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Abstract

Darwinian evolution consists of the gradual transformation of heritable quantitative traits due to natural se-

lection and the input of random variation by mutation. Here, we use a quantitative genetics approach to

investigate the coevolution of multiple traits under selection, mutation, and limited dispersal. We track the

dynamics of trait means and variance-covariances between traits that experience frequency-dependent se-

lection. Assuming a multivariate-normal trait distribution, we recover classical dynamics of quantitative ge-

netics, as well as stability and evolutionary branching conditions of invasion analyses, except that due to

limited dispersal, selection depends on indirect fitness effects and relatedness. In particular, correlational se-

lection that associates different traits within-individuals depends on the fitness effects of such associations

between-individuals. These kin selection effects can be as relevant as pleiotropy for correlation between traits.

We illustrate this with an example of the coevolution of two social traits whose association within-individual

is costly but synergistically beneficial between-individuals. As dispersal becomes limited and relatedness in-

creases, associations between-traits between-individuals become increasingly targeted by correlational selec-

tion. Consequently, the trait distribution goes from being bimodal with a negative correlation under panmixia

to unimodal with a positive correlation under limited dispersal. More broadly, our approach can help under-

stand the evolution of intra-specific variation.

Keywords. Island model, G-matrix evolution, evolutionary branching, division of labour, social evolution

1 Introduction

Understanding how heritable quantitative traits are moulded by the processes of natural selection and mu-

tation has been a longstanding goal of evolutionary biology. This research program has led to an abundant

theoretical literature that seeks to understand the roles of ecology and genetics in the gradual transformation

of phenotypes. Notwithstanding this abundance, models of gradual evolution usually follow one of two ap-

proaches, depending on whether the focus is put on ecological or genetic processes.

One approach consists in investigating the invasion success of a rare phenotypic mutant (i.e., an evolutionary

invasion analysis, e.g. Michod, 1979, Eshel and Feldman, 1984, Parker and Smith, 1990, Eshel et al., 1997; also

referred to as “Adaptive Dynamics”, e.g., Dercole and Rinaldi, 2008, for a textbook treatment) and places empha-

sis on ecology (or on how organisms interact with one another via effects on resources and the environment).

In most practical applications, this emphasis comes at the expense of genetics realism. In particular, trait dy-

namics inferred from invasion analyses most often assume that mutations have weak quantitative effects and
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are so rare (relative to the strength of selection) that at most two alleles can segregate in the population. In this

case, a sensitivity analysis of the invasion fitness of a rare mutant in a resident monomorphic population that is

at its ecological equilibrium (e.g., Michod, 1979, Eshel and Motro, 1981, Eshel and Feldman, 1984, Taylor, 1989,

Parker and Smith, 1990, Charlesworth, 1994) can be used to understand gradual trait evolution and the eco-

logical transformations due to this evolution (Metz et al., 1996, Geritz et al., 1998, Rousset, 2004, Dercole and

Rinaldi, 2008, Metz, 2011). The approach of invasion analysis is therefore particularly well-suited to investigate

the evolution of traits under ecological feedbacks and the frequency-dependent selection that emerges due to

such feedbacks (e.g., Kisdi and Geritz, 2009, Lion, 2018, and references therein). This approach has revealed

that in the presence of trade-offs, gradual evolution under ecological feedbacks often leads to the emergence

of polymorphism. Here, the population evolves under directional selection to express a trait value such that

any rare mutant has an advantage over the common resident (Eshel and Motro, 1981, Eshel, 1983, Taylor, 1989,

Christiansen, 1991, Abrams et al., 1993b). As a result, the population subsequently splits into two lineages

of distinct phenotypes, or morphs, in a process referred to as evolutionary branching (Geritz et al., 1998; see

Rueffler et al., 2006, Kisdi and Geritz, 2009, for reviews).

By contrast to invasion analysis, evolutionary quantitative genetics models of gradual evolution tend to be

more preoccupied with the genetic basis of traits (Roff, 1997, Lynch and Walsh, 1998). Importantly, quantita-

tive genetics models envisage that there is substantial heritable phenotypic variation in the population. The

continuum-of-alleles model, in particular, posits that quantitative traits are determined by a continuum of

possible alleles produced by mutation (e.g., Kimura, 1965b, Latter, 1970, Fleming, 1979, Bürger, 1986). A quan-

titative genetics approach aims to investigate the roles of selection and mutation in the gradual evolution of

a phenotypic distribution of arbitrary complexity. Due to the complication of dealing with multiple variants,

however, analytical explorations of quantitative genetics models usually come at the expense of generality. No-

tably, the vast majority of quantitative genetics models of traits under frequency-dependent selection, which is

either implicit or emerges from ecological interactions, focuses on the evolution of mean phenotypic values in

the population, assuming that heritable phenotypic variation is constant (i.e., additive genetic variances and

covariances are fixed, e.g., Lande, 1976, 1981, Iwasa et al., 1991, Gomulkiewicz and Kirkpatrick, 1992, Abrams

et al., 1993a, Iwasa and Pomiankowski, 1995, Day and Taylor, 1996, Tazzyman and Iwasa, 2009, Nuismer et al.,

2010, Connallon, 2015).

But phenotypic variance should be especially sensitive to frequency-dependent selection (because such se-

lection regime either favours or disfavours rare variants that differ from the most common, it increases or

decreases trait variance, respectively; Slatkin, 1980, Taper and Chase, 1985, Taylor and Day, 1997, Day and

Proulx, 2004, Sasaki and Dieckmann, 2011, Wakano and Iwasa, 2013, Wakano and Lehmann, 2014, Débarre

et al., 2014, Débarre and Otto, 2016). In fact, recent quantitative genetics models investigating populations of

individuals experiencing frequency-dependent interactions have revealed links between the dynamics of phe-

notypic variance and evolutionary branching (Sasaki and Dieckmann, 2011, Wakano and Iwasa, 2013, Wakano

and Lehmann, 2014, Débarre et al., 2014, Débarre and Otto, 2016; thereby extending the links between the

dynamics of the phenotypic mean in quantitative genetics models and directional selection in invasion anal-

ysis models, Charlesworth, 1990, Iwasa et al., 1991, Taper and Case, 1992, Abrams et al., 1993a; for reviews:

Abrams, 2001, Lion, 2018). In particular, evolutionary branching occurs in a quantitative genetics model when

the phenotypic variance is predicted to grow without bound while the phenotypic mean is held constant, un-

der the assumption that the phenotypic distribution is normal (this assumption allows to only have to consider

the dynamics of the mean and variance of the phenotypic distribution, Wakano and Iwasa, 2013, Wakano and

Lehmann, 2014, Débarre et al., 2014, Débarre and Otto, 2016). As evolutionary branching occurs, the variance

may in fact converge to a bounded value (see Fig. 2e-f of Débarre and Otto, 2016), but these dynamics cannot

be captured by models that assume that the phenotypic distribution is normal and thus unimodal (instead of

a bi- or multi-modal distribution; see Sasaki and Dieckmann, 2011 and Appendix D of Débarre and Otto, 2016

for a relaxation of the unimodal assumption). In spite of this limitation, quantitative genetics approaches have

been useful to investigate relevant factors for frequency-dependent selection and evolutionary branching, such

as genetic drift (with fixed, Wakano and Iwasa, 2013, or fluctuating, Débarre and Otto, 2016, population size)
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or the interaction between multiple traits (Débarre et al., 2014).

One factor that is particularly relevant for frequency-dependent interactions is limited dispersal. This is be-

cause limited dispersal creates genetic structure, whereby individuals that interact and compete with one an-

other are more likely to share identical alleles than individuals randomly sampled from the population (Hamil-

ton, 1964, Frank, 1998, Rousset, 2004). Using an invasion analysis, a number of models have investigated the

conditions that lead to disruptive selection (usually followed by evolutionary branching) due to frequency-

dependent interactions among individuals under limited dispersal (Day, 2001, Ajar, 2003, Rousset, 2004, Mul-

lon et al., 2016, Parvinen et al., 2018; see also Svardal et al., 2015 for evolutionary branching due to spatial and

temporal heterogeneities in selection). Using a quantitative genetics approach, Wakano and Lehmann (2014)

(WL14 hereafter) found branching conditions equivalent to those obtained from invasion analysis by study-

ing the dynamics of the variance of a trait under limited dispersal. The analysis of frequency-dependent and

disruptive selection under limited dispersal has helped reveal further connections between invasion analysis

and fundamental branches of evolutionary theory. In particular, Ajar (2003), WL14 and Mullon et al. (2016)

expressed disruptive selection coefficients in terms of relatedness coefficients, which are quantities central to

population genetics, kin selection and social evolution theory (i.e., the evolution of traits that influence the fit-

ness of their actor and recipient, such as helping or harming, e.g., Hamilton, 1964, Frank, 1998, Rousset, 2004,

Wenseleers, 2010; see also Kisdi, 2016 for a kin selection perspective on evolutionary branching of dispersal).

In this paper, we incorporate two further relevant factors that have previously been omitted in the gradual evo-

lution of quantitative traits when selection is frequency-dependent and dispersal is limited. First, we consider

the joint evolution of multiple traits (whereas WL14 focuses on a single trait). This enables us to investigate

how phenotypic covariances among traits within individuals are moulded by frequency-dependent selection

and pleiotropic mutations (i.e., when traits share a common genetic basis so that mutations have correlated

effects across traits). Second, we model the coupled dynamics of the phenotypic means and (co)variances

(whereas WL14 looks at the dynamics of the variance only once selection on means is negligible). This allows

for a more complete picture of the dynamics of the phenotypic distribution. By expressing these dynamics in

terms of relatedness coefficients, we further connect kin selection theory with the evolutionary quantitative

genetics of multiple traits (Lande, 1979, Lande and Arnold, 1983, Phillips and Arnold, 1989, Brodie et al., 1995;

in particular with the evolution of the G-matrix of additive genetic variance-covariance, Steppan et al., 2002,

Arnold et al., 2008)

The rest of this paper is organised as follows. We describe the life-cycle and population structure under consid-

eration in section 2. Our first result, presented in section 3.1, is an equation for the one-generational change of a

multi-variate phenotypic distribution under limited dispersal, mutation, and selection. Next, in section 3.2, we

present a closed dynamical system for the mean vector and variance-covariance matrix of the phenotypic dis-

tribution, under the assumption that the distribution in the whole population is normal. Further, we express

this dynamical system in terms of effects on individual fitness and relatedness in section 3.3, and highlight

some equilibrium properties of our dynamical system in section 3.4. In section 3.5, we apply our framework to

study the coevolution of two traits that have socially synergistic effects between individuals. Finally, we discuss

the implications of our results for understanding patterns of intra-specific variation, with special reference to

social traits.

2 Model

We consider a population of haploid individuals, divided among an infinite number of groups, each of fixed

size N (the total population size is therefore constant). Each individual bears a multidimensional phenotype

of n quantitative traits that are genetically determined. The discrete-time life cycle of this population is as

follows. (1) Adults reproduce clonally (producing offspring in sufficient number for the size of each group in

the population to remain constant) then either survive or die, which frees up breeding spots. (2) The phenotype
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of each individual independently mutates with probability ν, causing a random quantitative deviation in trait

values. (3) Each offspring either remains in its natal group, or disperses to another randomly chosen group (i.e.,

we consider the island model of dispersal, Wright, 1931, Rousset, 2004). (4) Offspring compete locally in each

group to fill open breeding spots, if any.

3 Results

3.1 Dynamics of the phenotypic distribution

In order to track phenotypic evolution in our population, we denote by pt(z) the phenotypic density distribu-

tion in the population at a demographic time point t , where z = (z1, z2, . . . , zn) ∈ Rn is a vector collecting the

variable za for each trait a = 1, . . . ,n. To capture the group structure of our population, we introduce the con-

tinuous distributionφt , which gives the density distribution of groups in the population with a certain compo-

sition of phenotypes at time t (i.e., φt(z1,z2, . . . ,zN) is the density distribution of groups in which individuals

arbitrarily labelled 1 to N have phenotypes z1,z2, . . . ,zN , respectively).

In Appendix A, we show that the recurrence of the phenotypic distribution in the population from time t to t+1

(after one iteration of the life cycle) can be expressed as

pt+1(z) = (1−ν)W(z,φt)pt(z)+ν∫
Rn

v(z′,z)W(z′,φt)pt(z′)dz′. (1)

The first summand represents changes in the distribution due to individuals that have not mutated (with prob-

ability 1−ν), and the second summand, changes due to those that have (with probability ν; and where v(z′,z)
denotes the probability density function for the event that an individual mutates from z′ to z given that a mu-

tation has occurred). The quantity W(z,φt) in eq. (1), which depends on the way phenotypes are distributed

across groups (i.e., onφt ), is a measure of fitness at the level of the phenotype: when W(z,φt) > 1, the frequency

of z in the population increases due to selection, and conversely decreases when W(z,φt) < 1.

