice (Figure 3D).  Doxycycline treatment ameliorates gene expression 

changes in MAPT-AD mice (Figue 3E) and reverses the mild changes in Tau mice (figure S2), indicating 

that lowering tau levels protects against gene expression changes. 

 

Figure 3: Transcriptional changes in MAPT-AD mice that are reversed by tau suppression. RNAseq of 
APP/PS1 brain compared to controls reveals significant changes in gene expression (A, FPKM, Fragments 
Per Kilobase of transcript per Million mapped reads). Wild-type human tau induced changes to a lesser 
extent (B).  MAPT-AD mice (C) had more significant changes than when either APP/PS1 or Tau were 
expressed on their own. Transcripts changed more than 2 fold with an adjusted p value of p<0.05 are 
shown in red in panels A-C.  A subset of crosses are labelled to show transcripts of interest that are 
changed in including genes involved in inflammation (Cd68, C1q, Gfap, risk factors Trem2 and 
histocompatibility class II (H2-eb1), and cellular prion protein (Prnp) which is a synaptic binding partner 
of Aß.  Examining only the genes significantly chanted in MAPT-AD mice compared to control mice and 
comparing the log(2) fold change (L2FC) of MAPT-AD mice compared MAPTnull control mice to the 
maximum L2FC of either MAPTnullxAPP/PS1 or MAPTnullxrTg21221 compared to MAPTnull controls (D) 
shows that upregulated genes are for the most part not differentially regulated in MAPT-AD mice 
compared to those expressing APP/PS1 or tau alone (slope 0.90, 95% CI 0.89 to 0.92).  Downregulated 
genes in MAPT-AD mice (D) are differentially regulated in MAPT-AD mice compared to those expressing 
APP/PS1 or tau alone (slope 0.57, 95% CI 0.51 to 0.63). Red crosses in C show transcripts of interest 
which are changed more in MAPT-AD mice than in APP/PS1 or Tau mice including downregulated genes 
involved in synaptic function (Gria2,Camk2b, Dlg3, and Syt7) and upregulated genes involved in 
inflammation (Lilrb4, Ccl3, and Cst7). Dox treatment to reduce tau levels reverses transcriptional 
changes in MAPT-AD mice (E, linear regression slope = -0.34, 95% CI -0.36 to -0.33). Each point 
represents a single transcript. See also related figure S2. 
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To test whether the recovery of gene expression with tau suppression was due to a prevention of 

further changes with age or a recovery of existing changes at the time treatment began, we analysed a 

subset of transcripts by RT-PCR at 9-10 months of age (an age before treatment started) and validated 

the RNAseq data again in 14.5 month old brain samples that had been treated with vehicle or dox.  The 

subset of genes tested indicate that the amelioration of gene expression changes with dox was due to a 

prevention of further worsening and not a recovery (supplemental figure 2). Since many of the 

upregulated inflammatory genes are expressed in glia, we examined astrocyte and microglial burdens. In 

agreement with the overall trend observed with RNAseq that upregulated genes are driven 

independently by Aß or tau, an increase in gliosis was observed in both genotypes with human Aß, 

MAPT-AD and APP/PS1 mice.  These did not recover with dox treatment (figure S2).  

 

Tau is present in pre and post synapses of human AD cases 

To confirm the translational relevance of the contribution of synaptic tau to cognitive decline in our new 

model, we examined the localization of tau and Aß at synapses in samples of superior temporal gyrus 

from human AD and control subjects.  In total 99,967 postsynapses and 100,012 presynapses form 6 AD 

and 6 control subjects were examined (mean 8,331 post and 8,334 pre synapses examined per case, 

data found in supplemental table 3). Cases were stained with the pan-Aß antibody AW7, a tau antibody, 

a presynaptic marker, and a postsynaptic marker in a two-day protocol to allow localization of Aß and 

tau together within individual pre and postsynapses. As previously reported, Aß is present in a subset of 

synapses in AD brain with significantly more positive synapses within 20 µm of a plaque (10.33% PSD 

and 14.29% synaptophysin puncta positive for Aß near plaques, <1% PSD or synaptophysin positive for 

Aß far from plaques, p<0.05 Independent samples Mann-Whitney U test for both pre and post 

synapses).  In array tomography, the tau13 antibody recognized neurofibrillary pathology but not 

normal axonal tau, and labelled a small subset of pre and post-synapses (Figure 4).  As observed in the 

mice, tau synaptic localization was not significantly different near versus far from plaques.  Also in 

agreement with the mouse data, only very rare synapses were positive for both tau and Aß staining 

