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Abstract 

Computational modeling plays an important role in modern neuroscience research. 

Much previous research has relied on statistical methods, separately, to address two problems 

that are actually interdependent. First, given a particular computational model, Bayesian 

hierarchical techniques have been used to estimate individual variation in parameters over a 

population of subjects, leveraging their population-level distributions. Second, candidate 

models are themselves compared, and individual variation in the expressed model estimated, 

according to the fits of the models to each subject. The interdependence between these two 

problems arises because the relevant population for estimating parameters of a model depends 

on which other subjects express the model. Here, we propose a hierarchical Bayesian 

inference (HBI) framework for concurrent model comparison, parameter estimation and 

inference at the population level, combining previous approaches. We show that this 

framework has important advantages for both parameter estimation and model comparison 

theoretically and experimentally. The parameters estimated by the HBI show smaller errors 

compared to other methods. Model comparison by HBI is robust against outliers and is not 

biased towards overly simplistic models. Furthermore, the fully Bayesian approach of HBI 

enables researchers to quantify uncertainty in group parameter estimates, for each candidate 

model separately, and to perform statistical tests on parameters of a population.  
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 Introduction 

Across different areas of neuroscience, researchers increasingly employ computational 

models for experimental data analysis. For example, decision neuroscientists use 

reinforcement learning and economic models of choice to analyze behavioral and brain 

imaging data in reward learning and decision-making tasks [1,2]. The field of computational 

psychiatry uses these models to characterize patients and people at the risk of brain disorders 

[3–6]. Neuroimaging studies use models of neural interaction, such as dynamic causal 

modeling [7,8], as well as abstract models to analyze brain signals [1,9]. The success of these 

efforts heavily depends on statistical methods making inference about validity and robustness 

of estimated parameters across individuals, as well as making inference on validity and 

generalizability of computational models. A key theoretical and practical issue has been 

capturing individual variation both in a model’s parameters and additionally in which of 

several candidate models a subject expresses, which may also vary from subject to subject. 

Computational models usually rely on free parameters, for example learning rate in 

reinforcement learning models, which often capture quantities of scientific interest but 

typically vary across individuals and must be estimated from data. A dataset includes a 

number of subjects, and often the question of interest is to characterize parameters in a 

population: Is choice consistency altered in patients with attention-deficit hyperactive 

disorders? Do cognitive enhancers, such as Ritalin, enhance learning rate at the population 

level? These questions are most naturally framed in terms of hierarchical models, which 

characterize both the population distributions over a model’s parameters, and also each 

individual subject’s parameters given the population distribution. Since these two levels are 

mutually interrelated, they are often estimated simultaneously, using methods like expectation 

maximization or sampling (MCMC). For example, the hierarchical parameter estimation 

(HPE) procedure [10,11] regularizes individual estimates according to group statistics, 

producing better individual estimates and permitting reliable group-level tests. Because 

subjects typically share underlying structure, hierarchical Bayesian approaches can leverage 

this this structure to yield better individual estimates, and to provide better predictions for 

unseen data, compared to approaches that fit each subject separately [12].   

A second, and seemingly logically prior, question is which of several candidate models 

provides the best explanation for the data. This is important both for providing the setting 

within which to do parameter estimation, and also for investigating questions of scientific 

interest. Are rodents’ reaction times best explained by independent or competing 

accumulators? Do compulsive gamblers rely more on model-free reinforcement learning 

compared to controls? Importantly, in principle (and apparently in practice) the model 
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expressed might also vary from subject to subject; thus modern model comparison techniques 

rely on estimating which of several models obtains for each subject [13]. Estimating such 

variation is important since by assuming that the same model obtains across all individuals 

(treating model identity as fixed effect) inflates significance for model comparison and makes 

it sensitive to outliers [13].  To estimate this variation, in turn, depends on the likelihood of 

each subject’s data given each model (and, thus, on each subject’s parameters for each model).  

Intuitively, evaluating whether a model is a good model for a subject’s data precedes 

estimation of its specific parameter values; and indeed previous research has used separate 

tools to solve these two problems. But statistically, the two questions are actually 

interconnected, because individual parameters and hence individual fit depend on which 

subjects belong to the population that expresses the model. Here, we address this challenge 

from a fully Bayesian viewpoint. This work addresses issues of statistical inference over both 

parameters and models, which have remained elusive with the previous hierarchical methods. 

Notably, although it is accepted (for the reasons discussed above) that the best-fitting 

model may vary from subject to subject, hierarchical parameter estimation (conducted 

separately) has typically assumed that the given model is expressed over all subjects, i.e. that 

it is a fixed effect. (And if multiple models are compared, these are each fit to the entire 

population.) This assumption biases parameter estimation, at both individual and group levels, 

because it entails that the estimated parameters for each individual subject equally affect 

group-level estimates, even though some members of the population may be better 

understood as expressing altogether different models. This same bias, in turn, affects the 

estimation of which subjects are best fit by each model.  

In this work, we introduce a hierarchical and Bayesian inference method, which solves 

these problems by addressing both model fitting and model comparison within the same 

framework using variational techniques. Furthermore, our fully Bayesian approach enables us 

to assess uncertainty and provide a rigorous statistical test for making inference about 

parameters of a model at the population level, an issue that has been incompletely addressed 

in some previous hierarchical models. This paper is structured as follows. First, we highlight 

the main theoretical advances of our approach. A full formal treatment is given in the 

appendix. We then apply the proposed method to synthetic choice datasets as well as an 

empirical dataset to demonstrate its advantages over previous methods. 
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Theory 

Consider a typical computational modeling study in which data of a group of subjects 

have been measured and a set of candidate models are considered as possible underlying 

computational mechanisms generating those data. Such studies have generally two main goals: 

1) to compare model evidence across competing models; 2) to estimate free parameters of 

models for each individual and their group-level distributions. All this is typically 

characterized in terms of inference in a hierarchically structured model of the data, which 

captures how each subject’s observations depend on their parameters, and the individual 

parameters on their group distribution. 

The HPE procedure [10,11] employs a hierarchical approach to define the priors based 

on statistics of the group. This method typically assumes that for a particular model 𝑘, all 

individual parameters are normally distributed, 

𝑝 ℎ$% = 𝑁𝑜𝑟𝑚𝑎𝑙(ℎ$%|𝜇$, 𝑉$) 

where ℎ$% is a vector of the free parameters of kth model for subject n, 𝜇$  and 𝑉$  are the 

mean and variance parameters, respectively, indicating the prior distribution over ℎ$%.  

HPE uses the expectation-maximization algorithm [14], a well-known iterative 

procedure, for obtaining estimating group parameters 𝜇$  and 𝑉$  and individual parameters 

ℎ$%. Every iteration of this algorithm alternates two steps: 1) an expectation step in which the 

individual parameters are estimated in light of the group-level distribution; and 2) a 

maximization step in which the group parameters, 𝜇$ and 𝑉$, are updated given the current 

estimates of the individual parameters. Importantly, this update weights the individual 

subjects’ estimates equally; for instance, the update for  𝜇$ is given by the average of subject 

level mean estimates (denoted 𝜃$%) across all subjects: 

𝜇$ =
1
𝑁

𝜃$%
%

 

where N is the number of subjects. 

Although HPE characterizes variation across subjects in the model parameters ℎ$% (that 

is, it treats those parameters as random effects), a critical assumption of the procedure is that 

the parameters for model k are estimated assuming that same model is responsible for 

generating data in all subjects. That is, the model identity is taken as a fixed effect, in contrast 

to random effects approach that assumes different models might be responsible for generating 

data in different subjects. The fixed effects assumption has two important implications: 1) for 
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parameter estimation, group parameters, the group mean 𝜇$ and variance 𝑉$, are influenced 

equally by all subjects, even those who would be better fit by some other candidate model 𝑗 ≠

𝑘; 2) for model comparison, the straightforward procedure (e.g. iBIC from [10,11]) is to 

compare models according to the sum of individual model evidences over all subjects, i.e. 

again treating the model identity as a fixed effect. Note that while it is possible to submit 

individual model evidence values (per subject and model) derived from HPE to a separate 

model comparison procedure that treats model identity as a random effect (such as random 

effects model selection [13]), these will be biased both from having been fit under the fixed 

effects assumption and also due to the optimization of the free group-level parameters. 

