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ABSTRACT 

 

One of the fundamental processes that determine cellular fate is regulation of gene transcription. 

Understanding these regulatory processes is therefore essential for understanding cellular responses to 

changes in environmental conditions. At the core promoter, the regulatory region containing the 

transcription start site (TSS), all inputs regulating transcription are integrated. Here, we used Cap 

Analysis of Gene Expression (CAGE) to analyze the pattern of transcription start sites at four different 

environmental conditions (limited in ethanol, limited in nitrogen, limited in glucose and limited in 

glucose under anaerobic conditions) using the Saccharomyces cerevisiae strain CEN.PK113-7D. With this 

experimental setup we were able to show that the TSS landscape in yeast is stable at different metabolic 

states of the cell. We also show that the shape index, a characteristic feature of each TSS describing the 

spatial distribution of transcription initiation events, has a surprisingly strong negative correlation with 

the measured expression levels. Our analysis supplies a set of high quality TSS annotations useful for 

metabolic engineering and synthetic biology approaches in the industrially relevant laboratory strain 

CEN.PK113-7D, and provides novel insights into yeast TSS dynamics and gene regulation. 

 

 

 

INTRODUCTION 

Regulation of gene transcription is one of the fundamental processes that determine cellular fate. 

Transcription of protein encoding genes in eukaryotic cells is governed by the RNA polymerase II in 

concert with the general transcription initiation factors (GTFs), namely TFIIA, TFIIB, TFIID, TFIIE, TFIIF and 

TFIIH (reviewed in (1)). These proteins assemble at the core promoter of a gene, which is commonly 

defined as the minimal region necessary to trigger transcription (2–4). This region encompasses the 

transcription start site (TSS), defined as the nucleotide position where transcription is initiated (5).  

It was previously shown that transcription of a gene in eukaryotic cells is not always initiated from the 

same nucleotide, but that it can be initiated from a range of positions in the core promoter region, with 

an individual, sequence-influenced pattern for each gene (3–6). This important finding reshaped the view 

on transcription initiation showing that there is a higher complexity to this process than previously 

anticipated. 

In addition to the TSS positions being a cornerstone of fundamental knowledge on genome organization, 

there are numerous applications where an exact mapping of TSS positions is important. One is in the 

field of synthetic biology, where synthetic promoters are created to obtain a variable range of expression 

levels. Synthetic promoters are designed by combining core promoters with different upstream 

regulatory sequences. In order to do this, accurate definition of the promoter regions are needed to 

place upstream regulatory sequences at the optimal distance to the core promoters. Another application 

is the modulation of gene expression by CRISPR interference (CRISPRi). An effective strategy for 

downregulation that has been documented to work for many genes is to target the catalytically inactive 

Cas9 protein directly to the TSS of the target gene (7).  
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The most accurate way to map transcription start sites is to selectively sequence intact capped 5’ ends of 

mRNA. In this study we choose the Cap Analysis of Gene Expression method (CAGE) (8), which was also 

shown to be the best performing method in a recent comparison of different 5’ end RNA sequencing 

methods by Adiconis et. al., (9). This method gives a quantitative count of transcription start events with 

a single base pair resolution, allowing a more detailed interrogation of these events than with traditional 

RNA sequencing techniques. CAGE can also be used to determine the total expression of a given gene 

with results showing high correlations with traditional RNA sequencing techniques (10). With this high 

resolution data it is possible to accurately determine all TSSs of all expressed genes transcribed by RNA 

Polymerase II and to determine which TSS is the dominant one in a quantitative manner. 

Previous work to annotate TSSs has been carried out in different yeast strains using techniques like 

SMORE-seq (11), or an earlier low-coverage protocol of CAGE (12). These studies used cells grown in 

shake flasks at only one environmental condition, therefore it was not possible to assess how the TSS 

landscape changes in response to environmental conditions.  