(<0.02% on average).    
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Figure 4: Tau is found in pre and post synapses in human AD brain.  Array tomography was used in 
human postmortem brain tissue to stain Aß (white), Tau13 (yellow), PSD95 (magenta), and 
synaptophsyin (cyan) (A-D).  Tau13 stains neuropil threads (arrows, A).  Examining individual synapses 
revealed that Ab was present in 8.49% of presynaptic terminals (B arrowheads) and 6.98% of 
postsynaptic densities (B arrows) near plaques in AD cases (B, E).   Tau13 staining was observed in 0.32% 
of presynaptic terminals (arrowheads C, quantified in F), and 0.38% of postsynaptic terminals (arrows, D 
quantified in F). Misfolded tau labeled with Alz50 (G-I, yellow) was also observed in neuropil threads 
(arrows G) and in presynapses (arrowheads, H) and post synapses (arrows, I).  Tau phosphorylated at 
serine 202 (labeled with CP13) and misfolded (residues 5-15 near312-322, labelled with MC1) was also 
observed in PSDs (J). Images in A, G, and large panels are maximum intensity projections of 10 serial 
sections.  Scale bar represents 10 um in A, G, J. B-D, H, I, and insets show three-dimensional 
reconstructions of a 2 micron by 2 micron region of interest in 5 consecutive serial 70nm sections. 
 
 

Discussion 

The lack of disease modifying treatments for AD remains a huge unmet clinical need.  Advances in 

understanding of the mechanisms of neurodegeneration will pave the way for developing effective 

treatments.   Synapse degeneration is the strongest pathological correlate of cognitive decline in AD and 

a potentially important driver of disease pathogenesis. Previous work by our group and others strongly 

implicated soluble Aß and tau separately in synapse dysfunction and loss in AD (Klein, 2013; Koffie et al., 

2012; Koffie et al., 2009; Kopeikina et al., 2012; Mucke and Selkoe, 2012; Spires-Jones et al., 2017; 
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Spires-Jones and Hyman, 2014). Here we tested the hypothesis that Aß and tau act together to cause 

neural circuit dysfunction.  Evidence has been growing over the past decade to support this idea both 

from work showing that lowering tau levels protects against Aß mediated synaptic plasticity deficits and 

from studies indicating that dendritic tau mediates Aß synaptotoxicity (Ittner et al., 2010; Roberson et 

al., 2011; Roberson et al., 2007; Shipton et al., 2011; Zempel et al., 2010).   In the novel MAPT-AD model, 

we observe an age-related hyperactivity phenotype and downregulation of genes involved in synaptic 

function.  Reducing tau expression levels ameliorated the behavioural phenotype and lowered synaptic 

tau levels without recovering synapse density around plaques.  The potential importance of synaptic tau 

in human disease was confirmed by quantifying the presence of tau at pre and postsynaptic terminals in 

AD brain.  

Potential molecular mechanisms linking Aß and tau to synapse and circuit dysfunction include calcium 

dysregulation and calcineurin activation, which are known to contribute to Aß toxicity and spine collapse 

in vitro and in vivo and have recently been linked to tau mediated synapse impairment (Hudry et al., 

2012; Kuchibhotla et al., 2008; Mattson et al., 1992; Wu et al., 2010; Yin et al., 2016; Zempel et al., 

2010). Abnormal activation of synaptic receptors by Aß has also been shown to induce activation of 

kinases including Fyn and GSK3-ß which affect tau phosphorylation and synapse collapse (Ittner et al., 

2010; Lovestone et al., 2014; Marzo et al., 2016; Purro et al., 2012; Roberson et al., 2011; Sellers et al., 

2018; Small and Duff, 2008).  Our RNAseq results add to the literature implicating cellular prion protein 

at the interface between Aß and tau as increases in PrPc mRNA in MAPT-AD mice was the largest change 

observed with RNAseq and these levels recover with tau suppression.   PrPc has been shown to interact 

with oligomeric Aß where it is thought to act via metabotropic glutamate receptor 5 complexes to 

impair synaptic function (Barry et al., 2011; Haas and Strittmatter, 2016; Hu et al., 2018; Hu et al., 2014; 

Jarosz-Griffiths et al., 2016).  This pathway could involve tau since binding of Aß to PrPc can activate Fyn 

and cause tau phosphorylation (Um et al., 2013; Um et al., 2012).  While many of the proposed 

mechanisms of synapse degeneration focus on post-synaptic processes, our data clearly show 

accumulation of both Aß and tau in pre as well as postsynaptic terminals.  Tau has recently been shown 

to bind to presynaptic vesicles in human AD and Drosophila models, where it impairs neurotransmitter 

release (McInnes et al., 2018; Zhou et al., 2017).  Similarly, it is also becoming clear that Aß exerts 

effects on presynaptic function (Ovsepian et al., 2018).  