To gain insights into the fitness measure W(z,φt), note first that recurrence eq. (1) has the same form as the

classical recurrence of the phenotypic distribution in well-mixed populations under the continuum-of-alleles

model (e.g., Kimura, 1965b, eqs. 1-2; Fleming, 1979, eq. 2.4; Bürger, 1986, eq. 1; Taylor and Day, 1997, eq. 1;

Champagnat et al., 2006, eq. 4.1). In a well-mixed population of constant size, the relevant fitness measure is

the individual fitness of a focal individual with phenotype z, i.e., its expected number of successful offspring

over one iteration of the life-cycle. Because individual fitness in a well-mixed population only depends on the

focal phenotype z and the phenotypic distribution pt(z), it can simply be written as w(z, pt(z)) (to distinguish

between fitness at the phenotypic and individual level, we will denote the former by an upper case W and

the latter by a lower case w). So in a well-mixed population of constant size, fitness at the phenotypic and

individual levels align (i.e., W(z,φt) = w(z, pt(z)) in eq. 1).

Defining fitness in terms of expected number of successful offspring is standard in social evolution theory

(e.g., Hamilton, 1964, Rousset, 2004), and takes its roots in population dynamics: when w(z, pt(z)) > 1,

the number of individuals with phenotype z increases and conversely decreases when w(z, pt(z)) < 1 (e.g.,

eq. 2.2 of Nagylaki 1992). As such, it is sometimes referred to as “absolute” fitness. Many quantitative ge-

netics models, by contrast, employ the notion of “relative” fitness to track changes in phenotypic frequen-

cies. This can stem from two non-mutually exclusive modelling choices: (1) one in fact considers the effect

of the phenotype on a vital rate, f (z, pt(z)) (such as fecundity or offspring survival), that influences the num-

ber of offspring that enter competition before regulation, which requires normalisation by mean vital rate,

W(z,φt) = w(z, pt(z)) = f (z, pt(z))/[∫ f (z, pt(z))pt(z)dz]; (2) the population size fluctuates, in which case

it is necessary to normalise by mean fitness, W(z,φt) = w(z, pt(z))/[∫ w(z, pt(z))pt(z)dz]. In our model, be-
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cause group size and therefore population size is constant, W(z,φt) in eq. (1) can be viewed as an absolute

measure of fitness.

In contrast to a well-mixed population, fitness at the level of the phenotype (or genotype) W and the fitness of

a focal individual w do not necessarily align in a group-structured population, (Hamilton, 1964). To see this,

consider that due to group structure, the fitness of a focal individual will further depend on the way phenotypes

are distributed across groups (so on φt ), and specifically on the collection of phenotypes carried by the indi-

viduals that belong to the focal group; we denote this collection by µ (formally, µ is a counting measure in our

analysis – see Appendix A.1.2 – but for the purpose of the main text, it can simply be thought of as the pheno-

typic composition of the focal group). The fitness of a focal individual with phenotype z in a group-structured

population can thus be written as a function: wµ(z,φt). In terms of this individual fitness function, we find

that the fitness at the level of the phenotype that is relevant for phenotypic dynamics, W(z,φt) in eq. (1), is

W(z,φt) = ∫ wµ(z,φt)qt(µ∣z)dµ, (2)

where the integral runs through every possible group state, µ, and qt(µ∣z) is the probability density function

for the event that an individual randomly picked from the collection of all carriers of the z phenotype in the

population at time t resides in a group in state µ (see eq. A-17 in Appendix A for derivation). According to

eq. (2), W(z,φt) corresponds to the expected number of successful offspring of an individual with phenotype

z, with expectation taken over all group states µ in which this individual can reside at time t .

An alternative interpretation for W(z,φt) can be reached by noting that because there is an infinite number

of possible alleles, all individuals with the same phenotype z belong to the same genetic lineage. The function

qt(µ∣z) in eq. (2) then corresponds to the probability that an individual sampled from this lineage at time t

resides in a group in state µ. As such, W(z,φt) can be interpreted as the expected fitness of an individual

randomly sampled from the lineage of individuals carrying phenotype z at time t . Eq. (1) then has an intuitive

interpretation: if on average individuals from the z-lineage produce more than one successful offspring at time

t , this lineage will be larger at time t + 1 and in a population of constant size, the frequency of individuals

with phenotype z will increase. The fitness measure W(z,φt) can thus be seen as the multi-allelic version of

the concept of a mutant’s lineage fitness used previously in invasion analyses (which turns out to be equal to

the mutant’s growth rate when the mutant is rare in an otherwise monomorphic population, Lehmann et al.,

2015, Mullon et al., 2016, Lehmann et al., 2016; see also Wild, 2011 for similar branching processes approach

to social evolution in group-structured populations). We will therefore refer to W(z,φt) as the lineage fitness

of phenotype z, keeping in mind that unlike in invasion analyses, W(z,φt) here applies for any frequency of z

(rare or common) and for any population composition (monomorphic or polymorphic).

3.2 Tracking the dynamics of the phenotypic distribution

The dynamical equation for the phenotypic distribution eq. (1) has no straightforward solution, even when

the population is well-mixed (Kimura, 1965b, Fleming, 1979, Lande, 1979, Bürger, 1986). Under limited dis-

persal, this problem is further complicated by the necessity of simultaneously tracking the dynamics of group

composition φt . To proceed further in our analysis and track the dynamics of the phenotypic distribution, we

therefore make some additional assumptions.

3.2.1 Weak selection, weak mutation, normal closure and quasi-equilibrium of local genetic associations

We first assume that selection is weak, in the sense that the phenotypic variance in the population is small

(allowing for second-order approximation of fitness, see Appendix B.1.1 for details, and Iwasa et al., 1991 for

a similar approach for quantitative genetics of traits under frequency-dependent selection in well-mixed pop-
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ulations). Next, we assume that mutations are rare, so that we can ignore the joint effects of selection and

mutation on the phenotypic distribution over one time period (see Appendix B.1.2).

Following previous authors (e.g., see Taylor and Day, 1997, Wakano and Iwasa, 2013, Débarre et al., 2014,

Wakano and Lehmann, 2014, Débarre and Otto, 2016, for social traits), we further assume that the processes

of selection and mutation are such that pt(z) is approximately multivariate normal (allowing for moment clo-

sure, see Appendix B.2.1). The assumption of normality is a strong one but it is noteworthy that it does not

require that the realised distribution of phenotypes within a focal group at any given demographic time period

is normal. In addition, the assumption of normality has been shown to give remarkably accurate predictions

for the change of mean and variance, which is our main goal, even when selection generates significant de-

viations from normality (in well-mixed populations, Turelli and Barton, 1994). Under the assumption of nor-

mality, the distribution pt(z) is characterised by its mean vector z̄t = (z̄1,t , z̄2,t , . . . , z̄n,t), whose a-entry is the

average value of trait a in the population at time period t , z̄a,t = ∫Rn za pt(z)dz; and its variance-covariance

matrix Gt whose (a,b)-entry is the (co)variance among traits a and b in the population at time period t ,

σab,t = ∫Rn(za − z̄a,t)(zb − z̄b,t)pt(z)dz. The dynamics of pt(z) can therefore be tracked through the dynamics

of its mean vector z̄t and variance-covariance matrix Gt .

But due to limited dispersal, the dynamics of z̄t and Gt still depend on time-dependent local genetic associ-

ations among individuals of the same group, which capture moments of the distribution of group composi-

tion φt . To close evolutionary dynamics on z̄t and Gt and avoid tracking the dynamics of φt , we assume that

selection is weak relative to dispersal so that local genetic associations reach their steady state before signifi-

cant changes have occurred in the phenotypic distribution, pt(z) (see section B.2.2 for details). This “quasi-

equilibrium” assumption, which is frequently used in population genetic theory (e.g., Kimura, 1965a, Nagylaki,

1993, Kirkpatrick et al., 2002, Roze and Rousset, 2005, Lehmann et al., 2007, Roze and Rousset, 2008), finally

allows us to characterise the dynamics of pt(z) entirely by the coupled dynamics of its mean vector z̄t and

variance-covariance matrix Gt .

3.2.2 Dynamics of phenotypic mean vector and variance-covariance matrix

Under the above assumptions, we show in Appendix B that the coupled changes of the phenotypic mean trait

vector and variance-covariance matrix over one demographic time period are respectively given by

∆z̄t =Gt s(z̄t) (3a)

∆Gt = M +Gt (H(z̄t)− s(z̄t)s(z̄t)T)Gt , (3b)

where s(z̄t) = (s1(z̄t), . . . , sn(z̄t))T is a n×1 is vector of directional selection coefficients (or selection gradients)

i.e., sa(z̄t) is the first-order, marginal, effect of an (infinitesimal) change in trait a away from the population

mean z̄t on lineage fitness (sa(z̄t) = ∂W(z,φt)/∂za). The n ×n matrix M collects the effects of mutation; its

(a,b)-entry,

(M)ab = ν∫
Rn

(za − z′a)(zb − z′b)v(z′,z)dz

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
σm

ab

, (4)

is the product of the mutation probability, ν, with the (co)variance, σm
ab , in mutational effects on traits a and

b conditional on the appearance of a mutation (which captures the pleiotropic effects of mutations on a and

b: when σm
ab > 0, mutations tend to change a and b in a similar way; and when σm

ab < 0, in opposite ways).

The n ×n Hessian matrix H(z̄t) collects the second-order effects of traits on lineage fitness; its (a,b)-entry

H(z̄t)ab = hab(z̄t) is the marginal effect of joint changes in traits a and b away from the population mean z̄t on

lineage fitness (hab(z̄t) = ∂2W(z,φt)/(∂za∂zb)). Finally, the notation s(z̄t)s(z̄t)T denotes the outer product

between two column vectors, so that s(z̄t)s(z̄t)T is n×n matrix with (a,b)-entry sa(z̄t)sb(z̄t).
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3.2.3 Directional, disruptive, and correlational selection coefficients

Dynamical equations (3) have the same form as in well-mixed populations (e.g., eqs. 1-2 of Phillips and Arnold,

1989, see also eq. 7 of Lande, 1979 and eqs. 6 and 15 of Lande and Arnold, 1983). But in such models, the effects

of selection depend on the marginal effects of traits on individual rather than lineage fitness. Nevertheless,

the parallels between eq. (3) and previous works allow us to use the same vocabulary and interpretations on

the evolution of phenotypic means and (co)variances (Brodie et al., 1995). First, the evolution of the mean

of each trait (eq. 3a) depends on the vector of directional selection (or the selection gradient), s(z̄t), which

points in the direction favoured by selection in multivariate phenotypic space (Lande, 1979). The effect of

directional selection on the mean of each trait, however, is constrained by the genetic variation available and

these constraints are captured by Gt in eq. (3a) (Lande, 1979).

Second, the evolution of the variance-covariance matrix Gt (eq. 3b) depends on the effects of mutations (M), of

directional selection (s(z̄t)s(z̄t)T), and of quadratic selection given by the matrix H(z̄t) (Lande, 1979, Lande

and Arnold, 1983, Phillips and Arnold, 1989). This matrix H(z̄t) captures two relevant features of selection.

First, the sign of its diagonal entry (a, a) indicates whether selection favours a decrease (when haa(z̄t) < 0)

or an increase (when haa(z̄t) > 0) in the variance of trait a when this trait evolves in isolation of other traits

(Phillips and Arnold, 1989), hence haa(z̄t) is reffered to as the coefficient of disruptive selection on trait a.

Second, the off-diagonal entry (a,b) tells us whether selection favours a positive (when hab(z̄t) > 0) or negative

(when hab(z̄t) < 0) covariance or correlation among traits a and b. The off-diagonal entry hab(z̄t) is therefore

referred to as the coefficient of correlational selection among a and b (Lande and Arnold, 1983, Phillips and

Arnold, 1989).

3.3 Selection in terms of individual fitness effects and relatedness coefficients

So far, the effects of limited dispersal on evolutionary dynamics (eqs. 1 and 3) have been hidden behind the no-

tion of lineage fitness, W(z,φt). To highlight more tangibly how selection depends on limited dispersal, we ex-

press the selection coefficients (s(z̄t) and H(z̄t)) in terms of the effects of traits on individual fitness and relat-

edness. For this, let us first rewrite the individual fitness of a focal individual, that we label as individual "i ", as a

function w(zi ,z−i , z̄t) of three arguments: (1) the phenotype of the focal individual, zi = (zi ,1, zi ,2, . . . , zi ,n); (2)

the collection of phenotypes of its N−1 neighbours z−i = (z1, . . .zi−1,zi+1, . . . ,zN) (where z j = (z j ,1, z j ,2, . . . , z j ,n)
is the phenotype of a neighbour indexed j ); and (3) the average phenotype in the population z̄t (see eq. 15 for

an example of such a fitness function). This individual fitness function is equal to the fitness function wµ(z,φt)
that appears in eq. (2),

w(zi ,z−i , z̄t) = wµ(z,φt), (5)

when focal phenotype is zi = z, the state of the focal group is {zi}∪ z−i = (z1, . . . ,zN) = µ, and groups other

than the focal one are considered to be monomorphic for the population average z̄t (i.e., we consider that all

individuals in other groups express z̄t so that the distribution φt is delta peaked on z̄t ; we can do this because

the phenotypic distribution is assumed to be centred around z̄t with small variance and individuals from dif-

ferent groups interact at random in the island model; see Iwasa et al., 1991 for a similar approach in panmictic

populations). We further introduce relatedness coefficients that will be relevant for selection: let r ○2 (z̄t) and

r ○3 (z̄t) respectively be the probabilities that, in the absence of selection and when the population phenotypic

average is z̄t , two and three neighbours are identical-by-descent (i.e., have a common ancestor that resided in

the focal group, which is in line with the definition of relatedness in the infinite island model, Rousset, 2004;

see e.g., Taylor et al., 2007 for further considerations on relatedness in the finite island model).
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3.3.1 Directional selection

We find that the selection gradient on a trait a can be expressed as

sa(z̄t) =
∂w(zi ,z−i , z̄t)

∂zi ,a
∣

zi=z̄t
z−i=z̄t

+(N −1)r ○2 (z̄t)
∂w(zi ,z−i , z̄t)

∂z j ,a
∣

zi=z̄t
z−i=z̄t

, (6)

where z−i = z̄t means that the derivative is evaluated when all neighbours express the mean phenotype z̄t (z j =
z̄t for all j ≠ i ). The first derivative in eq. (6) captures the direct effect of trait a: the effect of a change in trait a in

a focal individual on its own fitness. In a well-mixed population, this is all that matters for directional selection

(i.e., sa(z̄t) = ∂w(zi ,z−i , z̄t)/∂zi ,a when the population size is constant, Phillips and Arnold, 1989 1. The second

derivative, which is weighted by pairwise relatedness r ○2 (z̄t), is the indirect effect of trait a: the effect focal

fitness of a change in trait a in a neighbour of the focal (we arbitrarily chose this neighbour to be individual

j ≠ i ). The selection gradient on trait a, eq. (6), is therefore the inclusive fitness effect of trait a (Hamilton, 1964,

Rousset, 2004). Hence, in the absence of covariance among traits, the change in mean trait value is proportional

to this trait’s inclusive fitness effect (substituting eq. 6 into 3a with the off-diagonal elements of Gt all zeros).