Altogether, violations of the fixed effects assumption can adversely influence both parameter 

estimation and model comparison.  

Here, we extend HPE’s generative model with another level of the hierarchy, 

specifying for each subject which model generated their data. This is governed by a subject-

specific multinomial random variable, itself drawn from a distribution controlling the 

proportion of each model in the population. This, in effect, merges the Bayesian model 

selection model from Stephan et al. [13] with HPE. We then lay out a procedure for joint 

inference over model identities and parameters, including quantifying the probability that 

each model is responsible for generating data for each subject. To achieve this goal, we take a 

full Bayesian approach in which the group parameters for each model, 𝜇$ and 𝑉$, are also 

random variables. This also gives us a straightforward way to quantify the level of certainty in 

group-level estimations. We use variational Bayes [15,16], an extended version of 

expectation-maximization [17], which is able to deal with multiple latent variables in a 

probabilistic model. Since HBI is a variational framework, the resulting algorithm (Appendix 

A.3) is an iterative algorithm. On every iteration, the HBI performs 4 steps: calculates the 

summary statistics, updates its estimates of the posterior over group parameters, updates its 

estimate of the posterior over each individual parameter and finally updates its estimates of 

responsibility of each model in generating each individual data. The algorithm and other 

important mathematical issues are given in appendix A. Here, we highlight three main results. 

The mathematical proofs are given in appendix B. 

As noted above, the HBI method estimates the probability of each subject’s dataset 

being generated by each model, or the responsibility of model k for generating data for 

subject n, 𝑟$%, which is expressed as (expected) probability. Larger values of 𝑟$% (i.e. close to 

1) indicate that model k is likely to be the true underlying model of the nth subject. In contrast, 

smaller values of 𝑟$% (close to 0) indicate that model k is unlikely to be the underlying model 
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for the nth subject. Based on the responsibilities, it is then possible to estimate number of 

subjects explained by each model, 𝑁$: 

𝑁$ = 𝑟$%
7

%89
 

Thus 𝑁$ is always less than number of subjects and indexes the predominance of model k in 

the population. Furthermore, the fraction 𝑁$/𝑁 always lies between 0 and 1 and is a useful 

and intuitive metric for model comparison.  

In practice, in many situations, researchers are interested in selecting a single “best” 

model (rather than relative comparisons among several) even in the face of variation in model 

identity across subjects. One way to accomplish this goal is to use 𝑁$  to compute the 

exceedance probability of each candidate model, a metric commonly used for model selection 

[13]. Exceedance probability is the probability that model k is more commonly expressed than 

any other model in the model space. Furthermore, the random effects approach enables us to 

quantify how likely the observed differences in model evidence is simply due to chance [18]. 

In this case, model selection is not statistically supported (although model comparison is 

valid). A metric called protected exceedance probability [18], which typically is more 

conservative than the exceedance probability, takes into account this possibility (see 

Appendix A.7). Altogether, the random effects approach results in a more robust model 

comparison and model selection, one less driven by outliers than fixed-effects methods. Note 

that previous attempts to do model selection at group level using exceedance probability 

assumed no hierarchy for parameter estimation, thus did not deal with the issue that parameter 

estimation was not properly conditionalized by group distributions based on model identity. 

We noted above that an issue with the HPE is that the influence of subjects on the 

group parameters is equal. However, the comparable parameter in our approach, the mean of 

posterior distribution over 𝜇$, denoted by 𝑎$, shows an important property: A subject’s effect 

on this parameter depends on the degree to which the model is estimated to be the underlying 

model for that subject. Specifically, this parameter, 𝑎$, is updated at each iteration as: 

𝑎$ =
1

1 + 𝑁$
(𝑎<$ + 𝑟$%𝜃$%

%

) 

where 𝜃$%  is the mean of the individual posterior and 𝑎<$  is the prior mean over 𝜇$ . The 

important point in this equation is that 𝑎$ is a weighted average of individual parameters, in 

which the weights are the corresponding responsibilities, 𝑟$%. This is not specific to the group 

mean, but it is rather a general feature of our approach: contribution of model k to group 
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parameters is weighted according to the responsibility of model k in generating data in nth 

subject, 𝑟$%. 

As mentioned above, another issue that has been incompletely treated in HPE is related 

to inference on parameters of a fitted model at the population level. Statistically, one needs 

the uncertainty of the estimated group mean, 𝜇$ , to be able to make inference on the 

corresponding parameter at the group level. Since parameters fitted by the hierarchical 

parameter estimation method are not independent but instead regularized according to the 

variance given by data, one cannot employ regular statistical tests, such as t-test, to test 

whether a specific model parameter is “significantly” different from zero. Using those tests on 

such parameters is biased in favor of generating a significant p-value (more false positives). 

The HBI framework solves this problem by quantifying uncertainty of the posterior over the 

group parameter. Specifically, it is possible to show that the posterior over the group 

parameter, 𝜇$, takes the form of standard Student’s t-distribution centered at 𝑎$ with 𝑛$ =

1 + 𝑁$ as degrees of freedom. The resulting t-value takes an intuitive form:  

𝑡 =
𝜇$ − 𝑎$
𝑠$/ 𝑛$

 

where 𝑠$  is the empirical deviance statistics. Therefore, 𝑠$/ 𝑛$  plays the role of standard 

error, which we call it hierarchical error. Note that the degrees of freedom of the test depend 

on the number of subjects (i.e. evidence) in favor of model k given by 𝑁$ , not the total 

number of subjects. Other group statistics, 𝑎$  and 𝑠$ , are also weighted according to the 

responsibilities of model k in generating data of each subject (as formally obtained in 

Appendix A4). 

Results 

In this section, we apply the proposed HBI method to synthetic and empirical datasets 

and compare its performance with that of HPE, as well as with Laplace approximation 

procedure, a non-hierarchical inference (NHI) method estimating parameters for each subject 

independently according to some fixed, a priori priors [19–22]. The HBI is general and could 

be applied to any type of data, such as choice data, reaction times, physiological signals and 

neural data. Since we are primarily interested in models of choice data, we focus on decision-

making experiments. The details of simulations are given in the Supplementary Materials. 
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Model	comparison	and	parameter	estimation	

First, we simulated a dataset including 40 artificial datasets using two different learning 

models and a randomly generated reward sequence (binarized Gaussian random-walk). Both 

models maintain a value for each of the two possible actions and calculate a prediction error 

signal, δ, representing the difference between the seen reward and predicted value. On every 

trial, the action value gets updated according to the product of δ and a learning rate. The first 

model is a reinforcement learning model, in which the learning rate is a constant free 

parameter, α. The second model is a Kalman filter model in which the learning rate gradually 

decreases on every trial. The decreasing rate depends on a positive free parameter 

(representing observational noise), ω. Both models employ a softmax function together with 

an inverse-temperature parameter, β, to calculate the probability of each action according to 

corresponding expected values. Therefore, both models contain three free parameters and 

neither of them is nested within the other one.  

The reinforcement learning and Kalman filter models were then used to simulate 10 

and 30 artificial datasets, respectively. Parameters of these models were drawn randomly 

from normal distributions. Since parameters of these models have theoretical constrains, we 

used appropriate functions (sigmoid or exponential) to transform these randomly generated 

parameters. Using this procedure, we constructed a dataset of 40 artificial subjects, in which 

the true underlying model is known. We applied the HBI to this dataset to estimate 

parameters and model evidence given the sequence of actions. Simulations were repeated 20 

times. 