 

Our RNAseq results strongly implicate non-neuronal cells as key participants in the interplay between Aß 
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and tau. TREM2, clusterin, and CD33, genes involved in the innate immune system that have recently 

been implicated in AD risk by GWAS studies, were elevated in MAPT-AD mice compared to controls.  

Several members of the complement cascade family were also changed in MAPT-AD mice, which is 

important due to the recent discovery of complement mediated microglial engulfment of synapses in 

plaque bearing AD model mice (Hong et al., 2016; Shi et al., 2017a).   Our data indicate that beyond 

contributing to disease risk, presumably through amyloid, the innate immune system is also likely 

involved in the cascade from amyloid to tau in AD pathogenesis. The gene changes observed in our 

model indicate that Aß and tau act cooperatively to cause downregulation of genes and largely 

independently in gene upregulation.  Downregulated genes were predominantly involved in excitatory 

synaptic function, which is supported by recent data implicating tau in toxicity to excitatory over 

inhibitory neurons (Fu et al., 2017).  

Synapses are highly plastic structures, which have the potential for recovery with interventions. Indeed, 

most successful drugs used in nervous system disorders act at the synapse; therefore synaptic changes 

are an obvious target for disease-modifying agents in neurodegenerative disorders. Recent work has 

focused on removing Aß from synaptic receptors as a therapeutic avenue. For example, a compound 

that displaces Aß from sigma-2 receptors is now in clinical trials (Izzo et al., 2014), clinicaltrials.gov).  Our 

data indicate that lowering pathological tau specifically at synapses may also be an effective therapeutic 

strategy. 
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METHODS 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
Animals 

All animal experiments conformed to national and institutional guidelines including the Animals 

[Scientific Procedures Act] 1986 (UK), and the Council Directive 2010/63EU of the European Parliament 

and the Council of 22 September 2010 on the protection of animals used for scientific purposes, and had 

full Home Office ethical approval.  Mice were bred in house and group housed in a 12h/12h light/dark 

cycle with ad libitum access to food and water.  Both sexes of mice were used in all experiments (see 

supplemental table 1 for details of all mice used including sex, age, and weight information).  

Littermates were randomly assigned to experimental groups in experiments to reduce tau transgene 

expression and experimenters were blind to genotype and treatment. 

Human subjects 

Brain tissue samples were taken from superior temporal gyrus of 6 AD and 6 control subjects in the 

Edinburgh Sudden Death Brain Bank or the Massachusetts General Hospital Alzheimer’s Disease 

Research Centre Brain Bank.  Characteristics of human subjects can be found in table 1 and synapse data 

in supplemental table 3. Average age was 81 for AD cases (range 75-90) and 77 for control cases (range 

69-95).  All AD cases were neuropathologically confirmed and were Braak stage V or VI.  Control cases 

had no neurological phenotype.  All human experiments were reviewed and approved by the Sudden 

Death Brain Bank ethics committee and the ACCORD medical research ethics committee (Academic and 

Clinical Central Office for Research and Development at the University of Edinburgh and National Health 

Service Lothian, ethical approval number 15-HV-016). 

 

 

Table 1: Human subject characteristics  

case diagnosis age  sex 
1442 AD 80 f 
1446 AD 84 m 
1547 AD 77 m 
1564 AD 90 m 
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AD5 AD 75 f 
BBN24526 AD 79 m 
HC control 66 m 
HC2 control 69 m 
HC3 control 75 m 
HC6 control 95 m 
BBN28406 control 79 m 
BBN19686 control 77 f 

 

 

METHOD DETAILS 

Generation of new mouse line: 

For the new MAPTnull APP/PS1 rTg21221 (MAPT-AD) model line, 4 genotypes were used to compare 

mice with (1) no transgene expression on a MAPTnull background, (2) mice expressing human familial 

AD mutant APP and PS1 to generate Aß pathology (MAPTnullxAPP/PS1), (3) mice expressing 0N4R wild-

type human tau (MAPTnullxrTg21221), and (4) mice expressing both human tau and the APP/PS1 

transgene (MAPT-AD, Figure 1). All mice were homozygous for deletion of mouse tau and heterozygous 

for the human wild-type tau transgene which is only expressed when the tetracycline transactivator 

transgene is also present.  All experimental mice were F1 crosses from two feeder lines to maintain a 

controlled outbred background strain with consistent proportions of B6, B6C3, and FVB backgrounds.  