This finding is in line with much previous modelling work on the quantitative genetics of spatially- or family-

structured populations (for e.g., Cheverud, 1985, Queller, 1992a,b, Frank, 1998, McGlothlin et al., 2014, Wakano

and Lehmann, 2014).

3.3.2 Correlational and disruptive selection

We find that the correlational selection coefficient on two traits a and b (or the disruptive selection coefficient

when a = b) can be expressed as the sum of two terms,

hab(z̄t) = hw,ab(z̄t)+hr,ab(z̄t), (7a)

where the first term,

hw,ab(z̄t) =
∂2w(zi ,z−i , z̄t)
∂zi ,a∂zi ,b

∣
zi=z̄t

z−i=z̄t

+(N −1)r ○2 (z̄t)
∂2w(zi ,z−i , z̄t)
∂z j ,a∂z j ,b

∣
zi=z̄t

z−i=z̄t

+(N −1)r ○2 (z̄t)
⎛
⎜⎜
⎝

∂2w(zi ,z−i , z̄t)
∂zi ,a∂z j ,b

∣
zi=z̄t

z−i=z̄t

+ ∂
2w(zi ,z−i , z̄t)
∂zi ,b∂z j ,a

∣
zi=z̄t

z−i=z̄t

⎞
⎟⎟
⎠

+(N −1)(N −2)r ○3 (z̄t)
∂2w(zi ,z−i , z̄t)
∂z j ,a∂zk,b

∣
zi=z̄t

z−i=z̄t

,

(7b)

depends on the effects of joint changes in traits a and b within- (first line of eq. 7b) and between-individuals

(second and third line of eq. 7b) on focal fitness. The first derivative on the first line of eq. (7b) is the effect of a

joint change in traits a and b in a focal individual on its own fitness, which can be viewed as the direct syner-

gistic effects of traits a and b (Figure 1a). In a well-mixed population, there are no other effects participating to

correlational selection (i.e., hab(z̄t) = ∂2w(zi ,z−i , z̄t)/(∂zi ,a∂zi ,b), Phillips and Arnold, 1989).

But when dispersal is limited (so that r ○2 (z̄t) > 0 and r ○3 (z̄t) > 0), three types of indirect synergistic effects be-

come relevant for correlational selection. These are the effect of a change in: (i) both traits in one neighbour of

the focal (second derivative on the first line weighted by the neutral probability that the focal and this neigh-

1When the size of the population fluctuates, sa(z̄t ) = ∂ log w(zi , z−i , z̄t )/∂zi ,a , due to normalisation of focal fitness with respect to
mean fitness (see section 3.1; and eq. A6 of Iwasa et al., 1991 for how this holds when selection is frequency-dependent). If the size of the
population fluctuates but selection is frequency-independent, then the selection gradient can be expressed as the derivative of the log of
mean fitness in the population with respect to the trait under scrutiny (e.g., eq. 7b of Lande, 1979)
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bour are identical-by-descent, r ○2 (z̄t), Figure 1b); (ii) in one trait in the focal and in the other in a neighbour

(the two derivatives of the second line weighted by r ○2 (z̄t), Figure 1c); and (iii) in one trait in a neighbour and in

the other in another neighbour indexed as k (last derivative weighted by the neutral probability that the focal

and these two neighbours are identical-by-descent, r ○3 (z̄t), Figure 1d).

The second term of eq. (7a), hr,ab(z̄t), is yet another synergistic effect relevant for correlational selection in

group-structured populations. This term can be expressed as

hr,ab(z̄t) = (N −1)∂w(zi ,z−i , z̄t)
∂z j ,a

∣
zi=z̄t

z−i=z̄t

× ∂r2(z)
∂zb

∣
z=z̄t

+(N −1)∂w(zi ,z−i , z̄t)
∂z j ,b

∣
zi=z̄t

z−i=z̄t

× ∂r2(z)
∂za

∣
z=z̄t

, (7c)

where ∂r2(z)/∂za is the effect of trait a on the probability of that two neighbours are identical-by-descent,

or pairwise relatedness (and ∂r2(z)/∂zb the effect of trait b). So eq. (7c) reveals that correlational selection

depends on the product between the indirect effect of one trait (∂w(zi ,z−i , z̄t)/∂z j ,a and ∂w(zi ,z−i , z̄t)/∂z j ,b),

with the effect of the other trait on relatedness. Such synergy via relatedness (Figure 1e) reflects that in group

structured populations, selection will favour a correlation among two traits when such a correlation results

in indirect fitness benefits (e.g., trait a is cooperative, ∂w(zi ,z−i , z̄t)/∂z j ,a > 0) being preferentially directed

towards relatives (e.g., trait b is the tendency to stay in natal group, ∂r2(z)/∂zb > 0).

a. 
focal i

trait a trait b

b. 

trait a

trait b
focal ineighbour j

𝑟"°(𝒛&')

c. 

𝑟"°(𝒛&')

trait b

d. 

trait b

focal ineighbour j

𝑟)°(𝒛&')

neighbour k
e. 

trait a

𝑟"(𝒛)

trait b

neighbour j focal i

Indirect synergy

Direct synergy

focal ineighbour j

Synergy via relatedness

trait a

trait a

Figure 1: Within- and between-individual fitness effects relevant for correlational selection. As re-
vealed by eq. (7), there are five types of fitness effects due to perturbations in two traits a and b that are
relevant for correlational selection when dispersal is limited: a. effect of a joint changes in a and b within
the focal individual (first term of eq. 7b); b. effect of joint changes in a and b within neighbours of the fo-
cal (second term of eq. 7b, weighted by neutral pairwise relatedness, r ○2 (z̄t)); c. effect of joint changes in
a and b between the focal (here b) and its neighbours (here, a; second line of eq. 7b, weighted by r ○2 (z̄t));
d. effect of joint changes in a and b between neighbours of the focal (third line of eq. 7b, weighted by
neutral three-way relatedness, r ○3 (z̄t)); e. the effect of the indirect effect of one trait (here b) combined
with the effect of the other (here a) on pairwise relatedness, which reflects the tendency of relatives to
receive the effects of b (eq. 7c).

Group-structure and limited dispersal may thus lead to significant changes to the way selection moulds phe-

notypic correlations, especially when traits have synergistic effects that are either indirect (Figure 1b-d) or via

relatedness (Figure 1e). This will be illustrated later when we study the coevolution of two social traits in sec-
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tion 3.5. Before doing so, let us remark that when a single traits evolves (n = 1) and the selection gradient on

this trait is zero (sa(z̄t) = 0), the change in phenotypic variance that we obtain (eq. 7 substituted into eq. 3b)

reduces to previously derived expressions from quantitative genetics in the island model (eqs. 26 and 31 of

Wakano and Lehmann, 2014). Further, eqs. (6)-(7) are consistent with evolutionary invasion analyses, i.e., with

the first- and second-order effects of selection on the growth rate of a rare mutant that arises in a monomorphic

group-structured population and that differs from the resident in a single (eqs. 8 & 9 of Ajar, 2003) or multiple

(eqs. 12 & 13 of Mullon et al., 2016) traits. We discuss further the correspondence between quantitative genet-

ics, invasion analyses, and adaptive dynamics models in the next section, in which we study the equilibrium

properties of the phenotypic distribution.

3.4 Equilibrium properties of the phenotypic distribution

Eq. (3) with eqs. (6)-(7) is a closed dynamical system that allows to track the evolution of the mean trait value

and of the (co)variance between traits. In this section, we first investigate key features of the equilibrium of

these phenotypic dynamics, and then discuss their connections with notions of evolutionary stability that

come from invasion analyses and adaptive dynamics.

3.4.1 Equilibrium mean trait values

We denote the mean trait vector and variance-covariance matrix of the equilibrium phenotypic distribution

by z̄∗ and G∗, respectively. Such equilibrium simultaneously satisfies ∆z̄t = 0 and ∆Gt = 0 (where 0 is used to

denote a n vector and n ×n matrix whose entries are all zero, respectively). Rather than solving both systems

of equations simultaneously, we can use the fact that in eq. (3a), the matrix G is a positive-definite matrix

with real-entries (since it is a variance-covariance matrix). From standard linear algebra theory (Hines, 1980,

Leimar, 2005, 2009), it then follows that the equilibrium for the phenotypic means must satisfy

s(z̄∗) = 0, (8)

i.e., all selection gradients (eq. 6) vanish at z̄∗, independently of the G matrix.

We can further ask whether a population with a mean vector that is close to an equilibrium z̄∗ will eventually

converge to it as a result of selection and mutation. From the fact that G is positive-definite, it can be shown

(see Leimar, 2009, for e.g.) that a necessary condition for a population to converge to z̄∗ for all possible G

matrices is that the Jacobian matrix J(z̄∗) of the selection gradients with (a,b) entry

J(z̄∗)ab =
∂sa(z̄)
∂zb

∣
z̄=z̄∗

(9)

is negative-definite at z̄∗, which means that the symmetric real part of J(z̄∗), (J(z̄∗)+ J(z̄∗)T)/2 has only neg-

ative eigenvalues. This type of equilibrium is referred to as (strongly) convergence stable (Leimar, 2005, 2009).

3.4.2 Equilibrium variance-covariance matrix

The dynamics of the variance-covariance matrix can then be studied at a convergence stable equilibrium z̄∗

for mean trait values (eq. 8). In this case, the equilibrium G∗ for the variance-covariance matrix solves

M +G∗H(z̄∗)G∗ = 0. (10)
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Eq. (10) has an admissible solution (i.e., such that G∗ is positive-definite) if, and only if, the Hessian matrix,

H(z̄∗), is negative-definite (Bhatia, 2015). This corresponds to the case under which selection is stabilising at

z̄∗. In fact, if H(z̄∗) is negative-definite, then the population will remain unimodally distributed around the

mean vector z̄∗ and exhibit a variance-covariance matrix,

G∗ = M [M−1 (−H(z̄∗))−1]
1/2

, (11)

where the operation X1/2 denotes the square root of X such that all the eigenvalues of X1/2 are positive (Bhatia,

2015; see also eq. 21c of Lande, 1980).

3.4.3 Connections with notions of stability from invasion analyses

Using a quantitative genetics approach, we have derived the conditions under which the multivariate pheno-

typic distribution of a dispersal limited population converges and remains at an equilibrium. Here, we high-

light the connections between these conditions and notions of evolutionary stability that have emerged from

invasion analyses and adaptive dynamics under limited dispersal.

Singular strategy. First, the selection gradient eq. (6) substituted into condition (8) is equivalent to the def-

inition of evolutionarily singular strategies/phenotypes under limited dispersal (i.e., phenotypes which when

expressed by the whole population, the gradient of invasion fitness is zero, e.g., Rousset, 2004; see also Geritz

et al., 1998, for general definition).

Convergence stability. Second, the condition for a mean trait vector to be an attractor of directional selec-

tion (condition 9 with eq. 6) is equivalent to the condition for a multi-trait phenotype to be convergence stable

in invasion analysis (Mullon et al., 2016; see also Brown and Taylor, 2010, for a graphical approach to the co-

evolution of two traits in a genetically structured population; and Leimar, 2009, Geritz et al., 2016, for general

considerations on multi-trait in invasion analysis). It is noteworthy that in spite of this equivalence, the phe-

notypic dynamics envisaged by a quantitative genetics model (given by eq. 3a, see also eq. 7 of Lande, 1979,

or eq. 1 of Phillips and Arnold, 1989) differ from the dynamics inferred from invasion analysis (which are cap-

tured by the so-called “canonical equation”, eq. 1 of Dieckmann and Law, 1996, or eq. 3 of Leimar, 2009). In a

quantitative genetics model, the mean trait vector changes as a result of selection acting on a standing genetic

variation, which is large enough to be captured by a statistical distribution (Gt in eq. 3a). Under the “canonical

equation”, traits evolve under a trait substitution sequence, whereby selected mutants fix before other mutants

arise, so that the population "jumps" from one monomorphic state to another and in principle cannot sus-

tain polymorphism (see Fig. 1c, upper right panel of Champagnat et al., 2006, for a useful depiction of a trait

substitution sequence; see Van Cleve, 2015, for a review of trait substitution sequence under limited dispersal).