Figure 1 shows the results of the hierarchical Bayesian inference on this dataset. We 

first reported protected exceedance probability (Figure 1A), which represents the probability 

that each model is the most likely model across all subjects taking into account the null 

possibility that differences in model evidence is due to chance. This analysis revealed that the 

HBI has correctly identified the Kalman filter as the most likely model across the artificial 

datasets in all simulations with probability close to 1. Furthermore, HBI has indeed attributed 

about 10 and 30 artificial subjects to the reinforcement learning and Kalman filter models, 

respectively (Figure 1B). We then examined the performance of HBI in assigning the correct 

model at the individual level (Figure 1C). First, we found that the HBI has assigned the 

correct model to about 90% of all subjects (Figure 1C, inset). We then looked into the average 

of responsibilities for those artificial subjects whose underlying model was correctly assigned 

and for those cases whose model was erroneously assigned (Figure 1C). We found that the 

average of responsibilities estimated by HBI is about one for correctly identified cases and it 

is only slightly above chance for the rare cases that HBI failed to recognize the correct model. 
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This means that the HBI method was quite certain when it was successful in identifying the 

true model and uncertain in cases in which it failed to recognize the true model.  

We then compared performance of the HBI with the HPE method of Huys et al. [10,11] 

and NHI. In the latter, the model evidence across the group was quantified using random 

effects model comparison [13,18], which uses approximate individual evidence quantified by 

the Laplace approximation to compute group evidence. The model comparison of HPE is 

essentially fixed effects, in which evidence in favor of each model is equal to the sum of 

individual evidence measures quantified using local Laplace approximation and the penalty 

due to fitting group parameters [23] (see Supplementary Materials for details). In this set of 

simulations, all methods performed well in recognizing the most likely model (i.e. the 

Kalman filter) across all samples (Figure 1d), although the HPE performed worse than the 

other two models (failing 15% of simulations). In the next section, we examine limitations of 

HPE for model comparison more thoroughly.  

	

Figure 1. Performance of the HBI in a synthetic dataset. 10 and 30 artificial subjects were 

generated according to the reinforcement learning and Kalman filter models, respectively. A) 

Bayesian model selection using protected exceedance probabilities; B) Percentage of subjects 

explained by each model, estimated by the HBI. C) Uncertainty of HBI in estimation of 

responsibility for the correctly– and incorrectly– assigned subjects; Inset: percentage of 

correct assignment of the model by the HBI at the individual level. D) Comparison of 

accuracy of model selection with HPE and NHI; E, F) Error in estimating individual 

parameters of the reinforcement learning (E) and the Kalman filter model (F). Note that the 

errors are computed on the normally distributed parameters (not the transformed ones). The 
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We then investigated performance of these methods in parameter estimation. 

Estimation error, defined as the absolute difference between estimated parameters and true 

parameters used for generating data, was calculated. For both models and all parameters, the 

average error in parameter estimation by HBI was smaller than those by HPE and NHI 

(Figure 1E and 1F). Furthermore, HPE performed better than NHI in estimation across all 

parameters. These results were indeed theoretically expected. Unlike NHI, both HPE and HBI 

use group statistics to regularize parameter estimation for each individual. However, while 

HPE uses all subjects equally to regularize group parameters of a model, HBI weights 

individuals according to its belief that that model is responsible in generating each individual 

dataset. Further simulation analyses, in which the ratio of subjects expressing each model 

were different, confirmed these results (Supplementary Figure 1-2). 

Robustness	of	model	comparison	to	outliers	

We noted before that fixed effects model comparison using HPE is very sensitive to 

outliers. This is because fixed effects approaches sum up evidence across all subjects. If a few 

outlier subjects show large evidence in favor of a model, those usually impact model 

comparison adversely. In contrast, the HBI takes a random effects approach, in which the 

contribution of every subject in favor of each model is normalized according to the 

corresponding responsibility, which is a relative evidence measure with a maximum of one. 

In this section, we show a simulation analysis to demonstrate this point. 

We took the same datasets generated in the previous simulations by the reinforcement 

learning and Kalman filter models. We then identified one outlier subject in that dataset that 

showed a large evidence in favor of the reinforcement learning model. This outlier subject 

was then used to create datasets with 1, 2 or 3 outliers by copying it 1, 2 or 3 times, 

respectively, and adding those copies to the original dataset. 

We then compared the performance of NHI, HPE and HBI. Note that while NHI and 

HBI perform random effects model comparison, HPE perform a fixed effects model 

comparison. As shown in Figure 2, whereas the performance of HPE is very sensitive to 

outliers, the random effects model comparison of NHI and HBI are robust. Note that although 

estimation error is defined as the absolute difference between estimated parameters and the 

true parameters. In all plots, error-bars are standard errors of the mean obtained across 

simulations 20 times. Abbreviations: HBI, hierarchical Bayesian inference; HPE, hierarchical 

parameter estimation; NHI, non-hierarchical inference; RL, reinforcement learning; KL, 

Kalman filter.  
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NHI performs well in model selection here, we will demonstrate its limitations for model 

comparison in the next section. 

	

Figure 2. Sensitivity of model selection to outliers. The same 20 datasets simulated in the 

previous section were used as the base datasets (i.e. 0 outliers) and the effects of adding 1, 2 

or 3 outliers to each dataset were examined. The HPE is severely sensitivity to outliers, while 

the other two (random effects) methods are robust. 

Model	comparison	and	parameter	estimation	in	nested	models		

We then considered a challenging problem in which the number of free parameters in 

two models is different and one model is a special case of the other one. Such problems are 

ubiquitous in studies using computational models and inference using hierarchical approaches 

is typically even more advantageous in this setting, as the variance explained by such models 

are more likely to overlap. 

The first model was again assumed to be a reinforcement learning model with a 

constant learning rate parameter, α. The second model, however, was assumed to contain two 

different learning rates depending on whether the prediction error is positive or negative 

(dual-α reinforcement learning, commonly used to assess asymmetries in learning from 

positive vs negative prediction errors [24,25]). Both models use the same choice function, i.e., 

a softmax function with an inverse-temperature parameter, β. The reinforcement learning and 

the dual-α reinforcement learning models were then used to simulate 10 and 30 artificial 

datasets, respectively. Note that the reinforcement learning model is a nested case of the dual-

α reinforcement learning, in which 𝛼B = 𝛼C.  

As Figure 3 shows, the HBI method was successful in model selection (i.e. recognizing 

the most likely model, Figure 3A) and attributed about 10 and 30 artificial subjects to the 
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reinforcement learning and dual-α reinforcement learning models, respectively (Figure 3B). 

At the individual level, HBI assigned the correct model to each individual in 95% of all 

subjects and was also quite certain when it was successful in selecting the right model (Figure 

3C). In contrast, in those rare cases in which HBI failed to recognize the correct underlying 

model, it assigned responsibility that was only slightly above chance.  

Next, we compared performance of the HBI with that of NHI and HPE. Here, NHI fails 

to choose correctly the most likely model in 75% of simulations. This is because non-

hierarchical methods typically over-penalize more complex models, because they neglect the 

structure of the data. In particular, the issue is that a model with one additional parameter 

adds one independent free parameter per subject in the non-hierarchical case, which carries an 

excessive overfitting penalty, whereas these parameters are pooled by being drawn from a 

common distribution in the hierarchical setting, ensuring less overfitting and a more moderate 

complexity penalty. The HPE method performs much better, with a correct model selection in 

80% of simulations. The HBI is successful in model selection in all simulations. We again 

examined performance of these methods in parameter estimation by calculating the absolute 

difference between estimated parameters and true parameters used for generating data. We 

found that errors in parameters estimated by HBI were smaller than those estimated by NHI 

or HPE for all parameters and both models, albeit the degree of improvement varies for 

different parameters. Further simulation analyses, in which the ratio of subjects expressing 

each model were different, confirmed these results (Supplementary Figure 3-4). 