Parent strains used to generate the MAPT-AD feeder lines were: (1) B6C3 APP/PS1 mice expressing 

human APP with the Swedish mutation and human presenilin 1 with an exon 9 deletion under the 

control of the Thy1 promoter (B6C3-Tg(APPsw,PSEN1dE9)85DboMmjax, Jax 34829, (Jankowsky et al., 

2004);   (2) MAPTnull mice on the C57BL/6 background strain which have the first exon of the 

MAPTgene replaced with EGFP (Tucker et al., 2001); (3) mice expressing the tetracycline transactivator 

under the control of the calcium calmodulin kinase 2 alpha promoter CK-tTA on the C57BL/6 

backgrounds strain (B6.Cg-(Camk2a-tTA)1/MmayDboJ ,(Yasuda and Mayford, 2006));  (4) Tg21221 mice 

expressing human wild type tau under a dox-off tetracycline transactivator promotor (FVB-Tg(tetO-

0N4R-MAPTwt)21221, (Hoover et al., 2010)). One feeder line was generated by crossing FVB.MAPTnull 

mice with the Tg21221 mice to generate FVB Tg21221 MAPTnull mice homozygous for both thte 

Tg21221 transgene and the MAPT knockout. The other feeder line was generated by crossing B6C3 

APP/PS1 mice with B6 MAPTnull mice to generate mice heterozygous for the APP/PS1 transgene and 

homozygous for the MAPT knockout.  These two feeder lines were bred to generate F1 experimental 
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animals. Human tau is only expressed when the tetracycline transactivator is also expressed and can be 

suppressed by feeding the mice doxycycline (figure 1A). This consistent outbred background breeding 

scheme keeps variability low while avoiding potential pitfalls of inbred strains such as sensory deficits 

during ageing, liver deficits, deletions such as loss of alpha-synuclein in some C57 strains, and other 

unknown recessive defects that may occur in inbred lines (Cudalbu et al., 2013; Specht and Schoepfer, 

2001; Wong and Brown, 2006). Out of the 395 mice born during the generation and phenotyping of the 

MAPT-AD line, as expected 100% were homozygous for endogenous tau knockout, 100% were 

heterozygous for the rTg21221 tau responder transgene, 53% were heterozygous for the APP/PS1 

transgene (50% expected), 48% were heterozygous for the CK-tTA activator transgene (50% expected), 

and 23% had both the APP/PS1 and CK-tTA transgenes (25% expected).  48% of the mice were female. 

Thus, the transgenes were all inherited in the expected Mendelian ratios, indicating that no combination 

of genotypes was lethal (Chi squared value = 6.41, p= 0.093, df = 3 confirming Mendalian ratios).  This is 

an important advantage of our consistent outbred breeding scheme as the same APP/PS1 transgene is 

lethal to about half of the mice on a congenic B6 background (Bennett et al., 2017). 

 

Genotyping of mice was carried out on ear notch samples using PCR primer sequences as follows: 

PSEN1dE9 Tg  
Forward Primer:  
 GGCTACCATTAAGTCAGTCAGCTTT  

Reverse Primer:  
  CCCACAGTCTCGGTATCTTCTG  

  
APPSwe.  
Forward Primer CCGACATGACTCAGGATATGAAGTT 
Reverse Primer: CCTTTGTTTGAACCCACATCTTCTG 

  
CkTTA  
Forward Primer TGCCAACAAGGTTTTTCACTAGAGA 
Reverse Primer: CTCTTGATCTTCCAATACGCAACCTA 
  
eGFP (for MAPTnull)  
Forward Primer CGTCGTCCTTGAAGAAGATGGT 
Reverse Primer: CACATGAAGCAGCACGACTT 

  
Mapt-1 WT  
Forward Primer CTGCTCCAAGACCAAGAAGGA 
Reverse Primer: TGTGTATGTCCACCCCACTGA 
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One cohort of mice was aged and used for behavioural testing at 3, 6, and 9-10 months of age and 

sacrificed at 9-10 months of age for LTP experiments and pathological characterization (see 

supplemental table 1 for all mouse data). Another cohort of mice was aged to 10-10.5 months of age, 

tested for baseline behaviour, then half of the mice were treated with 200ppm doxycycline in the chow 

for 4 months to reduce tau transgene expression and the others treated with vehicle. These mice were 

sacrificed at 14-14.5 months of age for pathological studies.  Another cohort of littermates was aged to 

6 months and sacrificed to look at onset of pathology. 