Uninvadability. Third, the condition that H(z̄∗) with eq. (7) is negative-definite for the population to remain

unimodally distributed around z̄∗ is consistent with the condition derived from invasion analyses for z̄∗ to

be locally uninvadable (i.e., that any rare mutant that arises in a population for monomorphic for z̄∗ and that

causes a slight deviation from z̄∗ eventually vanishes, Mullon et al., 2016; see also Ajar, 2003 for a single evolving

trait in dispersal limited population; and Leimar, 2009, Geritz et al., 2016, for general considerations on multi-

trait analyses).

Evolutionary branching. Invasion analyses have revealed that a phenotype that is convergence stable is not

necessarily uninvadable (Eshel and Motro, 1981, Eshel, 1983, Taylor, 1989, Christiansen, 1991, Abrams et al.,

1993b). In fact, when a singular phenotype is convergence stable but invadable, disruptive selection can lead
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to evolutionary branching, whereby two lineages stably coexist in polymorphism (Metz et al., 1996, Geritz et al.,

1998). When multiple traits are evolving, a sufficient condition for the initiation of evolutionary branching is

that the Jacobian is negative-definite and the Hessian matrix is positive-definite at the singular phenotype z̄∗

(note that this does not ensure that the resulting polymorphism is stable, Geritz et al., 2016, for further consid-

erations). In the context of quantitative genetics, this means that the mean trait vector is held at z̄∗ (as J(z̄∗) is

negative-definite) while the dynamics of the variance-covariance matrix (eq. 3b) diverges to infinity (as H(z̄∗)
is positive-definite). In other words, at the onset of evolutionary branching, directional selection maintains

the population mean vector at z̄∗ all the while disruptive selection favours extreme phenotypes, leading to the

explosion of the variance-covariance matrix (in line with previous quantitative genetics approaches to study

evolutionary branching, Wakano and Iwasa, 2013, Débarre et al., 2014, Wakano and Lehmann, 2014, Débarre

and Otto, 2016).

3.4.4 The moulding of phenotypic correlations by selection and mutation

Invasion analyses can be used to infer on the phenotypic correlations or associations generated by disruptive

selection (by studying at the eigenvector associated with the greatest eigenvalue of H(z̄∗), which gives the

axis in phenotypic space on which selection is disruptive and along which the population becomes dimorphic,

Mullon et al., 2016, Geritz et al., 2016). This approach, however, only incorporates the effect of selection and is

limited to studying phenotypic correlations at the onset of evolutionary branching (inferring on the long term

outcome of evolutionary branching requires studying invasion in dimorphic populations, which is typically

much more involved mathematically, e.g., Geritz et al., 1998, Sasaki and Dieckmann, 2011). A quantitative

genetics approach such as ours here allows two further considerations on phenotypic correlations (e.g., Lande,

1980, Jones et al., 2007). First, it allows to incorporate the influence of pleiotropy (through the distribution of

mutational input, captured by the variance-covariance matrix M in eq. 3b). Second, eq. (11) allows to study

equilibrium phenotypic correlations as a balance between mutation and stabilising selection (and not only

disruptive selection). We investigate this balance in more detail in the next section, in which we apply our

quantitative approach to model the evolution of traits with socially synergistic effects.

3.5 Application to the coevolution of two synergistic social traits

We now apply the quantitive genetics approach elaborated above to study the coevolution of two social traits

under limited dispersal. Our main goal is to illustrate the potential significance of indirect synergistic effects

for the moulding of phenotypic correlations when dispersal is limited (Figure 1b-d).

3.5.1 Two public goods model

We model the coevolution of two nonnegative quantitative traits, labelled 1 and 2, that each capture partici-

pation to a different public good. For examples, in group living mammals, one trait could be the time/energy

invested into foraging for the group’s offspring, and the other, investment into defending the group by stand-

ing sentry against predators (e.g., Carter et al., 2014); in microorganisms, each trait could be the production of

a specific amino-acid that is released into the external environment from which it can then be absorbed and

used by group members (e.g., D’Souza and Kost, 2016).

Benefits and costs. We assume that both public goods are shared equally among group members, and that

individuals receive extra benefits from obtaining both goods together. The benefits, B(zi ,z−i ), received by

a focal individual (with traits zi in a group composed of z−i ) can then be written in terms of the group trait

12

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 2, 2019. ; https://doi.org/10.1101/393538doi: bioRxiv preprint 

https://doi.org/10.1101/393538
http://creativecommons.org/licenses/by-nd/4.0/


averages (ẑ1 =∑N
j=1 z j ,1/N and ẑ2 =∑N

j=1 z j ,2/N ) as

B(zi ,z−i ) = b(ẑ1+ ẑ2)+bM ẑ1 ẑ2, (12)

where the parameter b > 0 tunes the independent benefit of each public good produced (assumed to be the

same for both goods for simplicity); and parameter bM > 0, the multiplicative benefits of receiving both goods

together. Conversely, participation to both public goods simultaneously is assumed to be extra costly, for in-

stance because the different goods call upon different biological functions that are costly to co-maintain, so

that the cost C(zi ) paid by a focal individual (with traits zi ) can be written as

C(zi ) =
c

2
(z2

i ,1+ z2
i ,2)+ cMzi ,1zi ,2, (13)

where the parameter c > 0 tunes the independent cost of each trait, and parameter cM > 0, the multiplicative

costs of the traits. The fecundity of a focal individual, f (zi ,z−i ), is then the difference between the benefits

received and the costs paid,

f (zi ,z−i ) = 1+B(zi ,z−i )−C(zi ), (14)

where 1 is the baseline fecundity when no one in the group participates to either public good (zi ,1 = zi ,2 = 0 for

all i ).

These benefits (eq. 12) and costs (eq. 13) entail that it is best for a focal individual to express a negative within-

individual association between traits (if expressed at all), and simultaneously be in a group in which traits

are positively associated between-individuals. Such a configuration is possible when the population is well-

mixed (so that there are no genetic correlations – or no relatedness – among individuals of the same group),

but difficult when individuals of the same group are related due to limited dispersal. As relatedness increases,

associations within- and between-individuals become aligned due to the co-inheritance of linked traits (in

fact, the covariance between-traits between-individuals is equal to the product of pairwise relatedness with

total covariance in the absence of selection; i.e., the between-individuals covariance of traits a and b is equal

to r ○2 (z̄t)σab,t , see eq. SI-23 in Supplementary Information). We therefore expect limited dispersal to be rel-

evant to the coevolution of the two traits of our model and to the way selection associates these traits within

individuals.

Fitness. Before proceeding to the analysis, let us give the individual fitness function of a focal individual

w(zi ,z−i , z̄t). For this model, we assume that all adults die after reproduction (so that the population follows a

Wright-Fisher life cycle). In this case, individual fitness is,

w(zi ,z−i , z̄t) =
(1−m) f (zi ,z−i )

(1−m)∑N
i=1 f (zi ,z−i )/N +m f (z̄t , z̄t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wP(zi ,z−i ,z̄t)

+ m f (zi ,z−i )
f (z̄t , z̄t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wD(zi ,z−i ,z̄t)

, (15)

where 0 < m ≤ 1 is the dispersal probability. Individual fitness is the addition of two terms: (1) the expected

number of offspring of the focal that successfully establish in their natal group, wP(zi ,z−i , z̄t), which is the ratio

of the number of philopatric offspring of the focal to the total number of offspring that enter the competition

in the focal group; and (2) the expected number of offspring of the focal that successfully settle in other groups,

wD(zi ,z−i , z̄t), which is the ratio of offspring the focal sends in a non-focal group to the expected number of

offspring in such a group (fitness function of the form eq. 15 is standard under limited dispersal, e.g., Rousset,

2004, Ohtsuki, 2010).

Relatedness. The final pieces of information that are necessary to apply our framework are the neutral relat-

edness coefficients, r ○2 (z̄t) and r ○3 (z̄t), and the effect of each trait on pairwise relatedness (∂r2(z)/∂za). These

expressions, which have been derived elsewhere for the Wright-Fisher life-cycle considered here (e.g., Rousset,
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2004, Ajar, 2003, Ohtsuki, 2010, Wakano and Lehmann, 2014), are given in Appendix B.2.2 (eqs. B-21-B-22).

3.5.2 Analysis

We now proceed to analyse the evolution of both social traits using the approach established in section 3.2. We

first focus on the equilibrium properties of the phenotypic distribution.

Convergence of mean trait values. Substituting eq. (15) and pairwise relatedness coefficient (eq. B-21) into

eq. (6), we obtain that the selection gradient vector is

s(z̄t) = [1− r ○2 (z̄t)](
b/N − cz̄1,t + z̄2,t(−cM+bM/N)
b/N − cz̄2,t + z̄1,t(−cM+bM/N)

)+O(ε2), (16)

where ε is a parameter capturing the magnitude of the effect of the public good on fecundity (i.e., ε is of the

order of b, bM, c, cM). Solving eq. (16) for zero then yields the unique singular strategy

z̄∗ = (z̄∗1 , z̄∗2 ) = ( b/N

c + cM−bM/N
,

b/N

c + cM−bM/N
), (17)

which unsurprisingly decreases with costs c and cM, and increases with “direct” benefits b/N and bM/N (as an

individual recoups a share 1/N of its participation to each public good). Note that this singular strategy does

not depend on dispersal (or relatedness). This is due our assumptions that group size is fixed and that gener-

ations are non-overlapping (in which case indirect fitness benefits of interacting with relatives are “cancelled”

by the fitness costs of kin competition, e.g., Taylor, 1992).
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Figure 2: Directional selection on synergistic social traits. Qualitative dynamics of population means
due to selection when equilibrium eq. (17) is: a. an attractor (with b/N = 3, bM/N = 1.5); b. a repeller
(with b/N = 5.8, bM/N = 0.1). Solid lines show when the selection gradient eq. (16) on each trait vanishes
(black for trait 1, s1(z̄1, z̄2) = 0; grey for trait 2, s2(z̄1, z̄2) = 0; other parameters: c = 1, cM = 2).

To establish whether the phenotypic distribution will converge to have mean z̄∗, we substitute eq. (16) into the

symmetric part of the Jacobian matrix eq. (9), which we evaluate at the equilibrium eq. (17). It is straightforward

to show that the two eigenvalues of the resulting matrix are given by

[1− r ○2 (z̄t)]{−c − cM+bM/N ,−c + cM−bM/N}+O(ε2). (18)

Both are negative provided

−1 < −cM+bM/N

c
< 1, (19)

i.e., when the difference between the multiplicative costs, cM, and direct multiplicative benefits, bM/N , is small

compared to the independent cost, c. In that case, the population will evolve to have mean given by eq. (17)

14

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 2, 2019. ; https://doi.org/10.1101/393538doi: bioRxiv preprint 

https://doi.org/10.1101/393538
http://creativecommons.org/licenses/by-nd/4.0/


and produce an equal amount of each public good (Figure 2a). Otherwise, the population will evolve to express

a single trait and thus produce a single public good (depending on initial conditions, Figure 2b). Eqs. (17) and

(19) reveal that limited dispersal does not influence the evolution of the mean of the phenotypic distribution.

But what about the shape of the distribution around this mean?

Stabilisation of the distribution around the mean. Assuming eq. (19) holds true, whether or not the popula-

tion distribution stabilises around the equilibrium trait values (eq. 17) depends on the Hessian matrix, H(z̄∗).

Let us start with analysing the diagonal elements of H(z̄∗), which reveal whether selection on each trait is in-

dependently stabilising or disruptive. Substituting eq. (15) and relatedness coefficients (Appendix B.2.2) into

eq. (7) for traits 1 and 2 (i.e., a = b = 1 and a = b = 2), and evaluating it at equilibrium eq. (17), we obtain that the

diagonal entries of H(z̄∗) are

h11(z̄∗) = h22(z̄∗) = −[1− r ○2 (z̄t)]c +O(ε2). (20)

Since 0 ≤ r ○2 (z̄t) < 1, the diagonal entries of H(z̄∗) are always negative, which means that selection on each trait

is stabilising when they evolve independently from one another.

Whether selection is stabilising when both traits co-evolve also depends on the correlational coefficient of

selection, h12(z̄∗). In particular, stabilising selection requires that: (1) h11(z̄∗) < 0 and h22(z̄∗) < 0; and (2)

h12(z̄∗)2 < h11(z̄∗)h22(z̄∗), i.e., that the correlational selection coefficient is weak relative to the strength of

stabilising selection on both independent traits; this is because a 2× 2 symmetric matrix Hessian matrix is

negative-definite if and only if its diagonal entries are both negative and the off-diagonal satisfies condition (2)

(e.g., Horn and Johnson, 2012). Condition (2) can equivalently be written as

−1 < ρ∗s =
h12(z̄∗)√

h11(z̄∗)h22(z̄∗)
< 1, (21)

where ρ∗s is the strength of correlational selection, relative to the strength of stabilising selection on each inde-

pendent trait at z̄∗. If eq. (21) does not hold, then selection is disruptive due to correlational selection.