Note that the estimation errors of HBI are much smaller than those of HPE. Consider, 

for example, the learning rate parameter of the reinforcement learning model, α (Figure 3E). 

In generating the datasets for this analysis, α was assumed to be smaller than the learning rate 

parameters of the dual-α reinforcement learning model. Since the HPE uses average statistics 

across all subjects (even those generated by the dual-α model) to constrain parameters, the 

group average estimate of α by HPE was much larger than the true average. Therefore, the 

individual estimates of α by HPE are also tend to be larger than the true parameters, resulting 

in larger estimation error. The HBI does not have this problem because the group statistics are 

estimated using a weighted average, in which the weights are the corresponding 

responsibilities of models. 
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Figure 3. Performance of the HBI in a synthetic dataset. 10 and 30 artificial subjects were 

generated according to the reinforcement learning and dual-α reinforcement learning models, 

respectively. A) Bayesian model selection using protected exceedance probabilities; B) 

Percentage of subjects explained by each model, estimated by the HBI; C) Comparing 

uncertainty of HBI in estimation of responsibility for the correctly– and incorrectly– assigned 

subjects; D) Comparing accuracy of model selection by NHI, HPE, and HBI; E, F) Error in 

estimating individual parameters of the reinforcement learning (E) and the dual-α 

reinforcement learning model (F). Note that the normalized estimation errors are computed on 

the normally distributed parameters (not the transformed ones). The estimation error is 

defined as the absolute difference between estimated parameters and the true parameters. In 

all plots, error-bars are standard errors of the mean obtained across simulations 20 times. 

Abbreviations: HBI, hierarchical Bayesian inference; HPE, hierarchical parameter estimation; 

NHI, non-hierarchical inference; RL, reinforcement learning. 

It is also important to note that all these methods are sensitive to amount of within-

subject data (i.e. the number of trials). Importantly, the HBI is even more useful when there 

are limited number of trials (Figure 4). In this case, non-hierarchical methods, such as NHI, 

over-penalize complex models even more, as there are less data-points per subject to justify 

additional parameters. Furthermore, in this case, the HPE model selection performance is 

even more sensitive to outliers as it is more likely to have outliers when data per subject is 

limited (Figure 4A-C).  

Note that hierarchical methods are also sensitive to amount of between-subject data (i.e. 

the number of subjects expressing each model). The difference between HPE and HBI is 
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marginal in this case, although the greater benefit of HBI is when there are limited number of 

subjects as HPE is more likely to be impacted by outliers in those cases (Supplementary 

Figures 5). Furthermore, our simulations showed that when there is only one model in the 

model space, both HPE and HBI show (similar amount of) benefit compared with NHI in 

estimating parameters when there are less amount of within-subject data (Supplementary 

Figures 6), as reported in previous works [12].  

	

Figure 4. Performance of the HBI as a function of number of trials (T). 10 and 30 artificial 

subjects were generated according to the reinforcement learning and dual-α reinforcement 

learning models, respectively. These simulations were repeated 3 times with different number 

of trials per subject. A-C) Accuracy of model selection by NHI, HPE, and HBI for T=50, 

T=100 and T=200 trials; D-F) Error in estimating individual parameters of the reinforcement 

learning. G-I) Error in estimating individual parameters of the dual-α reinforcement learning. 

Note that the estimation errors are computed on the normally distributed parameters (not the 

transformed ones). The estimation error is defined as the absolute difference between 

estimated parameters and the true parameters. In all plots, error-bars are standard errors of the 

mean obtained across simulations 20 times. Abbreviations: HBI, hierarchical Bayesian 

inference; HPE, hierarchical parameter estimation; NHI, non-hierarchical inference; RL, 

reinforcement learning. 

Inference	about	model	parameters	at	the	population	level	

We then focused on inference about parameters of a fitted model at the population level, 

and tested performance of the HBI using two simulation analyses. We focus on an example 
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that represents a typical inference problem at the population level for parameters of a 

computational model. 

Consider a situation in which subjects should learn stimulus-action-outcome 

contingencies. The subject’s task is to either to make a go-response by approaching the 

stimulus or to do nothing (i.e. no-go response). Furthermore, assume that the stimulus is 

either emotionally appetitive or aversive (e.g. a happy or an angry face cue), but the outcome 

value is independent of the emotional content of the stimulus. A question of interest is 

whether the emotional content (happy versus angry) of stimuli induces opposite biases in 

making a go response, regardless of action values (a form of Pavlovian to instrumental 

transfer). This is easy to test using a reinforcement learning model with one additional bias 

parameter, b (we call this model biased reinforcement learning). The bias is assumed to be +b 

for the emotionally appetitive stimulus and –b for the emotionally aversive stimulus. Thus, 

for larger values of b, the subject has a tendency to choose a go response after seeing the 

emotionally appetitive stimulus and a no-go response after seeing the emotionally aversive 

stimulus.  

We simulated a dataset including 20 artificial subjects using this model and a randomly 

generated reward sequence (binarized Gaussian random-walk). Importantly, we assumed that 

the null hypothesis was true at the group level by drawing the bias parameter, b, randomly 

from a normal distribution with zero mean and variance of 1. A collection of 1000 datasets 

(each containing 20 artificial subjects) was simulated. The HBI method estimates the 

uncertainty of group mean parameters and corresponding degrees of freedom and gives the 

posterior belief about the group mean of parameters according to those estimates. One can 

then calculate the probability (p-value) that the estimated bias at the population level is 

generated by the null hypothesis. Note that in this example, all subjects are assigned to the 

biased reinforcement learning model as the model in the model space.  

Under the null hypothesis, the HBI theory indicates that the t-statistics, 𝑡 = DE
FE/ %E

, in 

which 𝑎$ is the posterior mean of group parameters, 𝑠$ is the empirical deviance statistics and 

𝑛$ = 1 + 𝑁$, has a standard t-student distribution with 𝑛$ as degrees of freedom. Therefore, 

we expect that the corresponding p-value takes a uniform distribution between 0 and 1. This 

simulation analysis showed that the resulting p-value for the bias parameter indeed took a 

uniform distribution (Figure 5A). 

Now we consider situations in which there is more than one model in the model space. 

Here, the HBI first infers the number of subjects explained by each model, 𝑁$ , and then 

quantifies hierarchical errors and degrees of freedom according to 𝑁$ and the empirical group 
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mean and deviance statistics. Therefore, we considered the same stimulus-action-outcome 

learning experiment as above and simulated a dataset including 40 artificial subjects. Data for 

half of subjects were generated using the same biased reinforcement learning model and data 

for the other half were generated using the dual-a reinforcement learning model explained in 

previous simulations. We again assumed that the null hypothesis is true at the group level by 

drawing the bias parameter randomly from normal distribution with zero mean and variance 

of 1. Again, a collection of 1000 datasets (each containing 40 artificial subjects) was 

simulated and the distribution of corresponding p-value was generated. Consistent with the 

theory, this simulation analysis showed that the resulting p-value for the bias parameter well 

follows a uniform distribution (Figure 5B). 

	

Figure 5. Performance of the HBI for statistical inference about model parameters at the 

population level. A bias parameter was generated under the null hypothesis at the group level 

in two simulations where there is only one model in the model-space (A) or there are more 

than one model in the model-space (B). Under the null-hypothesis, the resulting p-value of the 

group mean across all simulations is theoretically expected to have a uniform distribution. 

The distribution of estimated p-values by the HBI are plotted as a function of theoretical p-

value in bins with the length of 0.05. The error-bars are 95% confidence intervals for the 

binomial distribution.  
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Empirical	dataset:	HBI	reveals	meaningful	individual	differences	

We then applied the HBI method to empirical choice data from 31 subjects performing 

the two-step Markov decision task introduced by Daw et al. [26]. This task is a well-known 

paradigm to distinguish two behavioral modes, model-based and model-free learning [27–29]. 