As a negative control to be sure that any effects of tau expression were not an artefact of the CKtTA 

activator transgene, which is expressed in all mice that express tau by necessity, we examined B6.CKtTA 

mice on a mouse tau null background at 9 months of age for behavioural and pathological changes.  As a 

positive control for the effects of the APP/PS1 transgene on behaviour and synaptic plasticity in our 

hands, we tested a 9-month-old cohort of B6C3.APP/PS1 mice from Jackson labs at 9 months of age.  As 

a positive control for tau staining rTg4510 brain sections from 3 mice were used for tau 

immunohistochemistry (Santacruz et al., 2005; Spires et al., 2006).  

Behavioural testing 

Animals were tested for open field behaviour in a square box (40 x 40 x 60 cm) composed of dark 

opaque walls with approximately 2.5cm of corn cob bedding on the floor of the arena. Animals were 

recorded using an overhead camera and the video signal fed into Blackmagic Media Express computer 

software which captured the animals movements. Each day animals were brought into the testing room 

in their home cage upon the end of the 12 hr dark cycle and allowed to settle for 1 hour. For 

habituation, animals were exposed to the open field for 3 consecutive days. On day 1, animals were 

introduced to the centre of the arena along with cage mates for 20 minutes. For days 2-4, individual 

animals were placed facing a corner of the arena, which was assigned using a random generator. For 

each experimental group, the order in which animals were placed in the arena was randomly assigned 

using a random sequence generator.  On day 4, behavior in the open field was recorded for 10 minutes 

using an overhead camera and movements captured with Blackmagic Media Express software. idTracker 

software and MATLAB were used to analyse mouse behaviour. The total distance travelled, distance 
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travelled in the outer segment (40 x 40 – inner segment), distance travelled in the inner segment (20 x 

20), percentage of time spent in the outer segment and percentage of time spent in the inner segment, 

were calculated and analysed in SPSS and Prism7.  

 

In order to ensure that the hyperactivity observed at 14.5 months of age is not a consequence of 

baseline performance prior to treatment, 10.5 month old mice were assessed for baseline performance 

in the open field according to the treatment group to which they would be assigned. A significant effect 

of genotype was observed (p<0.0001), however there was no difference in open field behaviour in the 

cohorts destined for doxycycline or vehicle treatment within the same genotype (2-way ANOVA effect of 

treatment F(1,164)=0, p>0.99999). This suggests the increase in total distance travelled in 14.5 month 

old vehicle-treated MAPT-AD mice and reversal with doxycycline is not due to baseline increased activity 

in this group at 10.5 months of age.   

 

 

Measuring pathology 

Mice were sacrificed by terminal anaesthesia and perfused with PBS.  Brains were dissected and one 

hemisphere fixed for 48 hours in 4% paraformaldehyde.  Samples of entorhinal cortex from the other 

hemisphere were saved for array tomography as detailed below and the rest of the hemisphere was 

frozen for biochemical analyses.  The fixed hemisphere was cryoprotected in 15% glycerol and sectioned 

into 50 micron coronal sections through the entire hemisphere with a sliding microtome (Leica SM2010R 

sliding microtome). To quantify amyloid pathology, every 20th section was stained with a pan-Aß 

antibody and counterstained with 0.05% Thioflavine S in 50% ethanol to label plaque fibrils and any 

neurofibrillary tangles (antibody details are found in table 2).  Tile scan images of each entire section 

were obtained with a 10x objective on a Zeiss Axioimager microscope.  Images were analysed using 

ImageJ.  The cortex and hippocampus on each section were outlined, regions of interest defined, and 

the area calculated.  Cortical and hippocampal volumes were estimated by multiplying the area on each 

section by 1000 (distance between sections), summing these values for all sections, and multiplying by 2 

to estimate total volume as we only measured one hemisphere. Each channel of amyloid staining was 

manually thresholded in ImageJ by an experimenter blinded to genotype. The ImageJ analyze particles 

function was used to calculate the percent area of cortex and hippocampus occupied by staining and the 

number and average size of individual plaques.  To calculate the burden of oligomeric halos surrounding 
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plaques, the thresholded Thioflavin S image was subtracted from the thresholded pan-Aß image and 

plaque burden, number, and size were analysed as above. 

Series of every 10th section were also stained with pathological tau antibodies to look for neurofibrillary 

tangles and neuropil threads as detailed in table 2.  Stained sections were examined using a Zeiss 

AxioImager Z2 microscope and images acquired with a CoolSnap digital camera.  For all immunostains, 

no primary conditions were used as negative controls. For tau stains, rTg4510 mouse brain sections 

containing neurofibrillary pathology were used as positive controls. 