The correlational coefficient of selection is derived by first substituting eq. (15) into eq. (7) with a = 1 and b = 2,

and second, evaluating the result at equilibrium eq. (17). This yields

h12(z̄∗) = [1− r ○2 (z̄t)][−cM+(1/N +α(N −1)/N)bM/N]+O(ε2), (22)

where α is a function that decreases as dispersal and group size increases (i.e., α decreases as relatedness co-

efficients decrease, see Figure 3a). Eq. (22) reveals that as α (and relatedness) increases, the within-individual

association favoured by selection goes from negative (Figure 3b-c, grey region) to positive (Figure 3b-c, black

region). This is because as relatedness increases, indirect synergistic effects become increasingly targeted by

correlational selection (Figure 1b-d).

Substituting eqs. (20) and (22) into eq. (21), we find that selection is stabilising around z̄∗ when

−1 < ρ∗s =
−cM+(1/N +α(N −1)/N)bM/N

c
< 1, (23)

which reveals that high relatedness, or largeα, favours stabilising selection (Figure 3b-c, dark grey and black re-

gions), and conversely, low relatedness, or small α, favours disruptive selection and thus polymorphism (when

eq. 19 holds but eq. 23 does not, Figure 3b-c, light grey region). This finding is in line with a recent computa-

tional eco-evolutionary model which found that when species can evolve cross-feeding interactions, mutual-

istic coexistence is compromised by spatial structure and limited dispersal (Oliveira et al., 2014). This is also

in line with previous results on the evolution of single traits that have found that evolutionary branching is
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Figure 3: Correlational selection on synergistic social traits. a. Factor α = (1−m)2(3N − 2−m(N −
2))/[3N − 2+(N − 1)(N − 2)(1−(1−m)3)] to multiplicative benefits in the coefficient of correlational
selection (see eq. 22). b. Relative correlational selection, ρ∗s (eq. 23), as a function of dispersal m, with
critical levels of dispersal for which: ρ∗s < −1 (light grey); −1 < ρ∗s < 0 (dark grey); and 0 < ρ∗s < 1 (black,
with N = 10, b/N = 0.03, bM/N = 1.8, c = 0.8, cM = 1). c. Parameter combinations (with N = 10, c = 1) for
which correlational selection at the equilibrium eq. (17) is: (1) strongly negative (and causes selection to
be disruptive, ρ∗s < −1 & eq. 23 does not hold, light grey regions); (2) negative (and selection is stabilising,
−1 < ρ∗s < 0 & eq. 23 holds, dark grey regions); and (3) positive (and selection is stabilising, 0 < ρ∗s < 1
& eq. 23 holds, black regions). White regions correspond to parameter combinations under which the
equilibrium is not evolutionary convergent (i.e., eq. 19 does not hold).

inhibited by limited dispersal (e.g., Day, 2001, Ajar, 2003, Wakano and Lehmann, 2014, Parvinen et al., 2017).

In such models and ours, limited dispersal inhibits evolutionary branching because it creates genetic correla-

tions among competing individuals, so that a mutant cannot be as different to common types as in well-mixed

population. As a result, frequency-dependent disruptive selection is weaker under limited dispersal.

Effect of selection on phenotypic correlation. Putting our stability analyses together (especially eqs. 17, 19,

22, and 23) and validating them using individual-based simulations (see Appendix C for details), we find that

there are three possible outcomes for the phenotypic distribution once it has converged to be unimodal around

the equilibrium eq. (17) due to selection: (1) when relatedness is low, correlational selection is negative and

strong enough to make selection disruptive, which leads to the stable coexistence of individuals specialised in

producing a single public good (Figure 4a). In this case, evolutionary dynamics follow so-called “Black queen”

dynamics (Morris et al., 2012, Morris, 2015, with special reference to microorganisms): individuals first evolve

to produce the same amount of leaky product that is shared among individuals, but the costly maintenance

of both traits leads to specialisation in a single product and the evolution of cross-feeding among types. (2)

Over a critical level of relatedness, selection becomes stabilising but correlational selection remains negative,
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which prevents evolutionary branching and thus specialisation, but still results in a negative association among

traits within individuals (Figure 4b). (3) Over another threshold of relatedness, correlational selection becomes

positive, so that the traits become positively associated within individuals (Figure 4c). Hence, even though

limited dispersal and relatedness have no bearing on the mean of the phenotypic distribution in our model

(eqs. 17 and 19), indirect synergistic effects entail that relatedness has a significant influence on the shape of

this distribution (which goes from being bimodal with a negative correlation under panmixia to unimodal with

a positive correlation under limited dispersal, Figure 4).
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Figure 4: The effect of relatedness and indirect synergy on the phenotypic distribution. Equilibrium
phenotypic density distribution, pt(z), of a simulated population, initially monomorphic for both traits
at equilibrium (2,2) (population composed of 1000 groups of size N = 10; sampled every 500 generations
for 20’000 generations after 30’000 generations of evolution; other parameters: bM/N = 1., ν = 0.01, σm

11 =
σm

22 = 0.02, σm
12 = 0; see Appendix C for details on simulations). a. Strong negative association with social

polymorphism (with b/N = 0.2, c = 0.1, cM = 1). b. Negative association (correlation = -0.67, p < 10−10;
with b/N = 2.2, c = 1, cM = 1.1). c. Positive association (correlation = 0.45, p < 10−10; with b/N = 0.1, c = 1,
cM = .05)

Effect of pleiotropy on phenotypic correlation. So far, our analysis has focused on the effects of selection

on the stability of jointly evolving traits (an analysis that could have equally been performed using invasion

analysis; see Mullon et al., 2016, for such an approach to the joint evolution of multiple traits under limited

dispersal). But selection is not the only relevant process for the way phenotypic distributions are shaped. As

highlighted by the present quantitative genetic approach, the equilibrium variance-covariance matrix of the

phenotypic distributions also depends on the patterns of mutation (captured by matrix M in eq. 11). In par-

ticular, pleiotropy is expected to influence the correlations among traits within individuals at an evolutionary

equilibrium.

In order to investigate the joint effects of pleiotropy and correlational selection, let us assume that the variance

of mutational effect on both traits is the same (σm
11 = σm

22 = σm), in which case the variance-covariance matrix

of mutation effects can be written as

M = νσm ( 1 ρm

ρm 1
) , (24)

where ρm = σm
12/σm is the correlation of the effect of mutations on traits 1 and 2. The parameter −1 < ρm < 1

thus captures the degree of pleiotropy between both traits (when it is zero, both traits change independently

due to mutation, when it is positive, they tend to change in similar ways, and when it is negative, in opposite

ways).

Substituting eqs. (20), (22) and (24) into eq. (11), we find that the correlation ρ∗12 among traits 1 and 2 at equi-
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librium is

−1 < ρ∗12 =
σ∗12√
σ∗11σ

∗
22

= ρm+ρ∗s
1+ρmρ∗s +

√
(1−ρ2

m)(1−ρ∗s 2)
< 1, (25)

where ρ∗s is given in eq. (21). This shows that at equilibrium, the sign of the correlation among between two

traits reflects the balance, ρm +ρ∗s , between the degree of pleiotropy, ρm, and the relative strength of correla-

tional selection ρ∗s (see Figure 5a; note that eq. 25 can be directly deduced from eq. (11) whenever the variance

of mutational effect on both traits is the same,σm
11 =σm

22, and the coefficients of disruptive selection on indepen-

dent traits are equal, h11(z̄∗) = h22(z̄∗), see eq. 8 of Jones et al., 2007). Since limited dispersal and relatedness

has a significant influence on relative correlational selection ρ∗s (eq. 21), it can affect the correlation ρ∗12 among

traits in the population as much as pleiotropy, ρm.
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Figure 5: The effect of pleiotropy on phenotypic correlation. a. Contours of predicted phenotypic cor-
relation among traits 1 and 2 at mutation-selection balance, ρ∗12, according to pleiotropy, ρm, and the
relative strength of correlational selection, ρ∗s (from eq. 25). b. Predicted phenotypic correlation among
traits 1 and 2 (dashed grey curve, from eq. 25), and corresponding observations from individual based
simulations of a population initially monomorphic for (2,2) divided among 1000 groups of size N = 10
(black dots, averaged correlation over 20’000 generations after 30’000 generations of evolution, error bars
indicate standard deviation; other parameters: m = 0.05, b/N = 0.2, bM/N = 1, c = 1, cM = 0.1, ν = 0.01,
σm

11 =σm
22 = 0.02; see Appendix C for details).

We additionally checked that our model captured pleiotropy correctly by comparing the phenotypic correlation

among the two traits at equilibrium predicted by our model (eq. 25) and that observed in simulations for dif-

ferent levels of pleiotropy. We found that model predictions and observations from simulations also matched

well in the presence of pleiotropy (Figure 5b).

Dynamics of the distribution. We further tested the accuracy of our dynamical model by comparing

individual-based simulations with numerical recursions of eqs. (3). We found that simulated populations tend

to have lower phenotypic variance that eqs. (3) would predict (Figure 6). This is probably due to global genetic

drift, which our model ignores and which depletes phenotypic variance (as in well-mixed populations, e.g.,

Wakano and Iwasa, 2013, Débarre and Otto, 2016), and/or the presence of phenotypic skew, which is ignored

under our assumption that the phenotypic distribution in the population is normal, but which can influence

the dynamics of phenotypic variance (Appendix B, eq. B-18). Nonetheless, we observed overall a good qualita-

tive fit between the predicted and observed dynamics of the phenotypic distribution (Figure 6). This suggests

that the assumption of normality yields accurate predictions for the change of mean and variance when dis-

persal is limited (like in well-mixed populations, Turelli and Barton, 1994).
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Figure 6: Observed and predicted evolution of the phenotypic distribution, pt(z). The observed (full
lines, from individual based simulations) and predicted (dashed lines, from eq. 3) evolution of the traits’
means (a. trait 1 in orange and 2 in blue), variances (b. trait 1 in orange and 2 in blue) and covariance (b.
green) for 64 replicates (10 randomly chosen replicates in lighter shade, average over all 64 replicates in
darker shade, initial population monomorphic with z1 = 3 and z2 = 1, distributed over 1000 groups of size
N = 10, other parameters: m = 0.4, b/N = 14.8, bM/N = 0.1, c = 5, cM = 2.5, ν = 0.1, σm

11 =σm
22 = 0.02, σm

12 = 0;
see Appendix C for details). c. Snapshot of the population (2’500 individuals randomly sampled across
64 replicates shown by grey points) and variance-covariance ellipses given by the (right) eigenvectors of
the G matrix (observed across all 64 replicates in full lines and predicted in dashed), at generations: 1’000
(top panel); 2’000 (middle panel); and 10’000 (bottom panel).

4 Discussion

In this paper, we have modelled the evolution of the distribution of genetically determined, quantitative, phe-

notypic traits under limited dispersal, frequency-dependent selection and pleiotropic mutation. By doing so,

we have generalised two classical quantitative genetics results to include limited dispersal, first for the gen-

eral recurrence formula eq. (1) of the phenotypic distribution under the continuum of alleles model (Kimura,

1965b, Fleming, 1979, Lande, 1979, Bürger, 1986); and second for the closed dynamical system eq. (3) of the

vector of means and matrix of variance-covariance when the distribution is normal (Lande, 1979, Lande and

Arnold, 1983, Phillips and Arnold, 1989). In both cases, genetic structure due to limited dispersal leads to the

replacement of individual fitness in classical quantitative genetics equations by lineage fitness, which is the

fitness of a typical carrier of a given phenotype (randomly sampled from the lineage of all members carrying

that phenotype). This fitness depends on the phenotypes expressed in the whole population and how they are

distributed among groups (eq. 2).

The lineage fitness concept, which is is useful to understand the nature of selection in subdivided popula-
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tions, was derived in the context of evolutionary invasion analyses (Lehmann et al., 2015, Mullon et al., 2016,

Lehmann et al., 2016, see Akçay and Van Cleve, 2016 for discussion). Comparing such invasion analyses re-

sults with our own results reinforces existing links between concepts of evolutionary stability and evolution-

ary quantitative genetics: the vector of means evolves to convergence stable phenotypic values (eqs. 8-9) and

the distribution remains unimodal around such values when they are locally uninvadable or may become bi-

modal when they are invadable (eq. 10; in agreement with previous results in well-mixed populations, see

Charlesworth, 1990, Iwasa et al., 1991, Taper and Case, 1992, Abrams et al., 1993a, Abrams, 2001, Lion, 2018,

for the dynamics of the mean, and Sasaki and Dieckmann, 2011, Wakano and Iwasa, 2013, Débarre et al., 2014,

Débarre and Otto, 2016, for the dynamics of the variance; under limited dispersal, see Cheverud, 1985, Queller,

1992a,b, Frank, 1998, McGlothlin et al., 2014 for the dynamics of the means, and Wakano and Lehmann, 2014

for the dynamics of the variance of a single trait around a singular strategy). While it may be felt that these links

are intuitive and must hold, their demonstration required surprisingly lengthy and tedious calculations due to

limited dispersal (see Appendix and the online Supplementary Information).