Here we describe the first analysis of the content and dynamics of the yeast promoterome across four 

different metabolic states. For this, we used an updated CAGE protocol, called non-amplification non-

tagging CAGE for Illumina sequencing (nAnT-iCAGE) (13), which is a more unbiased approach compared 

to the earlier protocol used by Wery et. al. (12) as it omits the use of restriction enzymes to produce 

short tags and does not include a PCR amplification step of the cDNA. We performed CAGE on the 

industrially relevant S. cerevisiae laboratory strain CEN.PK113-7D (14), grown in four distinct chemostat 

conditions at a fixed specific growth rate of 0.1/h. The four chemostat conditions were selected to cover 

a diverse range of metabolic states, namely: respiratory glucose metabolism using glucose limitation, 

gluconeogenic respiration using ethanol limitation, aerobic fermentation using nitrogen limitation and 

fermentative glucose metabolism using anaerobic conditions. With this setup we were able to obtain 

highly reproducible condition specific data and to assess changes in the TSS landscape in different 

environmental conditions of the cells.  
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MATERIALS AND METHODS 

Gene annotations 

To transfer the annotations from the reference genome of S288C (15) to the recently published genome 

of CEN.PK113-7D (16), first the coding sequences for all verified and uncharacterized ORFs available in 

the Saccharomyces Genome Database (SGD, www.yeastgenome.org) (17) were obtained using 

YeastMine, the data API of SGD. Then, using the NCBI software tool Blast+ (18), every obtained sequence 

was blasted against the CEN.PK genome. Hits covering at least 95% of the sequence length showing at 

least a 95% sequence identity were retained and transferred if only a single hit existed for that sequence. 

In case of multiple strong hits, the hit that was found to be on the same chromosome and surrounded by 

the same neighboring genes as in the reference genome was transferred. In case of large genes where 

for multiple fragments a hit was found, a manual curation step was performed to check if these 

fragments could be reassembled into the full gene. Successfully reassembled genes were also 

transferred, all other hits were discarded. Using this approach, we were able to transfer 99% (5113 out 

of 5159) of the verified ORF annotations and 96% (727 out of 756) of all uncharacterized ORF 

annotations. The gene YCL018W, which was found to be duplicated in the originally published sequence, 

was also found to be duplicated using our approach (16). In addition to that, the genes YHR055C and 

YHR054C were also found to be duplicated. The complete set of updated annotations can be found in the 

supplementary table S1.  

Chemostat cultures and RNA extraction 

The S. cerevisiae strain CEN.PK113-7D (14) was pre-cultured in a batch culture in 100 ml of minimal 

medium with 2% glucose (See Table 1 for media composition and recipe) at 30°C and 200 rpm in 250 ml 

shake flasks for 24 hours. The pre-culture was then transferred to the chemostats in triplicates to an 

initial OD600 above 3. For each of the four conditions a single pre-culture was used. Four different media 

compositions with a limitation in a different nutrient were employed in the chemostat runs (See Table 1 

for media composition and recipe). The medium volume in the chemostat runs was 40 ml and the 

temperature was set to 30°C. One hour after the transfer the pumps where started with the dilution rate 

fixed to 0.1/h. Dissolved oxygen was kept above 30% of air saturation. For the anaerobic condition, the 

fermenter was flushed with nitrogen gas. The cells were grown for 4 days to achieve stable cell numbers 

in the culture. An amount of cells corresponding to a total OD600 of 10 were collected, pelleted and 

snap frozen in liquid nitrogen for both RNAseq analysis and the CAGE experiment. 