Previous works have shown that there are important individual differences in this task [26,30], 

especially in the degree to which people employ a model-based strategy, and those 

differences are related to neuroanatomical [30,31], psychological [32], genetic [33] and 

psychiatric [34] trait scores. Daw et al. [26] have proposed three reinforcement learning 

accounts, a model-based, a model-free and their hybrid (which nests the other two and 

combines their estimates according to a weight parameter), to disentangle contribution of 

these two behavioral modes on choices. Here, we skip the details of the models and focus on 

application of the HBI to a model space consisting of model-free, model-based and hybrid 

accounts. The dataset used for this analysis have been reported elsewhere [30]. 

Before analyzing the empirical dataset, we did a simulation analysis of this task and 

model space. We verified that the HBI recovers the parameters of the models better than 

alternative methods. In particular, the critical weight parameter of the hybrid model, which 

determines the degree that each account influences behavior, was significantly better 

recovered by the HBI than the other methods (in all 20 simulations, HBI did better than both 

HPE and NHI, Supplementary Figure 7). We then applied the HBI on the empirical dataset of 

this task (Figure 6). As Figure 6B shows, consistent with previous findings on this task, the 

hybrid model accounts best for choices in this task with a protected exceedance probability 

close to 1. About 25 (%81 of all subjects) and 6 subjects have been assigned to the hybrid and 

model-based models, respectively, while the model-free took no responsibility (Figure 6C). 

The estimated group mean and the corresponding hierarchical errors of the hybrid model are 

plotted in Figure 6D. Table 1 shows the weighted average and standard deviation computed 

by the HBI for the hybrid model in which the weights are given by responsibilities taken by 

the hybrid model in explaining data of each individual subject. 
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Figure 6. Performance of the HBI in an empirical dataset. A) the two-step Markov decision 

task [26]: every trial of the task comprises two steps. On each trial, subjects first made a 

choice between two fractal stimuli leading to one of the two different second-stage sets 

represented by different colors. Subjects then made another choice between two stimuli 

presented in the second-stage set. Each stimulus at the second-stage was associated with a 

specific probability of delivering a monetary reward. Critically, each choice at the first stage 

led predominantly (70%) to one of the two sets at the second stage (common transition), and 

less frequently (30%) to the other set (rare transition). This feature of the task allows for 

distinguishing contribution of model-based and model-free accounts on the first level choices. 

B) Bayesian model selection among the three models using HBI. Protected exceedance 

probabilities are plotted; C) Bayesian model comparison using HBI. Percentage of subjects 

explained by each model are plotted. HBI assigned almost 80% of subjects to the hybrid 

model. D) Estimated group mean parameters of the hyrbid model are plotted. Errorbars are 

corresponding hierarchical standard errors. The hybrid model [26] contains seven parameters: 

two learning rates, 𝛼9  and 𝛼G , for the first and second stage choice; an eligibility trace 

parameter, 𝜆 ; a weight parameter, w, mixing model-based and model-free values (logit-

transformed values plotted for all these parameters); a perserveration parameter p; and two 

decision noise parameters, 𝛽9 and 𝛽G (log-transformed values are plotted), for the first and 

second stage choices. E) Response time (mean and standard errors) for the first choice for the 

two subgroups that were assigned to hybrid or model-based account by HBI. Those who were 

assigned to hybrid showed slower response time.  
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We also performed further analysis testing whether individual differences found by the 

HBI generalize to individual differences in conceptually related, yet independent, data. We 

reasoned that subjects showing a hybrid strategy might be slower in their choice, as the hybrid 

model requires combining of model-based and model-free values (which in some trials might 

be in conflict). Therefore, we looked at the median of response time across all first-level 

choices for each subject and tested whether there is a difference in response times between 

those subjects who employed a hybrid strategy and those who employed a model-based 

strategy as estimated by the HBI. As Figure 6E shows, the subgroup attributed to the hybrid 

model by the HBI showed slower response time compared to those subjects attributed to the 

model-based account (p=0.03, Wilcoxon test). A similar analysis using individual differences 

found by the NHI revealed no significant difference in response times. These results suggest 

that HBI reveals meaningful individual differences generalizing to unseen data.  

Discussion 

In this work, we have introduced a novel method, a hierarchical and Bayesian inference 

framework, for parameter estimation and model comparison. The HBI framework is 

hierarchical in the sense that parameters at the individual level are regularized by statistics 

across all individuals in the group. The HBI framework is Bayesian in the sense that all 

uncertainties at both individual and group levels are represented by probability distributions. 

The HBI framework has major theoretical advantages over current state-of-the-art methods, 

mainly because it combines two sorts of inference (about model identity and model 

parameters) in a single hierarchical model, which are interdependent but have previously been 

treated separately. Our simulation results demonstrated these advantages experimentally.  

In this work, we took an empirical Bayes approach [35,36], in which priors are 

constructed based on data. In other words, parameters at the individual level are regularized 

by statistics across all individuals in the group. Furthermore, we took a so-called random 

effects approach to model identity [13], which indicates that different models might underlie 

data in different subjects. This is in contrast to previous hierarchical methods for model fitting, 

which assume the same model underlie data in all subjects (fixed effects assumption). The 

random effects approach to hierarchical inference has important consequences for both 

parameter estimation and model comparison. Moreover, we took a fully Bayesian approach 

by quantifying uncertainty at the group level, which enabled us to develop statistical tests 

about group parameters and to quantify corresponding statistical errors. 
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Empirical Bayes methods play an increasing role in modern statistics. These methods 

essentially take a hierarchical approach, by assuming that individual data are generated based 

on the probabilistic properties of population. This hierarchical approach has important 

consequences. The most important consequence is that they provide a promising solution to 

the classical problem of priors in Bayesian statistics by providing informative, yet objective, 

priors at the individual level. Furthermore, unlike non-hierarchical methods, model 

comparison based on these methods is not biased towards too simple models. This is because 

non-hierarchical methods assume that extra parameters of a complex model are independent. 

For example, consider a model space in which the more complex model has one extra free 

parameter and there are 40 subjects in the dataset. Fitting the dataset with the complex model 

using non-hierarchical methods introduces 40 additional independent free parameters, driving 

an excessive penalty for overfitting. The hierarchical approach, however, assumes that the 

individual parameters are dependent, as they are all generated according to the same 

distribution. Modeling this hierarchical dependency enables those methods to avoid 

penalizing complex models excessively. Our simulation results demonstrate this point 

experimentally (Figure 3D). While the non-hierarchical method failed to select the correct 

model with one additional parameter, the HBI was successful in selecting the correct model 

(Figure 3D). 

The HBI method introduced in this paper is built based on the random effects view that 

different models might underlie data in different subjects. Taking this view enabled us to 

address problems caused by taking the model identity as a fixed effect in some hierarchical 

parameter estimation procedures. For parameter estimation, the fixed effects assumption 

biases the group parameters because it assumes that all subjects contribute equally to the 

group parameters. The proposed HBI framework solves this problem by weighting 

contribution of each subject to group statistics by the degree to which that model is likely to 

be the true underlying model for that subject (Figures 1 and 3). For model comparison, the 

fixed effects assumption leads to oversensitivity to outliers [13] as the evidence across the 

group is driven by the sum of individual evidences. Our simulation results (Figure 2) showed 

that only a few outliers change lead to incorrect model selection inference made by the fixed 

effects assumption. The proposed HBI method solves this problem by normalizing individual 

evidence across all candidate models. Specifically, the HBI framework quantifies the 

responsibility of each model k in generating each subject data, a metric lying between 0 and 1. 