To measure gliosis, free floating coronal sections were stained for microglia (Iba1), astrocytes (GFAP), 

and fibrillary plaques (Thioflavine S), with citrate buffer pre-treatment (95oC for 20 minutes, see table 2 

for antibody details). Three coronal sections were stained per mouse at approximately 0.75mm, -

2.0mm, and -3.75mm from Bregma. Tile scans were obtained at 10x magnification using a ZEISS 

Imager.Z2 stereology microscope and images were thresholded on ImageJ for cortical burden 

quantification.  

RNA analyses 

Total RNA was extracted from the frontal cortex using the Lipid Tissue Mini Kit (Qiagen). RNA quantity 

and quality was assessed using a Bioanalyzer 2100 (Agilent Technologies). All samples had RIN values > 

7. To generate RNA-seq data, barcoded RNA-seq libraries were prepared by Edinburgh Genomics using 

the Illumina TruSeq stranded mRNA-seq kit, according to the manufacturer’s protocol (Illumina). The 

libraries were pooled and sequenced using an Illumina Novaseq 6000. RNA-sequencing was performed 

to a depth of ~60 million 50bp paired-end reads per sample.  Reads were mapped to the mouse primary 

genome assembly (GRCm38) contained in Ensembl release 92 (Zerbino et al., 2018). Read alignment was 

performed with STAR (Dobin et al., 2013), version 2.5.3a, and tables of per-gene read counts were 

generated from the mapped reads with featureCounts (Liao et al., 2014), version 1.5.2. Differential 

expression analysis was then performed using DESeq2 (R package version 1.18.1) (Love et al., 2014). 

Gene Ontology enrichment analysis was performed with topGO [5] (R package version 2.30.1). 

 

For qRT-PCR, cDNA was synthesised using the SuperScript VILO cDNA synthesis kit (ThermoFisher) and 

the following PCR settings used: 10 minutes at 25°C, 60 minutes at 42°C and 5 minutes at 85°C. qPCRs 

were run on a Stratagene Mx3000P QPCR System (Agilent Technologies) using SYBR Green 

MasterRox (Roche) with 6 ng of cDNA per well of a 96-well plate, using the following programme: 
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10 min at 95 °C, 40 cycles of 30 s at 95 °C, 40 s at 60 °C and 30 s at 72 °C, with a subsequent cycle of 

1 min at 95 °C and 30 s at 55 °C ramping up to 95 °C over 30 s (to measure the dissociation 

curve). The following primers were used: 

 

Gapdh 

Forward:  5’- GGGTGTGAACCACGAGAAAT-3’ 

Reverse:  5’- CCTTCCACAATGCCAAAGTT-3’ 

 

Human mutant Tau 

Forward:  5’- CCCAATCACTGCCTATACCC-3’ 

Reverse:  5’- CCACGAGAATGCGAAGGA-3’ 

 

Human mutant APP 

Forward:  5’-CCGACATGACTCAGGATATGAAGTT-3’ 

Reverse:  5’-CCTTTGTTTGAAACCCACATCTTCTG-3’ 

 

Trem2 

Forward:  5’- CTGGAACCGTCACCATCACTC-3’ 

Reverse:  5’- CGAAACTCGATGACTCCTCGG-3’ 

 

Gfap 

Forward:  5’- GCAAAAGCACCAAAGAAGGGGA-3’ 

Reverse:  5’- ACATGGTTCAGTCCCTTAGAGG-3’ 

 

Aldh1l1 

Forward:  5’- CATCCAGACCTTCCGATACTTC-3’ 

Reverse:  5’- ACAATACCACAGACCCCAAC-3’ 

 

Cd180 
Forward:  5’–CCAAAGCCAACATCGGTTAGACAC-3’ 
Reverse:  5’ – CAGAGACCCTCAAACACGGCAGG-3’ 
 
Cd84 
Forward:  5’ – GCTGAAGTTACCATAACCCAGG-3’ 
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Reverse 5’ – CAAAAGTAAATCCAAGGCCCCG-3’ 
 
 

 
Array Tomography  

Fresh brain tissue samples were collected from 14 month old mice and human subjects as outlined 

previously (Kay et al., 2013; Koffie et al., 2009). Small tissue blocks containing cortex were fixed in 4% 

paraformaldehyde and 2.5% sucrose in 20 mM phosphate buffered saline pH 7.4 (PBS) for 3 hours. 