Cells were mechanically disrupted using a FastPrep®-24 from MPbio (Santa Ana, California, USA) in 

combination with the lysing matrix tubes type C from MPbio. The FastPrep was run 3 times for 20 

seconds with 4.0m/s settings and a 5 minute break in between each run. RNA was subsequently 

extracted using the RNeasy® Mini Kit from QIAGEN (Hilden, Germany). RNA quality was assessed using 

ThermoFischer NanoDrop (Waltham, Massachusetts, USA) and Agilent2100 Bioanalyzer (Santa Clara, 

California, USA) to ensure high quality RNA. 
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RNA sequencing 

All three biological replicates for each condition were sequenced using the NextSeq500 System from 

Illumina (San Diego, California, USA) at the Novo Nordisk Foundation Center for Biosustainability, 

Technical University of Denmark, with paired-end reads of 75 bp length. Library preparation was done 

using the Illumina TrueSeq stranded total RNA HT kit following the manufacturer’s instructions. Obtained 

reads were mapped to the CEN.PK113-7D genome using bowtie2 (19). Mapped reads were filtered using 

a quality threshold of 20 and converted to .bam files using samtools (20). FeatureCounts was used to 

obtain expression values for each gene (21), which were subsequently converted into TPM values.  

CAGE 

For the CAGE experiment the non-amplification non-tagging CAGE protocol for Illumina sequencing 

(nAnT-iCAGE) as previously published by Murata et. al. (13), was used on two biological replicates of 

each condition, starting with 5 micrograms of extracted total RNA. The 8 barcoded samples were pooled 

together and sequenced using the Illumina HiSeq 2500 at Genomics Core Facility (MRC, London Institute 

of Medical Sciences). Between 2.6 to 22.1 million reads per sample were obtained, with an average of 9 

million, showing a very high coverage of the yeast transcriptome. Sequencing reads were mapped to the 

CEN.PK113-7D genome using bowtie2 (19). Mapped reads were filtered using a quality threshold of 20 

and converted to .bam files using samtools (20). 29% of all reads mapped to a 7.2 kb region with 

ribosomal repeats on chromosome 12, which was excluded from further analysis, leaving an average 

mapped read count of 5.4 million reads per replicate. An overview of the sequencing read numbers is 

shown in Supplementary table S2. 

CAGE data were analyzed using the R/Bioconductor package CAGEr (22, 23). The .bam files were 

imported into R and the biological replicates were merged together. Default CAGEr correction of the first 

G nucleotide was used. The data were then normalized for library size using the “powerLaw” method 

(24) with a fit range from 5 to 10000 and an alpha value of 1.10. The CAGE tags were clustered together 

using the “clusterCTSS” function of CAGEr with the “distclu” setting, a maximum distance of 20 and a 

TPM threshold of 1. These clusters were then aggregated across the conditions to obtain a set of 

consensus clusters using the “aggregateTagClusters” function with a TPM threshold of 3 and a maximum 

distance of 100. For each consensus cluster the expression level in every condition was calculated as 

TPM and the dominant TSS position was calculated based on the normalized tag count per base. 

Additionally, the shape index of each cluster was calculated by the formula described by Hoskins et. al. 

(25): �� � 2 � ∑ �� 	 
��2 
����
� . A graphical example for this with two artificial promoters can be found 

in Supplementary Figure S3. 

�� � proportion of counts at position i in the cluster 

� � position with at least 1 tag 

 

Annotation of CAGE clusters to genes 

The obtained CAGE consensus clusters were assigned to the gene annotations using the following set of 

rules: The consensus cluster must be on the same strand as the gene annotation, the cluster is not more 

than 1 kb away from the start of the gene annotation and if the cluster is upstream of the gene 
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annotation, RNAseq reads must be present covering the region between the cluster and the gene 

annotation. 