For every subject, the responsibility sums up to 1 across all candidate models as it partitions 

probability space among those models (see [13,18] for a similar approach). It is then easy to 

compare models by enumerating responsibilities across the group in favor of each model or 

by estimating the most likely model.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2018. ; https://doi.org/10.1101/393561doi: bioRxiv preprint 

https://doi.org/10.1101/393561
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Another major contribution of this paper is to provide a statistical solution to the 

inference problem at the group level using hierarchically fitted parameters. For models fitted 

by a non-hierarchical method, such as maximum likelihood or Laplace approximation, it is 

statistically valid to use conventional statistical tests on fitted parameters to make inference at 

the group level. However, for datasets fitted by a hierarchical method in which the individual 

fits are regularized according to statistics of the group data, conventional statistical tests are in 

some cases not valid, because the parameter estimates are non-independent from subject to 

subject. Our fully Bayesian approach enabled us to address this issue. This is because the HBI 

infers the posterior distribution of group parameters. Our method provides an intuitive 

solution to this problem in the form a t-statistic, in which all the group statistics are computed 

according to the estimated responsibilities of the corresponding model in generating each 

individual data. Thus, the HBI quantifies the uncertainty of the group parameters and thereby 

the corresponding hierarchical errors. Simulation analyses (Figure 5) highlighted this point 

experimentally by showing that p-values computed by the HBI under the null hypothesis (i.e. 

when the group parameter is normally distributed around zero) follow a uniform distribution. 

Therefore, the HBI framework enables researchers to make statistical claims about parameters 

at the group level. 

In addition to model comparison, the HBI framework can also be used for model 

selection in situations where the goal is to select one of the models as the best model across 

the group. Exceedance probability is a metric proposed [13] to perform model selection using 

a random effects approach. An important revision of this metric called protected exceedance 

probability [18] also takes into account the possibility that none of the models in a model 

space is supported sufficiently by data, i.e. the differences in model evidence are due to 

chance. As the HBI framework treats model identity as a random effect, it is possible to 

compute exceedance and protected exceedance probabilities.  

There are increasing efforts to exploit advances in computational modeling for 

understanding mental disorders [3–6]. Recent works, however, have started to tackle 

challenges related to quantifying uncertainty in diagnosis and also in evaluation of treatment 

effects. For example, hierarchical unsupervised generative modeling, have used Monte-Carlo 

and variational methods to identify cluster of subjects showing similar patterns of neural 

connectivity [37,38]. HBI also offers a promising solution by quantifying uncertainty in 

assigning models to data generated by a single case. Our simulation (Figure 1C and 2C) 

showed that HBI assigns probabilities that are close to chance in cases in which model 

identification goes wrong. This can help us to move towards better diagnosis and precise 

evaluation of different treatments [39]. 
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In summary, the HBI framework proposed in this work rests on a hierarchical view of 

both hypothesis testing (i.e. model comparison) and parameter estimation for multi-subject 

studies and thus provides a generic framework for statistical inference. Moreover, the HBI 

framework runs fully automatically and it does not rely on hand tuning of parameters. 

Therefore, we expect this method to be useful for a wide range of studies testing different 

hypotheses in a multi-subject setting. This includes not only computational models of 

learning and decision making, but also any statistical models of brain or behavior.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2018. ; https://doi.org/10.1101/393561doi: bioRxiv preprint 

https://doi.org/10.1101/393561
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

References 

1.  Daw ND, Doya K. The computational neurobiology of learning and reward. Curr Opin 
Neurobiol. 2006;16: 199–204. doi:10.1016/j.conb.2006.03.006 

2.  O’Doherty JP, Hampton A, Kim H. Model-based fMRI and its application to reward 
learning and decision making. Ann N Y Acad Sci. 2007;1104: 35–53. 
doi:10.1196/annals.1390.022 

3.  Maia TV, Frank MJ. From reinforcement learning models to psychiatric and 
neurological disorders. Nat Neurosci. 2011;14: 154–162. doi:10.1038/nn.2723 

4.  Montague PR, Dolan RJ, Friston KJ, Dayan P. Computational psychiatry. Trends Cogn 
Sci. 2012;16: 72–80. doi:10.1016/j.tics.2011.11.018 

5.  Friston KJ, Stephan KE, Montague R, Dolan RJ. Computational psychiatry: the brain as 
a phantastic organ. Lancet Psychiatry. 2014;1: 148–158. doi:10.1016/S2215-
0366(14)70275-5 

6.  Huys QJM, Maia TV, Frank MJ. Computational psychiatry as a bridge from 
neuroscience to clinical applications. Nat Neurosci. 2016;19: 404–413. 
doi:10.1038/nn.4238 

7.  Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19: 
1273–1302.  

8.  Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ. Ten 
simple rules for dynamic causal modeling. NeuroImage. 2010;49: 3099–3109. 
doi:10.1016/j.neuroimage.2009.11.015 

9.  Cohen JD, Daw N, Engelhardt B, Hasson U, Li K, Niv Y, et al. Computational 
approaches to fMRI analysis. Nat Neurosci. 2017;20: 304–313. doi:10.1038/nn.4499 

10.  Huys QJM, Cools R, Gölzer M, Friedel E, Heinz A, Dolan RJ, et al. Disentangling the 
roles of approach, activation and valence in instrumental and pavlovian responding. 
PLoS Comput Biol. 2011;7: e1002028. doi:10.1371/journal.pcbi.1002028 

11.  Huys QJM, Eshel N, O’Nions E, Sheridan L, Dayan P, Roiser JP. Bonsai trees in your 
head: how the pavlovian system sculpts goal-directed choices by pruning decision trees. 
PLoS Comput Biol. 2012;8: e1002410. doi:10.1371/journal.pcbi.1002410 

12.  Wiecki TV, Sofer I, Frank MJ. HDDM: Hierarchical Bayesian estimation of the Drift-
Diffusion Model in Python. Front Neuroinformatics. 2013;7. 
doi:10.3389/fninf.2013.00014 

13.  Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. Bayesian model selection 
for group studies. NeuroImage. 2009;46: 1004–1017. 
doi:10.1016/j.neuroimage.2009.03.025 

14.  Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data via 
the EM Algorithm. J R Stat Soc Ser B Methodol. 1977;39: 1–38.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2018. ; https://doi.org/10.1101/393561doi: bioRxiv preprint 

https://doi.org/10.1101/393561
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

15.  Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK. An Introduction to Variational 
Methods for Graphical Models. In: Jordan MI, editor. Learning in Graphical Models. 
Springer, Dordrecht; 1998. pp. 105–161. doi:10.1007/978-94-011-5014-9_5 

16.  Bishop CM. Pattern Recognition and Machine Learning. New York: Springer; 2006.  

17.  Neal RM, Hinton GE. A View of the Em Algorithm that Justifies Incremental, Sparse, 
and other Variants. In: Jordan MI, editor. Learning in Graphical Models. Springer, 
Dordrecht; 1998. pp. 355–368. doi:10.1007/978-94-011-5014-9_12 

18.  Rigoux L, Stephan KE, Friston KJ, Daunizeau J. Bayesian model selection for group 
studies - revisited. NeuroImage. 2014;84: 971–985. 
doi:10.1016/j.neuroimage.2013.08.065 

19.  Daw ND. Trial-by-trial data analysis using computational models. In: Delgado MR, 
Phelps EA, Robbins TW, editors. Decision Making, Affect, and Learning: Attention and 
Performance XXIII. New York: Oxford University Press; 2011. pp. 3–38.  