Contrary to an invasion analysis, a quantitative genetics approach allows to specify the phenotypic distribution

at a mutation-selection balance (by using eq. 11). In particular, it allows to study the effects of selection and

mutation on the phenotypic associations that emerge among traits at equilibrium (eq. 25). Our analyses of such

associations suggest that kin selection due to limited dispersal can mould phenotypic associations as much as

pleiotropic mutations (eq. 25 and Fig. 5). By expressing correlational selection on traits in terms of their direct

and indirect fitness effects, we gained insights into the influence of kin selection on phenotypic associations

(eq. 7, which is in line with previous results from invasion analyses, Mullon et al., 2016). Motivated by our

explicit formula for the variance-covariance matrix (eq. 11) and our example (section 3.5), we complement

here the discussion found in Mullon et al. (2016) (based on an invasion analysis) on the implications of kin

selection for the evolution of within-individual phenotypic associations. As indicated by the decomposition of

correlational selection eq. (7a), there are two ways kin selection influences such associations.

The first is through the fitness effects that traits have when co-expressed among relatives, so when traits have

indirect synergistic effects (eq. 7b, Figure 1b-d). Under limited dispersal, selection favours an association

among two traits within individuals, when such an association between individuals has indirect fitness bene-

fits. Due to such kin selection effects, different levels of dispersal can lead to significantly different evolutionary

outcomes for phenotypic associations, as highlighted by our example on the coevolution of two traits whose

association within-individual is costly but beneficial between-individuals due to synergy (Figure 4). In this ex-

ample, we saw that while relatedness has a substantial influence on the shape of the phenotypic distribution,

it has no effect on the mean of this distribution (Figure 4, eqs. 17 and 18). Hence, these effects of genetic struc-

ture on phenotypic evolution would have gone unnoticed from the study of the dynamics of the mean only

(which is the focus of the vast majority of study of quantitative genetics in family-structured populations, e.g.,

Cheverud, 1985, Queller, 1992a,b, Frank, 1998, McGlothlin et al., 2014), or from the analysis of the selection

gradient vector only (as done in the majority of evolutionary analyses to synergistic social traits, e.g., Gandon,

1999, Perrin and Mazalov, 2000, Reuter and Keller, 2001, Lehmann and Perrin, 2002, Rousset and Gandon, 2002,

Gardner and West, 2004, Leturque and Rousset, 2004, Hochberg et al., 2008, Brown and Taylor, 2010, Kuijper

and Johnstone, 2017). Overall, this example highlights that when traits have indirect synergistic effects between

individuals (Figure 1b-d), relatedness is relevant for the way natural selection moulds phenotypic associations

within individuals.

A relevant pair of traits likely to be influenced by such kin selection effects is costly helping and punishment,

which have synergistic indirect benefits when expressed by different individuals (e.g., Raihani et al., 2012, and

references therein). According to our results, kin selection should favour a positive association among helping

and punishment, which interestingly, has been observed in humans (Fehr and Gächter, 2000). Another pair of

traits whose evolution is likely to be influenced by their joint expression in different individuals is the produc-

tion and exploitation of a public good, such as the secretion and use of siderophores by microorganisms (West

et al., 2006). Under limited diffusion of siderophores and limited bacterial dispersal (Nadell et al., 2009, Küm-

merli et al., 2014, Ross-Gillespie et al., 2015), we thus expect kin selection effects to be ecologically relevant for
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how secretion and use of siderophores are associated, and more generally for patterns of multi-trait social vari-

ation within microbial populations (Cordero and Polz, 2014, van Gestel et al., 2015, Özkaya et al., 2017, Schiessl

et al., 2019).

The second way kin selection influences phenotypic associations is via the combination of the indirect effect of

one trait with the effect of the other on the tendency to interact with relatives (“synergy via relatedness”, eq. 7c,

Figure 1e). Specifically, selection favours an association among two traits when it results in fitness benefits

being preferentially directed towards relatives or fitness costs towards non-relatives. For example, if trait a

has positive indirect fitness effects (e.g., altruistic helping) and trait b decreases the tendency to interact with

relatives (e.g., dispersal), then selection favours a negative correlation between traits a and b (e.g., Koella, 2000,

Purcell et al., 2012, Mullon et al., 2018). We refer readers interested in this effect to Mullon et al. (2016), in which

it is discussed at greater length, in particular in the context of dispersal syndromes (Edelaar and Bolnick, 2012,

Ronce and Clobert, 2012).

More generally, our evolutionary perspective on phenotypic associations may be useful to empiricists who in-

vestigate correlational selection among traits in experimental or natural population (e.g., Blows and Brooks,

2003, Blows, 2007, for reviews, and ch. 30 of Walsh and Lynch, 2018). Based on Lande and Arnold (1983) pa-

per, the typical starting point of such studies is to perform a quadratic regression of individual fitness on the

multiple traits expressed by this individual (for e.g., eq. 30.11 of Walsh and Lynch, 2018). The linear regres-

sion coefficients are collected in a vector usually denoted β with entry βa interpreted as directional selection

on trait a, and the quadratic coefficients in a matrix γ with entry γab interpreted as correlational selection on

traits a and b (in our notation, βa = ∂w(zi ,z−i , z̄t)/∂zi ,a and γab = ∂2w(zi ,z−i , z̄t)/(∂zi ,a∂zi ,b)). This corre-

spondence between selection on traits and regression coefficients on individual fitness, however, is only valid

in well-mixed populations. Indeed, as our analysis has shown, β and γ are respectively equal to the selection

gradient s(z̄t) and Hessian matrix H(z̄t), only when all relatedness coefficients are zero (eq. 6 and 7). For

populations that are genetically structured, empirical estimates of selection on multiple traits require to: first

regress individual fitness on the traits of the focal individual and on those of its social partners; and second,

weigh these indirect fitness effects by relatedness coefficients (according to eqs. 6 and 7). While such consider-

ations have long been established for the directional selection gradient (so considering only linear regression

coefficients, β, e.g., Cheverud, 1985, Queller, 1992a,b, Frank, 1998, McGlothlin et al., 2014, see also ch. 5 of

Walsh and Lynch, 2018), our analysis has further quantified the relationship between correlational selection

and quadratic regression coefficients (γ, eq. 7, Figure 1b-d).

In practice, it is likely to be challenging to obtain reliable estimates of all the quadratic regression coefficients

necessary to quantify the strength and direction of correlational selection (eq. 7). But our results can neverthe-

less be of use when designing experimental assays or interpreting collected data. For instance, our results show

that for traits that underlie social behaviours, such as mating, aggression or cooperation, there is little reason

to believe that quadratic regression coefficients on individual fitness alone are relevant estimates of correla-

tional selection. A corollary to this is that when there is mismatch between phenotypic correlations among two

traits observed in a population on one hand, and the quadratic regression coefficient on individual fitness from

experimental assays on the other (e.g., Bell and Sih, 2007, Adriaenssens and Johnsson, 2012, Han and Brooks,

2013, Akçay et al., 2015), this may indicate the presence of indirect synergistic fitness effects among traits and

genetic structure in the population (rather than genetic constraints).

Our results further provide insight into the effects of limited dispersal on how selection influences the G matrix

of additive genetic variances-covariances (Steppan et al., 2002, Arnold et al., 2008). Previous theoretical works

have studied how linkage disequilibrium, pleiotropy and epistasis influence G under selection (Lande, 1980,

1984, Turelli, 1985, Turelli and Barton, 1990, Revell, 2007, Jones et al., 2014), but the effects of limited disper-

sal on G have either been assessed in the absence of selection (Lande, 1992), or when selection is frequency-

independent (Jones et al., 2004, Guillaume and Whitlock, 2007, Guillaume, 2011, Björklund and Gustafsson,

2015). Here, we have shown that kin selection effects due to limited dispersal are relevant for the way selec-

tion favours phenotypic associations (i.e., for correlational selection, eq. 7), which in the long run can lead to

21

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 2, 2019. ; https://doi.org/10.1101/393538doi: bioRxiv preprint 

https://doi.org/10.1101/393538
http://creativecommons.org/licenses/by-nd/4.0/


genetic correlations through genetic integration (Sinervo and Svensson, 2002, Roff and Fairbairn, 2012). Of

course, our model ignores many relevant features for quantitative genetics, such as environmental effects, ge-

netic dominance, genetic linkage or sexual reproduction. Incorporating such features into our framework is

likely to make the analysis of selection more complicated, but it would allow to study important questions on

the genetic basis of variation, such as how genetic architecture and its evolution influence trait associations

(e.g., Saltz et al., 2017).

One other significant limitation to our present approach is that it assumes that the phenotypic distribution

is normal. This assumption is likely to be violated under frequency-dependent selection, which can lead to

skewed and complicated distributions. In particular, the normal assumption precludes investigating what hap-

pens to the phenotypic distribution once evolutionary branching has occurred (like adaptive dynamics models

based on the invasion analyses of monomorphic populations). To relax this assumption would entail tracking

the dynamics of higher moments of the phenotypic distribution. One possible way to retain some mathemat-

ical tractability would be to use the oligomorphic approximation proposed by Sasaki and Dieckmann (2011).

This approximation decomposes a multimodal trait distribution into a sum of unimodal distributions, each

corresponding to a morph. Applying Sasaki and Dieckmann (2011)’s approach, which was developed for a

large and well-mixed population, to a dispersal limited one, would be an interesting avenue of future research,

as well as including class-structure (e.g., age- or sex-structure).

To conclude, we have derived a quantitative genetics framework to study gradual evolution of multiple traits

under frequency-dependent selection and pleiotropic mutations when dispersal is limited. This framework is

especially relevant to study how associations within individuals between social traits emerge in response to

mutation and selection under limited dispersal. Our results could therefore help understand patterns of intra-

specific variation in social behaviour (such as behavioural syndromes, Dall et al., 2004, Dingemanse et al., 2012;

social niche specialisation, Bergmüller and Taborsky, 2007, Montiglio et al., 2013; or social division of labour,

Boehm, 2002, Wright et al., 2014), which are increasingly thought to be ecologically significant (Bolnick et al.,

2011, Wolf and Weissing, 2012, Sih et al., 2012, Canestrelli et al., 2016, Chaturvedi et al., 2017, Estrela et al., 2019).

More broadly, by connecting different branches of theoretical evolutionary biology, from invasion analysis to

adaptive dynamics to quantitative genetics, the present framework further bolsters the notion that whatever

modelling approach is taken, natural selection cannot be divorced from kin selection when dispersal is limited

(Hamilton, 1964, Frank, 1998, Rousset, 2004, van Baalen M, 2013, Lehmann et al., 2016).
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Appendix

A Phenotypic distribution dynamics

In this appendix, we derive eq. (1) of the main text.

A.1 Process construction

We first lay the foundations of our analysis by describing how phenotypic evolution in our model population

(see section 2) is represented mathematically.

A.1.1 Markov chain

The phenotypic state, or state for short, of a group at given time point is given by the set of phenotypic values of

all individuals residing in that group, {z1, . . . ,zN} (where zi = {zi ,1, ..., zi ,n} ∈ Rn is the phenotype of individual

indexed i ∈ {1, . . . , N}). The state of each group in the population changes stochastically from one time period

to the next (i.e., after one iteration of the life cycle) due to selection, mutation and dispersal. We assume that

these changes can be modelled as a discrete time Markov chain on a continuous state space (as traits are con-

tinuous; see Meyn and Tweedie, 2009, for general state spaces). Because groups affect one another through

dispersal, the transition kernel of a group depends on the state of all the other groups. But since there is an

infinite number of groups and there is no isolation-by-distance (i.e., all groups are equally connected to one

another through dispersal), the infinite set of interacting Markov chains (one for each group) can be described

as a single Markov chain (for a focal group), whose kernel is a function of the expected value of the process (see

Chesson, 1981, 1984, for ecological models). In other words, we can focus on the stochastic dynamics of a focal

group and ignore the stochasticity stemming from groups other than the focal one.

A.1.2 Markov chain in terms of counting measures

Note that to describe the state of a focal group, the order of elements in {z1, . . . ,zN} does not matter (because

there is no class structure in our population, we do not care which specific individual carries a given pheno-

type within a group). What matters is how many individuals carry which phenotypes. We can thus represent

the state of the focal group by a function, a counting measure, that counts the number of individuals with phe-

notypes that belong to an arbitrary set. Specifically, the counting measure, denoted µ, takes a subset E ⊆ Rn

and sends it to a non-negative integer by counting the number of individuals within the focal group with phe-

notypes that belong to E according to the following definition

µ(E) =
N

∑
i=1

δzi (E), (A-1)

where δ is the dirac measure,

δzi (E) =
⎧⎪⎪⎨⎪⎪⎩

1, if zi ∈ E ;

0, otherwise,
(A-2)

(p. 51 of Harris, 1963, p. 3 of Daley and Vere-Jones, 2003; see also pp. 228-229 of Bürger and Bomze, 1996 for

further formal considerations on using counting measures to describe a population under the continuum-of-

alleles model). Applied to a single phenotypic value z = {z1, ..., zn} ∈ Rn , where za is the value of trait a, µ(z)
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returns the number of individuals with phenotype z, and applied to the whole set of possible phenotypic values,

it returns group size, µ(Rn) = N .

Under definition eq. (A-1), each possible state that a group can assume is uniquely determined by a specific

counting measure, i.e., for each unordered set of N vectors in Rn , there exists a unique counting measure (p. 52

of Harris, 1963 and p. 7 of Daley and Vere-Jones, 2003). We can therefore study the dynamics of the state of the

focal group by studying the dynamics of its equivalent counting measure (Daley and Vere-Jones, 2003, p. 13-

15). So, if St denotes the (random) counting measure of a focal group at time period t , we can study the Markov

chain {St} on the space of all finite counting measures, which we write as S . This type of construction has

so far primarily been used to study phenotypic evolution in populations that are well-mixed and when time is

continuous (e.g., Bürger and Bomze, 1996, Oechssler and Riedel, 2001, Champagnat et al., 2006, Champagnat

and Lambert, 2007; but see Morale et al., 2005, Simon, 2008, for populations in explicit space).