Expression based clustering of genes 

For creating the four gene clusters based on the expression profiles we normalized the expression across 

the four conditions and a gene was assigned to one of the four clusters if it meets the following 

requirements: Cluster “Always”: The expression level in each condition must account for 23 to 27% of 

the total observed expression. Cluster “Glu+Eth”: At least 83.3% of the observed total expression must 

come from the two respiratory conditions (respiratory glucose metabolism using glucose limitation and 

gluconeogenic respiration using ethanol limitation). Cluster “Nit”: At least 75% of the observed total 

expression must come from aerobic fermentation using nitrogen limitation. Cluster “Ana”: At least 75% 

of the observed total expression must come from fermentative glucose metabolism using anaerobic 

conditions. 
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RESULTS AND DISCUSSION 

CAGE data are highly reproducible and reveal promoters and TSS for 88% of all annotated genes 

In order to gain insights into the promoter structure of the yeast strain CEN.PK113-7D and to obtain 

accurate positions of the transcription start sites (TSS) we performed a cap analysis gene expression 

(CAGE) experiment on yeast grown in four different chemostat conditions. The conditions were: 

respiratory glucose metabolism using glucose limitation (Glu), gluconeogenic respiration using ethanol 

limitation (Eth), aerobic fermentation using nitrogen limitation (Nit) and fermentative glucose 

metabolism using anaerobic conditions (Ana). 

Using the R/Bioconductor package CAGEr (22), for each of the four conditions we assembled the single 

position read tags into clusters and then merged overlapping clusters together to form a consensus 

cluster, combining information from all four conditions. This resulted in a total of 6565 consensus 

clusters which were then assigned to the gene annotations. For 5247 clusters a matching gene 

annotation could be found, of which 4975 genes were assigned a single cluster and 133 genes were 

assigned multiple clusters (ranging from 2 to 4 clusters per gene, a total of 272 clusters). This means that 

from a total of 5843 gene annotations in the genome, we could assign 5108 (88%) to at least one cluster. 

The complete set of results for each individual cluster can be found in supplementary table S4. A 

representative display of the CAGE data, in the Integrative Genomics Viewer (IGV) (26, 27), is shown in 

Figure 1A-D. The four genes were selected to showcase different distributions of CAGE reads for 

condition independent as well as condition specific genes. Figure 1A and 1B show genes that are 

expressed in all four conditions, while Figure 1C and 1D show genes that are only expressed in some of 

the conditions. In addition to that, Figure 1A and 1C show genes with a broad TSS distribution, while 

Figure 1B and 1D show genes with a peaked TSS distribution, showing that a broad or peaked TSS 

distribution is not unique for condition independent or specific genes. 

To assess the quality of our obtained CAGE data, we first analyzed the location of the sequencing reads 

in relation to the annotated genes (Figure 1E) and found that the majority of all reads (77% to 82%) map 

to the promoter region of annotated genes, which was defined as the 500 bp region upstream of the 

start of the coding sequence. As the TSS of a gene is expected to be upstream of the coding sequence, 

this also indicates that we obtained high quality CAGE data.  

179 clusters were annotated as possible antisense transcription events to a total of 169 genes, as they 

were located at the 3’ end of the gene on the opposite strand. It has been shown before that wide-

spread anti-sense transcription occurs in yeast (28). Yassour et al. reported how much of every gene was 

covered by anti-sense transcription, and in their study 1523 genes had at least 10% of their sequence 

covered by anti-sense reads. Comparing these 1523 genes with our list of 169 genes with possible anti-

sense initiation we find a high degree of overlap of 75% (122 out of 163 genes that are in both lists). As 

this finding is in line with the already known wide-spread anti-sense transcription, we focused on the 

sense transcription events. From the total of 6565 consensus CAGE clusters, 1115 clusters could not be 

assigned to any gene. 

To further check the quality of the obtained CAGE data, the individual samples were clustered together 

using hierarchical clustering based on their genome-wide expression profile at each base pair. For each 

condition the replicates cluster together (Figure 2A), showing the high reproducibility of the data. This 

clustering also shows that the two respiratory conditions (respiratory glucose metabolism using glucose 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/393447doi: bioRxiv preprint 

https://doi.org/10.1101/393447
http://creativecommons.org/licenses/by/4.0/


limitation, gluconeogenic respiration using ethanol limitation) are more similar to each other than to the 

two fermentative conditions, as one would expect. In addition, the correlations between the biological 

replicates were calculated and with a minimum Pearson correlation coefficient of 0.9 the replicates are 

in high agreement with each other (Figure 2A).  