Samples were then dehydrated through ascending cold graded ethanol and embedded into LR White 

resin (EMS) which was allowed to polymerise overnight at 53 °C. Resin embedded tissue blocks were cut 

into array ribbons of 70 nm thick sections using an ultracut microtome (Leica) equipped with a Jumbo 

Histo Diamond Knife (Diatome, Hatfield, PA) and collected onto gelatin coated coverslips.  

 

For pathological protein colocalisation with post-synapses, array ribbons were immunostained with 

primary antibodies against total post synapses (PSD95), oligomeric amyloid-beta (1C22) and total tau 

(pan-tau). For pathological protein colocalisation with pre-synapses, array ribbons were immunostained 

with primary antibodies against total synaptic vesicle protein synaptophysin, amyloid-beta (AW7) and 

total tau (pan-tau) (Table 2). Sections were counterstained with 0.01 mg/mL 4’-6-diamidino-2-

phenylindole (DAPI). In each experiment, a short extra ribbon was used as a no primary negative control. 

Images were obtained on serial sections using a Zeiss axio Imager Z2 epifluorescent microscope with a 

10x objective for tile scans and 63x 1.4NA Plan Apochromat objective  for high resolution images. 

Images were acquired with a CoolSnap digital camera and AxioImager software with array tomography 

macros (Carl Zeiss, Ltd, Cambridge UK).  

 

Human brain Array tomography ribbons were stained with combinations of synaptic antibodies, tau 

antibodies and AW7 to label amyloid beta as described in the figures and table 2.  For two-day stains, 

antibodies applied for the first imaging day were stripped by incubation in aqueous 0.02% SDS and 0.8% 

sodium hydroxide solution for 20 minutes.  Stripped ribbons were rinsed in water and re-probed with 

another set of primary then secondary antibodies.  

Images from each set of serial sections were converted into image stacks and aligned using the Image J 

plug-in, MultiStackReg (courtesy of Brad Busse and P. Thevenaz, Stanford University) (Thevenaz et al., 

1998). Regions of interest within the cortical neuropil were chosen (10 μm2) and their proximity to 
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plaque edges recorded (<20 μm from a plaque edge considered “near” plaques and >20 μm from a 

plaque edge considered “far” from plaques).  Image stacks were then binarised using thresholding 

algorithms in ImageJ. For synaptic staining, images stacks were binarised using an ImageJ script that 

combines different thresholding algorithms in order to select both high and low intensity synapses in an 

automated and unbiased manner. To calculate the synaptic density, thresholded images were processed 

and analysed in MATLAB to remove background noise (objects present in only a single section were 

removed). To examine pathological protein presence at the synapse, thresholded images were 

processed and analysed in MATLAB to remove background noise and to calculate the colocalisation of 

total tau and oligomeric amyloid-beta with post synapses individually and in combination (a minimum of 

50% of the synapse volume had to overlap with tau and/or 1C22 to qualify as positive for that stain).   

 

Primary antibody Species Source (cat no) Dilution  Secondary antibody 

Mouse pathology study for amyloid burden and cortical and hippocampal volumes 

AW7 Rb Dominic Walsh 1:5000 Donkey anti-rabbit 

Alexa594, Invitrogen 

Mouse tau pathology study (independent stains)  

PHF1 Ms Peter Davies 1:1000 Donkey anti-mouse 

Alexa594, Invitrogen 

Alz50 Ms IgM Peter Davies 1:1000 Donkey anti-mouse IgM 

Alexa594, Invitrogen 

AT8 Ms Thermo Fisher 

MN1020 

1:1000 Donkey anti-mouse 

Alexa594, Invitrogen 

Mouse study of gliosis 

Iba1 

 
 
 

Gt Abcam ab5074 1:500 Donkey anti-goat  

Alexa647, abcam 
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GFAP Rb DAKO Z0334 
 