A.1.3 State dynamics

To describe the stochastic dynamics of the state of a focal group, we let

φt(T ) = Pr[St ∈ T ] , (A-3)

denote the probability that a focal group is in a state that belongs to a subset T ⊆ S at time period t (equivalent

to eq. 3.3 of Harris, 1963, p. 55). Since there is an infinite number of groups, φt(T ) also gives the distribution

of group states in the whole population. The dynamics φt(T ) are governed by the Markov kernel transition

function,

P(T ∣µ;φt) = Pr[St+1 ∈ T ∣St =µ;φt ] , (A-4)

which is the probability that a group will be in a state that belongs to a subset T ⊆ S at time period t + 1,

given that it was in state µ at time period t and that the population distribution of states is φt (this is a non-

homogeneous Markov chain, eq. 6.1 of Harris, 1963, p. 60).

State dynamics, or the probability that the focal group is in a state that belongs to T ⊆ S at time period t+1, can

then be written as

φt+1(T ) = ∫
S

∫
T

P(µ′∣µ;φt)φt(µ)dµ′dµ, (A-5)

i.e., the sum of weighted probabilities of going from all states µ ∈ S to states µ′ ∈ T . Because one iteration of

the life cycle (from t to t +1) encompasses many events, like selection, mutation, and dispersal, the transition

kernel for our model is difficult to characterise (studies like Champagnat et al., 2006, are capable of constructing

explicit transition kernels by considering time steps small enough so that only one event can occur per step).

To model the evolutionary process in a more practical way, we will focus on the dynamics of the distribution of

phenotypes across the entire population rather than on the dynamics of the distribution of group statesφt(T ).

A.2 Recurrence for the phenotypic distribution

The distribution of phenotypes across the entire population at time t is given by the density function

pt(z) = ∫
S

µ(z)
N

φt(µ)dµ, (A-6)
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where µ(z)/N is the frequency of individuals with phenotype z within a group in state µ (recall that all groups

have the same size N ). Using eq. (A-5), the phenotypic distribution at time period t +1 can be written as

pt+1(z) = ∫
S

µ(z)
N

φt+1(µ)dµ = 1

N ∫
S

∫
S

µ′(z)P(µ′∣µ;φt)φt(µ)dµ′dµ = 1

N ∫
S

λµ(z,φt)φt(µ)dµ, (A-7)

where

λµ(z,φt) = ∫
S

µ′(z)P(µ′∣µ;φt)dµ′ (A-8)

is the expected number of individuals with phenotype z residing in a focal group at time t +1, given that this

focal group was in state µ at time t (and the population state distribution was φt ). We can decompose this

expected number as

λµ(z,φt) =λP
µ(z,φt)+λI

µ(z,φt), (A-9)

where λP
µ(z,φt) is the expected number of philopatric individuals (i.e., surviving adults or offspring that have

remained in their natal group) and λI
µ(z,φt) is the expected number of immigrant offspring (i.e., coming from

other groups) with phenotype z. We aim to express these expected numbers in terms of the fitness of individuals

at time t .

A.2.1 Individual fitness

The number, λP
µ(z,φt), of philopatric individuals with phenotype z can be expressed in terms of fitness com-

ponents of individuals at time t as

λP
µ(z,φt) = ∫

Rn

µ(z′)wP
µ(z′,φt)u(z′,z)dz′, (A-10)

where wP
µ(z′,φt) is philopatric fitness: it is the expected number of offspring produced by a single individual

(including itself if it survives) bearing z′ a time t (given that it resides in a state µ group); and u(z′,z), is the

p.d.f. for the event that the offspring produced by an individual with phenotype z′ has phenotype z. Note that

we assume that surviving adults and offspring mutate alike. While this is relevant to unicellular organisms,

an application specific to multicellular organisms would require distinguishing between two components of

philopatric fitness: adult survival and offspring production. This would only complicate eq. (1) but would not

affect our other results presented in the main text (eq. 3 onwards) as we later assume that mutations are rare,

so that the chances of mutating during an individual’s lifetime would be unlikely (Appendix B.1.2).

Likewise, we can write the expected number of immigrant offspring as

λI
µ(z,φt) = ∫

Rn

∫
S

µ′(z′)wD
µ,µ′(z′,φt)u(z′,z)φt(µ′)dµ′dz′, (A-11)

where wD
µ,µ′(z′,φt) is the expected number of successful emigrant offspring of a single individual with pheno-

type z′, given that it resides in a group in state µ′ ∈ S , and that the colonized group (i.e., the group the offspring

lands in) was in state µ at time t .

Substituting eqs. (A-10) and (A-11) into eq. (A-9), which is in turn substituted into eq. (A-7), the phenotypic

distribution at t +1 reads as

pt+1(z) = 1

N ∫
S

∫
Rn

⎛
⎝
µ(z′)wP

µ(z′,φt)+∫
S

µ′(z′)wD
µ,µ′(z′,φt)φt(µ′)dµ′

⎞
⎠

u(z′,z)dz′φt(µ)dµ. (A-12)
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By exchanging integral variables µ and µ′ in the second summand within brackets, we obtain

pt+1(z) = 1

N ∫
S

∫
Rn

µ(z′)(wP
µ(z′,φt)+wD

µ (z′,φt))u(z′,z)dz′φt(µ)dµ, (A-13)

where

wD
µ (z′,φt) = ∫

S

wD
µ′,µ(z′,φt)φt(µ′)dµ′ (A-14)

is the expected number of successful dispersing offspring produced by an individual with phenotype z′, given

that this individual resides in a group in state µ at time t .

Individual fitness is then defined as

wµ(z′,φt) = wP
µ(z′,φt)+wD

µ (z′,φt), (A-15)

which gives the expected number of successful offspring produced by an individual with phenotype z′, given

that this individual resides in a group in state µ at time t (and the population state distribution was φt ). In

terms of this individual fitness function, the phenotypic distribution at time t +1 (eq. A-13) reads as

pt+1(z) = 1

N ∫
S

∫
Rn

µ(z′)wµ(z′,φt)u(z′,z)dz′φt(µ)dµ. (A-16)

A.2.2 Lineage fitness

To go from eq. (A-16) to eq. (1) of the main text, let us define

W(z′,φt) = ∫
S

wµ(z′,φt)qt(µ∣z′)dµ, (A-17)

where

qt(µ∣z′) =
µ(z′)

N

φt(µ)
pt(z′)

(A-18)

is the p.d.f. for the event that an individual resides in a group in state µ at time t given that this individual bears

phenotype z′. In other words, qt(µ∣z′) gives the probability that an individual, randomly sampled at time t

from the collection of individuals with phenotype z′ in the population (the “z′-lineage”), resides in a group in

a state µ. As such, W(z′,φt) (eq. A-17) is the expected fitness of a member of the z′-lineage at time t (where

expectation is taken over all possible groups this member can belong to) and a multi-allelic version of lineage

fitness (Lehmann et al., 2015, Mullon et al., 2016, Lehmann et al., 2016).

Substituting eq. (A-17) into eq. (A-16), we obtain that the individual phenotypic density distribution is

pt+1(z) = ∫
Rn

W(z′,φt)u(z′,z)pt(z′)dz′, (A-19)

which combines the forces of mutation and selection on phenotypic change. To start disentangling these, note

that when the probability of a mutation is independent from parental phenotype, the p.d.f. for the event that

the offspring of an individual with phenotype z′ has phenotype z can be expressed as

u(z′,z) = (1−ν)δ(z′−z)+νv(z′,z), (A-20)

where ν is the probability that an offspring has a mutant phenotype (i.e., 1−u(z,z) = ν for all z), δ(z′−z) is the

Dirac delta function, and v(z′,z) is the conditional probability of mutating from z′ to z given that a mutation

has occurred. So the first term of eq. (A-20) captures the event of no mutation, in which case the offspring
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has the same phenotype than its parent, and the second term captures the event of a mutation. Substituting

eq. (A-20) into eq. (A-19), we finally obtain eq. (1) in the main text, as required.

B The dynamics of trait means and variance-covariance

Here, we derive eqs. (3)-(7) of the main text, which govern the closed dynamics of trait means and variance-

covariance. As mentioned in the main text, this derivation hinges upon several assumptions that we detail

below.

B.1 Weak selection and mutation

B.1.1 Weak selection

We first assume that the phenotypic distribution, pt(z), is peaked around the population mean z̄t =
∫Rn zpt(z)dz (i.e., the phenotypic variance is small). We can thus approximate lineage fitness, W(z,φt), as a

second-order Taylor expansion around z̄t . The computation of this approximation is straightforward and only

requires careful bookkeeping. But because it is long and tedious, we have relegated step-by-step calculations

to the online Supplementary Information and only report our result here.

We show (see eq. SI-49 in the Supplementary Information) that as a second-order Taylor expansion around z̄t ,

lineage fitness can be written as

W(z,φt) =W(z̄t ,φt)+
n

∑
a=1

ξt(za)sa,t(z̄t)+
1

2

n

∑
a=1

n

∑
b=1

ξt(za)ξt(zb)hab,t(z̄t)+O(ξ3
t ), (B-1)

where

W(z̄t ,φt) = 1− 1

2

n

∑
a=1

n

∑
b=1

σab,t hab,t(z̄t)+O(ξ3
t ) (B-2)

is the lineage fitness of the average phenotype z̄t ; ξt(za) = za − z̄a,t denotes the difference between a value za

and the average trait value a; σab,t = ∫Rn ξt(za)ξt(zb)pt(z)dz is the (co)variance among traits a and b in the

population; sa,t(z̄t) is the first-order effect of change in trait a away from z̄t on lineage fitness (i.e., sa,t(z̄t) =
∂W(z,φt)/∂za ∣z=z̄t ); hab,t(z̄t) is the second-order effect of a joint change in traits a and b away from z̄t on

lineage fitness (i.e., hab,t(z̄t) = ∂2W(z,φt)/∂za∂zb ∣z=z̄t ); and ξt is the maximum deviation between individual

trait value in the population and the population mean trait value at time t . We detail the first- and second-order

effects below.

The first-order effect is given by

sa,t(z̄t) =
∂w(zi ,z−i , z̄t)

∂zi ,a
∣

zi=z̄t
z−i=z̄t

+(N −1)r ○2,t(z̄t)
∂w(zi ,z−i , z̄t)

∂z j ,a
∣

zi=z̄t
z−i=z̄t

, (B-3)

where individual fitness, w(zi ,z−i , z̄t), is written as in the main text eq. (5) and r ○2,t(z̄t) is a neutral time-

dependent coefficient of pairwise relatedness (i.e., the probability that two individuals sampled at random

within a group at time t are identical-by-descent in the absence of selection).

The second-order effect is given by

hab,t(z̄t) = hw,ab,t(z̄t)+hr,ab,t(z̄t), (B-4a)
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with

hw,ab,t(z̄t) =
∂2w(zi ,z−i , z̄t)
∂zi ,a∂zi ,b

∣
zi=z̄t

z−i=z̄t

+ r ○2,t(z̄t)(N −1)∂
2w(zi ,z−i , z̄t)
∂z j ,a∂z j ,b

∣
zi=z̄t

z−i=z̄t

+ r ○2,t(z̄t)(N −1)
⎛
⎜⎜
⎝

∂2w(zi ,z−i , z̄t)
∂zi ,a∂z j ,b

∣
zi=z̄t

z−i=z̄t

+ ∂
2w(zi ,z−i , z̄t)
∂zi ,b∂z j ,a

∣
zi=z̄t

z−i=z̄t

⎞
⎟⎟
⎠

+ r ○3,t(z̄t)(N −1)(N −2)∂
2w(zi ,z−i , z̄t)
∂z j ,a∂zk,b

∣
zi=z̄t

z−i=z̄t

,

(B-4b)

and

hr,ab,t(z̄t) = (N −1)∂w(zi ,z−i , z̄t)
∂z j ,b

∣
zi=z̄t

z−i=z̄t

× ∂r2,t(z)
∂za

∣
z=z̄t

+(N −1)∂w(zi ,z−i , z̄t)
∂z j ,a

∣
zi=z̄t

z−i=z̄t

× ∂r2,t(z)
∂zb

∣
z=z̄t

, (B-4c)

where r ○3,t(z̄t) is the neutral time-dependent three-way relatedness (i.e., the probability that three individ-

uals sampled at random within a group at time t are identical-by-descent in the absence of selection); and

∂r2,t(z)/∂za is the marginal effect of a change in trait a on time-dependent pairwise relatedness.

The first (eq. B-3) and second (eq. B-4) order effects are the same as the selection gradient (eq. 6) and cor-

relational selection (eq. 7) of the main text, respectively, with the exception that relatedness coefficients are

time-dependent in eqs. (B-3) and (B-4) and independent in eqs. (6) and (7). We will specify in section B.2.2

below how we can get rid of this time dependence, but first, we need to make a further assumption.