Subsequently the expression values per gene promoter region obtained from CAGE was compared with 

gene expression values obtained from a control RNAseq experiment in the same chemostat conditions 

(Figure 2B-D). Comparing genes with a single annotated cluster shows a high correlation of the two 

expression values, with a Pearson correlation coefficient of 0.82 (Figure 2B). In order to obtain a 

conversion formula between RNAseq and CAGE values, a linear regression was fitted to the data (Figure 

2B, dotted line). This enabled us to then compare the expression values of genes with multiple 

annotated clusters in two different ways: considering only the strongest cluster of each gene (Figure 2C) 

or summing up the expression values from all CAGE clusters per gene (Figure 2D). As expected, taking all 

clusters into consideration leads to a better fit to the previously established conversion formula. 

However, the correlation between the CAGE and RNAseq expression values for genes with multiple 

clusters is lower than for single cluster genes. One reason could be that for genes with multiple clusters 

the calculation of RNAseq TPM values is not correct, because it assumes a uniform gene length, while in 

reality there are two or more differently sized transcripts present in the cells. 

The yeast TSS landscape shows stability across metabolic conditions in a variety of characteristics 

One possible analysis of CAGE clusters is to look at the cluster width or to look at the interquantile 

cluster width for the quantiles 0.1 to 0.9, as established by Haberle et. al. (22). The interquantile cluster 

width is more robust to noise and therefore this approach was chosen for subsequent analysis. For each 

gene, an average cluster width across the four conditions was calculated. The distribution of the average 

widths (Figure 3A) shows a unimodal distribution with an average width of 31 bp. The interquantile 

cluster width is also stable across the four conditions, as shown in a pairwise comparison between 

conditions, with a minimum Pearson correlation coefficient of 0.84 (Figure 3B). 

It has been shown that the cluster width is not always sufficient to classify clusters as either peaked or 

broad. Clusters that are very wide but where the dominant positions contribute the majority of reads 

exist, as well as narrow clusters with multiple near equally strong positions. To overcome this issue, 

Hoskins et. al. established the shape index as a more informative tool for this classification (25). The 

formula used to calculate the shape index can be found in the method section and an example 

classification of two artificial clusters is shown in the supplementary Figure S3. In short, a gene showing a 

peaked TSS distribution will obtain a shape index higher than -1, while a gene showing a broad TSS 

distribution will obtain a value lower than or equal to -1. We classified the peaks detected by our analysis 

by the average shape index across the conditions and we find that the majority of clusters are classified 

as peaked, i.e. have a shape index higher than -1 (Figure 3C). The shape index is also very stable between 

the conditions, with a minimal pairwise Pearson correlation coefficient of 0.96 (Figure 3D).  

Calculating the 5’ UTR length (Figure 3E) showed that most clusters are quite close to the start of the 

coding sequence, with 70% of them being less than 75 bp away, which is in line with previously published 

average 5’ UTR lengths in yeast (11). This 5’ UTR length is again very stable across the different 

conditions with a minimal Pearson correlation coefficient of 0.99 between two individual conditions 

(Figure 3F). We further compared the published TSS dataset from Parky et. al. (11), obtained using the 

yeast strain BY4741 in YPD, with our TSS annotations for CEN.PK113-7D. For the 4872 genes that are 
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present in both data sets we calculated the 5’ UTR lengths (using sacCer3 annotations for Parky’s dataset 

and our CEN.PK113-7D annotations for our dataset) and compared them. The 5’ UTR lengths are in high 

agreement with each other, with an average difference of less than 9 bp. Both datasets have around 250 

TSS annotations for genes not found in the other dataset, these differences are most likely due to 

different expression profiles caused by different media and growth conditions (YPD in shake flasks vs 

synthetic minimal media in chemostats) or strain differences (BY4741 vs CEN.PK113-7D). The high 

agreement between the two datasets highlights the quality of our TSS annotations for the industrially 

relevant strain CEN.PK113-7D. 