1:2000 Donkey anti-rabbit  

Alexa594, abcam 

Mouse array tomography study of postsynaptic density and protein colocalisation 

PSD95 Rb Cell signaling 

3450P 

1:50 Donkey anti-rabbit 

Alexa594, Invitrogen 

Tau Gt R&D Systems 1:50 Donkey anti-goat Alexa647, 

Invitrogen 

1C22 Ms Dominic Walsh 1:500 Donkey anti-mouse 

Alexa488, Invitrogen 

Mouse array tomography study of presynaptic density and protein colocalisation 

synaptophysin Ms Abcam   

AB8049 

1:50 Donkey anti-mouse 

Alexa594, Invitrogen 

Tau Gt R&D Systems 

AF3494 

1:50 Donkey anti-goat Alexa647, 

Invitrogen 

AW7 Rb Dominic Walsh 1:500 Donkey anti-Rabbit 

Alexa488, Invitrogen 

Human array tomography study of Tau13 synapse localization day 1 

synaptophysin Ms Abcam  

AB8049 

1:50 Donkey anti-mouse 

Alexa488, Invitrogen 

PSD95  Rb Cell signaling  

3450P 

1:50 Donkey anti-rabbit 

Alexa594, Invitrogen 

Human array tomography study of total tau synapse localization day 2 

Tau13 Ms Covance  

MMS-520R 

 Donkey anti-mouse 

Alexa488, Invitrogen 

AW7 Rb Dominic Walsh 1:500 Donkey anti-Rabbit 

Alexa594, Invitrogen 

Table 2: Antibodies used in array tomography and histology studies. Host species were mouse (Ms), 

Rabbit (Rb), goat (Gt), and guinea pig (Gp). 
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QUANTIFICATION AND STATISTICAL ANALYSIS 
 
All experiments were carried out by a person blind to genotype and treatment of the mice and blind to 

diagnosis for human studies. For each experimental variable, a percentage, mean or median was 

calculated for each subject (mouse or human case).  Groups of mice or people were compared with 

parametric or non-parametric tests as appropriate based on the normality of the datasets.  Statistical 

tests were carried out in SPSS and Prism7. The number of subjects and statistical tests used for each 

experiment are indicated in the results, figure legends, and supplemental tables 1 and 2 (mouse)  and 3 

(human) . 

 
DATA AND SOFTWARE AVAILABILITY 
 
Spreadsheets of data used in this study are included as supplemental tables 1-3.  All the RNA-seq data 

that support the findings of this study will be deposited in the European Bioinformatics Institute 

depository prior to publication. Custom imageJ and MATLAB macros used for image analysis are freely 

available on the University of Edinburgh Data Sharing repository. 
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Figure S1 related to figure 1:  None of the genotypes experiences age related cortical (A) or 
hippocampal (B) atrophy.  Hippocampal dense plaque burden is lower in MAPT-AD mice than APP/PS1 
mice (C). Hippocampal volume is affected by genotype (2-way ANOVA F (3, 50) = 4.823, p=0.005) as are 
brain weight (D, F(3, 163) = 40.28, p<0.0001) and body weight (E, F(3, 163) = 37.25, p<0.0001).  These 
effects are most likely driven by the CkTtA transgene that drives the tau responder (NOT tau expression) 
since the parent strain MAPTnullxCktTA mice have brain  (F) and body weight (G)  reductions at 9 
months of age compared to MAPTnull littermate controls. To determine whether MAPT-AD mice have 
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an anxiety phenotype, open field data was analysed by the distance travelled in the inner segment 
versus outer segment of the arena (H). At 10.5 months, there was a significant difference between 
genotypes in the inner (I, ANOVA, F[3,69]=4.075, p=0.010) and outer (J, ANOVA F[3,69]=15.91, 
p<0.0001) portions of the arena. MAPT-AD mice travelled significantly further in both the inner and 
outer arena compared to control mice (* Tukey’s posthoc test p<0.01).  At 14.5 months, there were no 
significant differences between genotype and treatment in distance travelled in the inner arena (K). The 
hyperactivity phenotype in MAPT-AD mice is not driven by the CKtTA transgene that drives tau 
expression as mice with CKtTA only are no different from their littermate controls at 9-10 months of age 
(L).  Similarly, the APP/PS1 mice with endogenous mouse tau do not have a hyperactivity phenotype at 
9-10 months of age (M). Graphs depict mean ± SEM. Individual points represent the mean value for each 
mouse. 

 

 
Figure S2 related to figure 3: RT-PCR validation of RNAseq results at 9 months and 14.5 months of age 
indicate that the upregulated genes GFAP (A), Trem2 (B), Cd180 (C), and Cd84 (D) increase between 9 
and 14.5 months and that this is prevented by dox treatment.  The percentage area occupied by GFAP 
labelled astrocytes (Cyan, E) and Iba1 labelled microglia (magenta E) was higher in genotypes with 
plaques but did not change with tau transgene suppression (F, GFAP 2-way ANOVA effect of genotype 
F[3,31]=75.16, p<0.001, treatment F[1,31]=3.22, p=0.082, G, Iba1 2-qay ANOVA effect of genotype 
F[3.31]=9.05, p=0.0002, treatment F[1,31]2.48, p=0.13). Dox treatment significantly rescues 
transcriptional changes in Tau mice (H). Scale bar represents 40 µm. 
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