B.1.2 Weak mutation

Second, we assume that mutations are rare, with the probability of mutating, ν, of the orderO(ξ2
t ). Under this

assumption, note that νW(z,φt) = ν+O(ξ4
t ) (as σab,t ∼ O(ξ2

t ) in eq. B-2). We can therefore rewrite eq. (1) of

the main text as

pt+1(z) =W(z,φt)pt(z)+ν
⎛
⎝∫
Rn

pt(z′)v(z′,z)dz′−pt(z)
⎞
⎠
+O(ξ3

t ), (B-5)

where the first term captures the effects of selection only, and the next term, the effects of mutation only.

Eq. (B-5) takes the same functional form as classical recurrence for the phenotypic distribution in well-mixed

populations when selection and mutation are weak (under the continuum-of-alleles model, e.g., eq. 1 of

Bürger, 1986; for fluctuating population size, see eq. 4.9 of Champagnat et al., 2006), but with lineage, W(z,φt),

instead of individual fitness. Next, we use eq. (B-5) to derive recurrence equations for the changes in mean trait

values and the phenotypic variance-covariance matrix over one time period.

B.1.3 Dynamics of the mean trait values

By definition, the change in the mean of trait a over one time period is

∆z̄a,t = z̄a,t+1− z̄a,t =∫
Rn

ξt(za)pt+1(z)dz. (B-6)
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Substituting eq. (B-5) into eq. (B-6), we obtain

∆z̄a,t =∫
Rn

ξt(za)W(z,φt)pt(z)dz+ν
⎛
⎝∫
Rn

∫
Rn

ξt(za)pt(z′)v(z′,z)dz′dz
⎞
⎠
+O(ξ4

t ), (B-7)

But since the effects of mutation are assumed to be unbiased, we have

∫
Rn

∫
Rn

ξt(za)pt(z′)v(z′,z)dz′dz = 0. (B-8)

Eq. (B-7) then reduces to

∆z̄a,t = z̄a,t+1− z̄a,t =∫
Rn

ξt(za)W(z,φt)pt(z)dz+O(ξ4
t ), (B-9)

which corresponds to the first term of the Price equation: the change in average trait value in a population is

equal to the covariance between trait and fitness (Price, 1970; see eq. 3 of Frank, 1997).

Substituting eq. (B-1) into eq. (B-9), we obtain that the change in the mean of trait a is,

∆z̄a,t =
n

∑
b=1

σab,t sb,t(z̄t)+
1

2

n

∑
b=1

n

∑
c=1

κabc,t hbc,t(z̄t)+O(ξ4
t ), (B-10)

which depends on the skew,

κabc,t =∫
Rn

ξt(za)ξt(zb)ξt(zc)pt(z)dz, (B-11)

in the population at time period t (in line with e.g., eq. 8a of Wakano and Iwasa, 2013 and eq. A20 b of Débarre

and Otto, 2016 in well-mixed populations; eq. 17 of Wakano and Lehmann, 2014 for the island model).

B.1.4 Dynamics of the phenotypic variance-covariance

By definition, the change in the (co)variance (within individuals) between two traits a and b over one time

period is

∆σab,t =σab,t+1−σab,t =∫
Rn

(za − z̄a,t+1)(zb − z̄b,t+1)pt+1(z)dz−σab,t

=∫
Rn

(ξt(za)ξt(zb)−σab,t)pt+1(z)dz−∆z̄a,t∆z̄b,t .
(B-12)

Substituting eq. (B-5) into the above, we obtain

∆σab,t =∫
Rn

(ξt(za)ξt(zb)−σab,t)W(z,φt)pt(z)dz

+ν
⎛
⎝∫
Rn

∫
Rn

ξt(za)ξt(zb)pt(z′)v(z′,z)dz′dz−σab,t
⎞
⎠
−∆z̄a,t∆z̄b,t +O(ξ5

t ).

(B-13)

The bracketed term in the second line of eq. (B-13), which captures the effects of mutations (from parents with

phenotype z′ to descendant with phenotype z), can be simplified by first writing out the product of deviations

in terms of parental phenotype as

ξt(za)ξt(zb) = ξt(z′a)ξt(z′b)+(za − z′a)(zb − z′b)+ξt(za)(zb − z′b)+ξt(zb)(za − z′a), (B-14)
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and second, by noting that since mutations are assumed to be unbiased, the covariance between parental

phenotype and mutation effect is zero:

∫
Rn

(ξt(za)(zb − z′b)+ξt(zb)(za − z′a))v(z′,z)dz = 0. (B-15)

Using eqs. (B-14)-(B-15), the effect of mutations in eq. (B-13) can then be written as

∫
Rn

∫
Rn

ξt(za)ξt(zb)pt(z′)v(z′,z)dz′dz =∫
Rn

∫
Rn

(ξt(z′a)ξt(z′b)+(za − z′a)(zb − z′b))pt(z′)v(z′,z)dz′dz

=σab,t +σm
ab ,

(B-16)

where we have defined, σm
ab = ∫Rn(za−z′a)(zb−z′b)v(z′,z)dz, as the (co)variance in mutational effects on traits

a and b. Substituting eq. (B-16) into eq. (B-13), we obtain that the change in the (co)variance between two traits

a and b over one time period is

∆σab,t = νσm
ab +∫

Rn

(ξt(za)ξt(zb)−σab,t)W(z,φt)pt(z)dz−∆z̄a,t∆z̄b,t +O(ξ5
t )

= νσm
ab +∫

Rn

ξt(za)ξt(zb)(W(z,φt)−1)pt(z)dz−∆z̄a,t∆z̄b,t +O(ξ5
t ),

(B-17)

where to go from the first to the second line, we have used the fact that mean lineage fitness is one:

∫Rn W(z,φt)pt(z)dz = 1 (since the population size is constant).

Substituting eq. (B-1), and the change in mean, eq. (B-10), into eq. (B-17), we obtain after some re-

arrangements that the one-generational change in phenotypic (co)variance between traits a and b is

∆σab,t = νσm
ab +(W(z̄,φt)−1)σab,t +

n

∑
c=1

κabc,t sc,t(z̄t)

+ 1

2

n

∑
c=1

n

∑
d=1

σabcd ,t hcd ,t(z̄t)−
n

∑
c=1

n

∑
d=1

σac,tσbd ,t sc,t(z̄t)sd ,t(z̄t)+O(ξ5
t ),

(B-18)

which depends on the fourth central moment of the phenotypic distribution,

σabcd ,t =∫
Rn

ξt(za)ξt(zb)ξt(zc)ξt(zd)pt(z)dz (B-19)

(in line with e.g., eq. 8b of Wakano and Iwasa, 2013 and eq. A24 b of Débarre and Otto, 2016 in well-mixed

populations; eqs. B1-B8 of Wakano and Lehmann, 2014 for the island model with a single trait).

B.2 Closure assumptions

Finally, we close the dynamical system for the means and (co)variances (given by eqs. B-10 & B-18). We achieve

this closure in two steps.

B.2.1 Normal closure

First, we assume that the phenotypic distribution, pt(z), is normal. Under this assumption, the skew in the

phenotypic distribution is zero, κabc,t = 0, and the fourth central moments can be expressed in terms of the

(co)variances, σabcd ,t =σab,tσcd ,t +σac,tσbd ,t +σad ,tσbc,t . Substituting these relationships into eqs (B-10) and
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(B-18), we obtain that the one-generational changes in means and covariances are respectively given by

∆z̄a,t =
n

∑
b=1

σab,t sb,t(z̄t)+O(ξ4
t )

∆σab,t = νσm
ab −

n

∑
c=1

n

∑
d=1

σac,tσbd ,t sc,t(z̄t)sd ,t(z̄t)+
1

2

n

∑
c=1

n

∑
d=1

(σac,tσbd ,t +σad ,tσbc,t)hcd ,t(z̄t)+O(ξ5
t ).

(B-20)

In vector and matrix form, eq. (B-20) corresponds to eq. (3) of the main text, except that in eq. (B-20), the

selection coefficients depend on time t (due to time-dependent relatedness coefficients, r ○2,t(z̄t), r ○3,t(z̄t), and

∂r2,t(z)/∂za). We get rid off of this dependency and finally achieve closure in the next section.

B.2.2 Quasi-equilibrium

Our second step to close the dynamical system eq. (B-20) is to assume that dispersal is strong enough (rela-

tive to selection) so that genetic associations between individuals within groups reach their steady-state val-

ues before any significant changes has occurred in the phenotypic distribution, pt(z), at the population level.

This quasi-equilibrium assumption, which is frequently used in population genetic and social evolution the-

ory (e.g., Kimura, 1965a, Nagylaki, 1993, Kirkpatrick et al., 2002, Roze and Rousset, 2005, Lehmann et al., 2007,

Roze and Rousset, 2008) is in line with our assumption that selection is weak. It entails that we can eval-

uate r ○2,t(z̄t), r ○3,t(z̄t), and ∂r2,t(z)/∂za in eqs. (B-3)-(B-4) at their quasi-equilibrium, i.e., we take the limits

limτ→∞ r ○2,τ(z̄t) = r ○2 (z̄t), limτ→∞ r ○3,τ(z̄t) = r ○3 (z̄t), and limτ→∞∂r2,τ(z)/∂za ∣z=z̄t = ∂r2(z)/∂za ∣z=z̄t , while hold-

ing pt(z) constant (we thus denote by r ○2 (z̄t),r ○3 (z̄t), and ∂r2(z)/∂za ∣z=z̄t , the steady-state values of neutral

pairwise relatedness, neutral three-way relatedness, and the first-order perturbation of pairwise relatedness,

respectively). Substituting these steady-states into the selection coefficients eqs. (B-3)-(B-4) (now independent

of time so written as sa(z̄t) and hab(z̄t)), which are in turn substituted into eq. (B-20), we finally obtain the

closed dynamical eqs. (3) of the main text.

Computing relatedness coefficients. Computing relatedness coefficients under neutrality (i.e., r ○2 (z̄t),

r ○3 (z̄t)), which is standard in population genetics, uses identity-by-descent arguments (e.g., Karlin, 1968, Rous-

set, 2004). When generations are non-overlapping (i.e., a Wright-Fisher life cycle), for example, the relevant

relatedness coefficients for our approach are given by

r ○2 (z̄t) =
(1−m)2

N −(N −1)(1−m)2

r ○3 (z̄t) =
(1−m)3(1+3(N −1)r ○2 (z̄t))
N 2−(N −1)(N −2)(1−m)3

,

(B-21)

(e.g., eqs. 12a & 12b of Ohtsuki, 2010; see also Table 1 of Mullon et al., 2016 for the Moran model). Calculating

the first-order effect of selection on pairwise relatedness, ∂r2(z)/∂za , however, is more complicated. Under the

quasi-equilibrium assumption, a perturbation of genetic associations between individuals will depend on first-

order perturbations of individual fitness and neutral relatedness coefficients (see Roze and Rousset, 2008 for a

general treatment, in particular their eq. 67). So far, the first-order effect of selection on pairwise relatedness,

∂r2(z)/∂za , has been explicitly derived for two standard life-cycles, the semelparous Wright-Fisher life-cycle

(in which all adults die after reproduction; see eq. 18 of Ajar, 2003 and eq. 28 of Wakano and Lehmann, 2014)

and the iteroparous birth-death Moran life-cycle (in which a single adult dies after reproduction in each group;
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see eq. 14 of Mullon et al., 2016). In both cases, the effect of selection on relatedness can be written as

∂r2(z)
∂za

∣
z=z̄t

= κ r ○2 (z̄t)
1−m

[[1+(N −1)r ○2 (z̄t)]
∂wP(zi ,z−i , z̄t)

∂zi ,a
∣

zi=z̄t
z−i=z̄t

+[2r ○2 (z̄t)+(N −2)r ○3 (z̄t)](N −1)∂wP(zi ,z−i , z̄t)
∂z j ,a

∣
zi=z̄t

z−i=z̄t

]
(B-22)

where κ = 2 for the Wright-fisher and κ = 1 for the Moran life cycle (watch out for an unfortunate typo in eq. 15

of Mullon et al., 2018, which has “κ = N ” under the Moran life cycle).

C Individual-based simulations

We performed individual based simulations for a population composed of Nd groups, each populated by N

individuals, using Mathematica 11.0.1.0 (Wolfram Research, 2016). Starting with a monomorphic population,

we track the evolution of the multidimensional phenotypic distribution under the constant influx of muta-

tions. Each individual i ∈ {1, . . . , NdN} is characterised by two traits (zi ,1, zi ,2). At the beginning of a genera-

tion, we calculate the fecundity fi of each individual according to its traits and those of its neighbours (using

eq. 14). Then, we form the next generation of adults by sampling N individuals in each group with replacement

according to parental fecundity, but to capture limited dispersal, the fecundity of each individual from the

parental generation is weighted according to whether or not they belong to the group on which the breeding

spot is filled: if an individual belongs to the same group in which a breeding spot is filled, its weighted fecun-

dity is fi (1−m), where m is the dispersal probability; if it belongs to another group, its weighted fecundity is

fi m/(Nd −1) (as a disperser is equally likely to reach any other group, it lands with probability 1/(Nd −1) in

a focal group). Once an individual is chosen to fill the breeding spot, it mutates with probability ν, in which

case we add to parental values a perturbation that is sampled from a multivariate normal distribution with

mean (0,0) and variance-covariance matrix (σ
m
11 σ

m
12

σm
12 σ

m
22
). The resulting phenotypic values are truncated to remain

between 0 and 4. We repeat the procedure for a fixed number of generations (see Figures for parameter values).
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