Gene clustering by condition specific expression shows no distinct promoter characteristics 

To further test the stability of the yeast transcriptional landscape in different conditions we clustered 

genes together based on their expression levels in different conditions. For this we normalized the genes 

expression levels across the conditions and created the following four gene clusters: 1: Genes that are 

expressed under all four conditions (labeled as “always”); 2: Genes that are mostly active in the two 

respiratory conditions (respiratory glucose metabolism using glucose limitation and gluconeogenic 

respiration using ethanol limitation, labeled “Glu+Eth”); 3: Genes that are mainly active in aerobic 

fermentation using nitrogen limitation (labeled “Nit”) and 4: Genes that are mainly active in 

fermentative glucose metabolism using anaerobic conditions (labeled “Ana”). For each of these four 

groups we analyzed the expression levels (Figure 4A), the interquantile widths (Figure 4B), the shape 

indices (Figure 4C) and the 5’ UTR length (Figure 4D). The overall picture shows that there are no 

remarked differences in these characteristics between the four groups. The average gene expression 

levels are quite similar, with the genes expressed in all four conditions showing a slightly narrower 

distribution than the condition specific genes, a trend that can also be seen in the distribution of shape 

indices. These differences however are not very strong. 

Cluster shape shows a high correlation to promoter expression levels 

In higher organisms like Drosophila melanogaster, there is a remarkable relation between the shape 

index of a TSS cluster and the gene expression level during different developmental phases (25). Genes 

with a broad TSS cluster show a stable expression level throughout embryonic development, while genes 

with a peaked cluster show a transcription pattern that varies in time and space (25). To see if this 

relationship between shape index and gene expression variability also holds for yeast, we averaged the 

shape index of each cluster across the four conditions and then selected the 100 genes with the lowest 

shape index, i.e. the genes with the broadest clusters, and the 100 genes with the highest shape index, 

i.e. the genes with the most peaked clusters. For these selected genes we then compared the expression 

values in each individual condition (Figure 5A-B). No significant differences in expression levels were 

observed when comparing the four different conditions. However, there was a marked difference in the 

overall expression levels between genes with a broad cluster and genes with a peaked cluster 

(comparing overall TPM levels in Figure 5A with 5B). Following this observation, the correlation between 

the mean shape index across the conditions and the mean expression levels was analyzed, as shown in 

Figure 5C. A striking anticorrelation with a Pearson correlation coefficient of -0.45 was observed, 

indicating that peaked clusters (clusters with a high shape index) in yeast are associated with lower 

expression levels. To check if that strong correlation was unique to the shape index, we also calculated 

the correlation between the mean interquantile promoter width with gene expression levels (Figure 5D) 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/393447doi: bioRxiv preprint 

https://doi.org/10.1101/393447
http://creativecommons.org/licenses/by/4.0/


and we observe no correlation. This indicates that the strong correlation observed between the shape 

index and gene expression levels is a unique feature of the shape index. 

 

Data availability and usage 

To enable the easy usage of our data, we created custom data tracks and sessions for the Integrated 

Genomics Viewer (IGV, (26, 27)), which can be found in the supplementary data. After downloading the 

IGV from http://software.broadinstitute.org/software/igv/home, first the CEN.PK113-7D genome file 

(“CEN.PK113-7D.genome” part of the zipped supplementary file S5) has to be loaded via “Genomes” -> 

“Load Genome from File…” menu in IGV. After that, it is possible to load the session file for either the 

raw CAGE reads (“IGV_session_RawData.xml”, part of the zipped supplementary file S6) or the 

normalized CAGE reads (“IGV_session_NormData.xml”, part of the zipped supplementary file S7) using 

the “File” -> “Open Session…” menu. 