20.  Daunizeau J, Adam V, Rigoux L. VBA: a probabilistic treatment of nonlinear models 
for neurobiological and behavioural data. PLoS Comput Biol. 2014;10: e1003441. 
doi:10.1371/journal.pcbi.1003441 

21.  Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. Variational free energy 
and the Laplace approximation. NeuroImage. 2007;34: 220–234. 
doi:10.1016/j.neuroimage.2006.08.035 

22.  Daunizeau J, den Ouden HEM, Pessiglione M, Kiebel SJ, Stephan KE, Friston KJ. 
Observing the observer (I): meta-bayesian models of learning and decision-making. 
PloS One. 2010;5: e15554. doi:10.1371/journal.pone.0015554 

23.  Piray P, Zeighami Y, Bahrami F, Eissa AM, Hewedi DH, Moustafa AA. Impulse 
control disorders in Parkinson’s disease are associated with dysfunction in stimulus 
valuation but not action valuation. J Neurosci. 2014;34: 7814–7824. 
doi:10.1523/JNEUROSCI.4063-13.2014 

24.  Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. Genetic triple 
dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl 
Acad Sci U S A. 2007;104: 16311–16316. doi:10.1073/pnas.0706111104 

25.  Piray P. The role of dorsal striatal D2-like receptors in reversal learning: a 
reinforcement learning viewpoint. J Neurosci. 2011;31: 14049–14050. 
doi:10.1523/JNEUROSCI.3008-11.2011 

26.  Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. Model-based influences on 
humans’ choices and striatal prediction errors. Neuron. 2011;69: 1204–1215. 
doi:10.1016/j.neuron.2011.02.027 

27.  Dickinson A, Balleine BW. The role of learning in motivation. In: Gallistel R, editor. 
Stevens’ Handbook of Experimental Psychology, Learning, Motivation, and Emotion. 
3rd ed. 2002.  

28.  Daw ND, Niv Y, Dayan P. Uncertainty-based competition between prefrontal and 
dorsolateral striatal systems for behavioral control. Nat Neurosci. 2005;8: 1704–1711. 
doi:10.1038/nn1560 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2018. ; https://doi.org/10.1101/393561doi: bioRxiv preprint 

https://doi.org/10.1101/393561
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

29.  Keramati M, Dezfouli A, Piray P. Speed/accuracy trade-off between the habitual and 
the goal-directed processes. PLoS Comput Biol. 2011;7: e1002055. 
doi:10.1371/journal.pcbi.1002055 

30.  Piray P, Toni I, Cools R. Human Choice Strategy Varies with Anatomical Projections 
from Ventromedial Prefrontal Cortex to Medial Striatum. J Neurosci. 2016;36: 2857–
2867. doi:10.1523/JNEUROSCI.2033-15.2016 

31.  Smittenaar P, FitzGerald THB, Romei V, Wright ND, Dolan RJ. Disruption of 
dorsolateral prefrontal cortex decreases model-based in favor of model-free control in 
humans. Neuron. 2013;80: 914–919. doi:10.1016/j.neuron.2013.08.009 

32.  Otto AR, Raio CM, Chiang A, Phelps EA, Daw ND. Working-memory capacity 
protects model-based learning from stress. Proc Natl Acad Sci U S A. 2013;110: 
20941–20946. doi:10.1073/pnas.1312011110 

33.  Doll BB, Bath KG, Daw ND, Frank MJ. Variability in Dopamine Genes Dissociates 
Model-Based and Model-Free Reinforcement Learning. J Neurosci Off J Soc Neurosci. 
2016;36: 1211–1222. doi:10.1523/JNEUROSCI.1901-15.2016 

34.  Gillan CM, Kosinski M, Whelan R, Phelps EA, Daw ND. Characterizing a psychiatric 
symptom dimension related to deficits in goal-directed control. eLife. 2016;5. 
doi:10.7554/eLife.11305 

35.  Casella G. An Introduction to Empirical Bayes Data Analysis. Am Stat. 1985;39: 83–87. 
doi:10.2307/2682801 

36.  Robbins H. An Empirical Bayes Approach to Statistics. The Regents of the University 
of California; 1956. Available: https://projecteuclid.org/euclid.bsmsp/1200501653 

37.  Yao Y, Raman SS, Schiek M, Leff A, Frässle S, Stephan KE. Variational Bayesian 
inversion for hierarchical unsupervised generative embedding (HUGE). NeuroImage. 
2018;179: 604–619. doi:10.1016/j.neuroimage.2018.06.073 

38.  Raman S, Deserno L, Schlagenhauf F, Stephan KE. A hierarchical model for integrating 
unsupervised generative embedding and empirical Bayes. J Neurosci Methods. 
2016;269: 6–20. doi:10.1016/j.jneumeth.2016.04.022 

39.  Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, et al. 
Computational neuroimaging strategies for single patient predictions. NeuroImage. 
2017;145: 180–199. doi:10.1016/j.neuroimage.2016.06.038 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2018. ; https://doi.org/10.1101/393561doi: bioRxiv preprint 

https://doi.org/10.1101/393561
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix A

In this appendix, we give a formal treatment of the HBI framework. First, we
give the probabilistic model underlying HBI. In A.2, our approach for making
inference (the full proof is given in appendix B) and related assumptions are
given. In A.3, the HBI algorithm is presented. In A.4, we show how the problem
of statistical inference about group parameters is solved in HBI. In A.5, we show
how HBI can be used for making inference about a new subject. Finally, in A.6,
we highlight some practical points, such as the initialization of the parameters
and their settings.

A.1 Probabilistic model

We begin by describing the probabilistic model of the HBI. Consider an observed
dataset X = {x1, . . . ,xN} where xn is the dataset (e.g. choices) of nth subject
and N indicates the number of subjects and a model-space including K candidate
models, M1 . . .MK . Moreover, suppose that the prior probability of each model
in the population is given by m = {m1, . . . ,mK}. For each dataset, xn, we
assume that there is a latent variable zn comprising a 1-of-K binary random
vector, in which zkn is one if xn generated is by the kth model. Thus, the
probability of the latent variable across all subjects, Z = {z1, ..., zN}, is assumed
to have a multinomial distribution,

p(Z|m) =
∏
k

∏
n

mzkn

k . (1)

Each model Mk in the model-space is supposed to compute the probability of a
given dataset (e.g. a set of choices) given a set of parameters, hkn. For example,
the reinforcement learning model computes the probability of choices using two
parameters: a learning rate and a decision noise parameter. The number of
models and their structures depend on specific scientific questions. Here, we
take a general approach by making no specific assumption about the number
of models, K. Thus, the kth model in the model-space, Mk, computes the
probability of dataset xn given the parameter vector hkn, which is denoted by
p(xn|hkn,Mk). Note that the number of parameters in model k, denoted by Dk,
might be different across models. Since data for each subject is generated by
one of the models, which is denoted in the binary vector zn, the probability of
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the observed dataset given the model-space is

p(X|H,Z) =
∏
k

∏
n

p(xn|hkn,Mk)
zkn , (2)

where H denotes all the parameters across all participants and models. The
parameters of kth model are assumed to have a multivariate normal distribution
with mean µk and precision matrix Tk,

p(H|Z,µ,T) =
∏
k

∏
n

N (hkn|µk,T−1k )zkn , (3)

where Tk is a diagonal positive-definite matrix.

We also introduce a distribution over model frequencies, m. Since this is a
probability over probabilities (which sum to one), we use the Dirichlet distribution
as the prior:

p(m) = Dir(m|α0) = C(α0)
K∏
k=1

mα0−1
k , (4)

where C(α0) is the normalizing constant for the Dirichlet distribution.