After loading the session, a screen similar to the one shown in Figure 1A-D will be visible. For each 

condition there are two tracks, one for reads on the plus strand and one for reads on the minus strand of 

the genome (labeled “_plus” and “_minus” respectively). In addition there are three different annotation 

tracks. The first one, labeled “ClusterAnnotations.bed”, will show each cluster with the full width, while 

the second one, labeled “ClusterAnnotationsDomTSS.bed”, will only show the position of the strongest 

TSS in each cluster. Both of these tracks include information about the cluster ID, and to which gene the 

cluster is annotated to (if any). For each gene, the strongest cluster is labeled as “(DomCluster)”. A third 

annotation track called “Gene” displays the blast based gene annotations for the CEN.PK113-7D genome. 

 

Conclusion 

In this study, we present a high quality CAGE dataset in four distinct chemostat conditions, to accurately 

annotate the TSS of each gene. This resource will be valuable to the community as accurate TSS 

annotations, based on the dominant TSS position, are valuable for promoter engineering and 

implementation of CRISPRi approaches. 

Analysis of the yeast promoterome in the different conditions shows a remarkable level of stability in 

terms of promoter characteristics like promoter width and shape index. This is in contrast to higher 

organisms where strong changes can occur, especially during embryonal development stages (29), and 

suggests that the basic regulatory events governing gene expression in yeast are quite distinct from 

other eukaryal cells. 

 

ACCESSION NUMBERS 

The complete CAGE sequencing data and results can be found under the ArrayExpress accession code E-

MTAB-6650 after publication. 

The complete RNA sequencing data and results can be found under the ArrayExpress accession code E-

MTAB-6722 after publication 
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SUPPLEMENTARY DATA 

Supplementary Data will be available online after publication. 
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TABLES AND FIGURES 

 

Table 1 

Synthetic media composition for the four different chemostat conditions and the batch preculture. The 

amounts indicated are for one liter of media. 

 Batch Pre-

Culture 

Ethanol 

limited 

Glucose limited Nitrogen 

limited 

Anaerobic 

glucose limited 

KH2PO4 14.4 g 14.4 g 14.4 g 14.4 g 14.4 g 

MgSO4 0.5 g 0.5 g 0.5 g 0.5 g 0.5 g 

(NH4)2SO4 7.5 g 5 g 5 g 1 g 5 g 

K2SO4 - - - 5.3 g - 

Glucose 40% 50 ml - 18.75 ml 150 ml 25 ml 

Ethanol 96% - 6.7 ml - - - 

Trace metals stock 

solution 

1 ml 1 ml 1 ml 1 ml 1 ml 

Vitamin stock 

solution 

1 ml 1 ml 1 ml 1 ml 1 ml 

Ergosterol in 

Tween 80 (2.6 g/L) 

- - - - 4 ml 

Antifoam 204 - 7 drops 7 drops 7 drops 9 drops 

Trace metal stock solution components (per liter of stock solution): 15.0 g EDTA-Na2, 4.5 g CaCl2·2H2O, 4.5 g 

ZnSO4·7H2O, 3 g FeSO4·7H2O, 1g H3BO3, 0.84 g MnCl2·2H2O, 0.4 g Na2MoO4·2H2O, 0.3 g CuSO4·5H2O, 0.3 g 

CoCl2·6H2O and 0.1 g KI. Vitamin stock solution components (per liter of stock solution): 25 g myo-inositol, 1 g 

nicotinic acid, 1 g calcium pantothenate, 1 g pyridoxine HCl, 1 g thiamine HCl, 0.2 g 4-aminobenzoic acid and 0.05 g 

biotin. The pH of the media was adjusted to 6.0-6.5 using KOH pellets, resulting in a final pH around 5.5 in all four 

chemostat cultures. 

 

Figure 1 

Overview of the obtained CAGE data. A Screenshot from IGV showing the broad CAGE read distribution 

for the constitutively expressed gene YGL106W (MLC1). B Screenshot from IGV showing the peaked 

CAGE read distribution for the constitutively expressed gene YOR204W (DED1). C Screenshot from IGV 

showing the broad CAGE read distribution for a gene mainly expressed in the respiratory conditions 

YOR374W (ALD4). D Screenshot from IGV showing the peaked CAGE read distribution for a gene 

exclusively expressed in aerobic fermentation YIR028W (DAL4). E Intersection of mapped CAGE reads 

with gene annotations, the promoter region was defined as the 500bp upstream of the start of the 

coding region and which was therefore not considered to be part of the intergenic region. (Eth = 

gluconeogenic respiration using ethanol limitation, Glu = respiratory glucose metabolism using glucose 

limitation, Nit = aerobic fermentation using nitrogen limitation, Ana = fermentative glucose metabolism 

using anaerobic conditions). 
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Figure 2 

Quality control of CAGE expression levels by comparison with RNAseq expression levels A Hierarchical 

clustering of the individual CAGE sequencing experiments based on normalized TSS tag values. The 

number at the last branch points denotes the Pearson correlation between the replicates B Comparison 

between average expression values across the conditions obtained through RNAseq and CAGE, both in 

log2 TPM values. Only genes with a single CAGE cluster were compared, showing a high correlation with 

a Pearson correlation coefficient of 0.82. Red lines show the linear regression fitted to this data, with a 

mean squared error (MSE) of 0.93. C Comparison of RNAseq and CAGE expression data for genes with 

more than one CAGE cluster, where only the strongest CAGE cluster was used for calculating the TPM 

value, resulting in an MSE of 1.1 and a PCC of 0.76. D Comparison of RNAseq and CAGE expression data 

for genes with more than one CAGE cluster. All CAGE clusters where added up to calculate the TPM 

value, resulting in an MSE of 0.81 and a PCC of 0.76. 

 

Figure 3 

Overview of TSS cluster characteristics and their stability across conditions. A Histogram showing 

distribution of mean interquantile cluster width across all conditions. B Comparison of the promoter 

width in different conditions. Middle axis showing the distribution in each condition and the lower half 

displaying the pairwise comparison of each condition together with the Pearson correlation coefficient. C 

Histogram showing the distribution of distances between the global TSS across conditions and the 

assigned genes. D Comparison of the distance between the condition specific TSS and the assigned gene 

in different conditions. Middle axis showing the distribution in each condition and the lower half 

displaying the pairwise comparison. E Histogram showing the mean shape index of each cluster. The 

dashed line at -1 denotes the border which separates clusters classified as peaked (shape index >-1) and 

clusters classified as broad (shape index <= -1). F Comparison of the shape index in different conditions. 

Middle axis showing the distribution in each condition and the lower half displaying the pairwise 

comparison. 

 

Figure 4 

Comparison of condition based gene clusters (Always = Genes that are expressed in all four conditions, 

Eth+Glu = Genes active in both respiratory conditions, Nit = Genes active under aerobic fermentation, 

Ana = Genes active in fermentative glucose metabolism). The number under the gene cluster denotes 

the number of genes in that cluster. A Violin plot showing distribution of gene expression levels for each 

gene cluster. B Violin plot showing distribution of the interquantile promoter width for each gene 

cluster. C Violin plot showing distribution of the shape index for each gene cluster. D Violin plot showing 

distribution of the 5’ UTR lengths. 

 

Figure 5 

Detailed analysis of the Shape Index. A The 100 genes with the broadest clusters across all conditions 

were selected and their expression values in each condition are shown. B The 100 genes with the most 
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peaked clusters across all conditions were selected and their expression values in each condition are 

shown. C Correlation of the mean shape index and the mean CAGE expression levels showing an 

anticorrelation with a Pearson correlation coefficient of -0.45. D Correlation of the mean promoter width 

with mean CAGE expression levels showing no correlation. 
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