We also take group parameters µ and T as random variables, which allows us to
evaluate their posterior distribution given data. We introduce conjugate priors
for these variables, a Gaussian-Gamma prior in which the distribution over µk
depends on Tk:

p(µ|T) =

K∏
k=1

N (µk|a0, (bTk)
−1)

p(T) =
K∏
k=1

Dk∏
i=1

G(τki|v, s),

where G(.) denotes Gamma distribution. Here, τki is the ith diagonal element of
Tk. Assuming that τ k is a vector containing τki, by defining Tk = diag(τ k), in
which diag(.) is an operator outputting a diagonal matrix with elements given
by τ k, we can write these two equations in a compact form:

p(µ, τ ) =
K∏
k=1

N (µk|a0, diag(bτ k)−1)G(τ k|v, s), (5)
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where we have defined:

G(τ k|v, s) =
Dk∏
i=1

G(τki|v, s),

in which v is a scalar and s is a vector with Dk elements all equal to s. The full
probabilistic model is given by,

p(X,H,Z,µ, τ ,m) = p(X|H,Z)p(H|Z,µ, τ )p(Z|m)p(µ|τ )p(τ )p(m). (6)

A.2 Variational inference

The task of Bayesian inference is to compute the posterior probabilities of latent
variables given data, p(H,Z,µ, τ ,m|X). Since the inference is intractable for
the probabilistic model outlined in section A.1, we employ variational inference
to compute approximate posteriors. We take a so-called mean-field approach
[15] by assuming that the posterior is partially factorized as follows:

q(H,Z,µ, τ ,m) = q(H,Z)q(µ, τ ,m). (7)

Note that we force no factorization in the posterior between latent variables, Z
and H. Using a quadratic approximation of the conditional posterior, q(H|Z),
we prove in Appendix B that these posteriors are given by,

q(H,Z) =
∏
k

∏
n

rzkn

kn N (hkn|θkn,A−1kn )
zkn (8)

q(µ, τ ,m) = Dir(m|α)
∏
k

q(µk, τ k) (9)

q(µk, τ k) = N (µk|ak,diag(βkτ k)−1)G(τ k|νk,σk), (10)

where νk and βk are scalars and σk is a vector with the same size as τ k. In
the next section, we provide the HBI algorithm, which iteratively updates the
parameters of these distributions, rkn, θkn, Akn, α, ak, νk, βk, and σk.
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A.3 HBI algorithm

After initializing the individual parameter estimates, θkn and Akn and responsi-
bilities rkn for all subjects and models, as well as setting prior parameters a0, b,
s, v and α0 (see A.6 for a simple and intuitive way for initializing and setting
prior parameters), the HBI algorithm performs these steps:

• 1. Calculate the summary statistics:

Nk =
∑
n

rkn (11)

θk =
1

Nk

∑
n

rknθkn (12)

Vk =
1

Nk

∑
n

rkn

(
θknθ

T
kn − θkθ

T
k +A−1kn

)
. (13)

• 2. Update parameters of q(µ, τ ,m) for all models:

ak =
1

Nk + b
(Nkθk + ba0) (14)

βk = b+Nk (15)

σk = s+
1

2
diag

(
NkVk +

bNk

b+Nk

(θk − a0)(θk − a0)
T
)

(16)

νk = v +
1

2
Nk (17)

αk = α0 +Nk. (18)

• 3. Update the individual posterior parameters θkn, Akn and fkn, by obtaining
a quadratic approximation of the function, `kn(h), with respect to h:

`kn(h) = p(xn|h,Mk)N (h|E[µk],E[Tk]
−1), (19)

where E[µk] = ak and E[Tk]
−1 = 1

νk
diag(σk). This approximation can be
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written as

`kn(h) ' fkn exp(−
1

2
(hkn − θkn)

TAkn(hkn − θkn)). (20)

Note that any quadratic approximation can be used here. For example,
using a Laplace quadratic approximation (which is a very common approx-
imation for analyzing behavioral and neural data [19-22]), θkn, Akn and
fkn are given by the mode, Hessian of log `kn and the maximum value of
`kn, respectively:

θkn = argmax
h

`kn(h)

Akn = −∇∇ log `kn(h)|θkn

fkn = `kn(θkn).

• 4. Update responsibilities,

rkn =
ρkn∑K
j=1 ρjn

, (21)

where

log ρkn = log fkn +
1

2
Dk log 2π −

1

2
log |Akn|+ λk + E[logmk] (22)

λk =
Dk

2

(
ψ(νk)− log νk −

1

βk

)
(23)

E[logmk] = ψ(αk)− ψ(
K∑
k=1

αk),

in which ψ(.) is the digamma function.

• 5. Terminate if stopping criteria are met, otherwise go to 1.

A.4 Statistical tests for group parameters

An important goal of computational modeling studies is to compute the distri-
bution of parameters given data across the whole population. From a Bayesian
viewpoint, this is given by the marginal posterior over the mean of group param-
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eters, µk, which reads

p(µk|X) '
∫
q(µk, τ k)dτ k

=

∫
N (µk|ak, (βkτ k)−1)G(τ k|νk,σk)dτ k

= St(µk|ak,ηk, nk),

where nk = 2νk = 2v +Nk is the number of degrees of freedom of the Student
distribution and ηk = νkβkσ

−1
k is the inverse-scale parameter. Therefore, the

random variable t = η
1
2

k (µk − ak) takes a form of standard Student distribution
with nk degrees of freedom. By defining s2ki =

2
βk
σki, in which s2ki corresponds

to empirical variance (c.f. equation (16)), we can write this result in an intuitive
form,

p(µki|X) = St
(
µki − aki
ski/
√
nk
|nk
)
. (24)

Noting the similarity between ski/
√
nk and the standard error of the mean, we

called ski/
√
nk the hierarchical error.

A.5 Predictive distribution for a new subject

In many situations, researchers are interested to fit a new dataset to a particular
model and find corresponding parameters. In Bayesian statistics, this is called
the predictive distribution and it is given by marginalizing over group parameters.
Suppose that x∗ and h∗k denote the new dataset and its corresponding parameters
for model k. The marginal distribution p(x∗,h∗k|z∗k = 1,X) is the predictive
distribution given the observed datasetX assuming that the new data is generated
by the kth model. This distribution is given by:

p(x∗,h∗k|z∗k = 1,X) =

∫
p(x∗|h∗k,Mk)p(h

∗
k|µk, τ k, z∗k = 1)p(µk, τ k|X)dµkdτ k

= p(x∗|h∗k,Mk)St(h∗k|ak, (1 + βk)
−1ηk, nk),

where ηk and nk have been defined in the previous section. This distribution
can also be written in terms of standard Student distribution with nk degrees
of freedom. Furthermore, if we assume that b = 2v, which is a reasonable
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assumption (see the next section), this distribution is given by

p(x∗,h∗k|z∗k = 1,X) = p(x∗|h∗k,Mk)St(diag(sk)−1(h∗k − ak)|nk),

where sk is a vector of corresponding empirical deviance parameters, defined in
the previous section. Using this joint distribution, one can use sampling methods
to obtain the posterior over parameters, p(h∗k|zkn = 1,X,x∗), or to obtain the
maximum-a-posteriori parameters, θ∗k, given by

θ∗k = argmax
h

p(x∗|h,Mk)St(diag(sk)−1(h− ak)|nk). (25)

Note that for many degrees of freedom due to large values of Nk, the Student
distribution tends to a Gaussian with mean ak and deviance matrix diag(sk).
However, small values of Nk lead to a small number of degrees of freedom
and heavier tailed distributions than Gaussians, which are more robust against
outliers.

A.6 Parameters, initialization and convergence criteria

As the mean-field variational inference is an iterative framework, it also depends
on the initialization of the parameters. In this section, we provide priors that
do not bias the final solution and also provide some intuitive criteria for the
initialization.

We initialize the parameters θkn and Akn by fitting all models separately to
all participants (with some initial Gaussian prior), i.e., assuming as if zkn = 1.
These values are then used to calculate summary statistics according to equations
(11-13).

Furthermore, we need to define prior parameters. The free parameter α0 indicates
prior frequency of each model. We take uninformative priors on frequency of
models, which is given by α0 = 1 for all models. The prior mean, a0k, is
assumed to be zero. Given equation (15), we see that b can be interpreted as the
effective number of prior samples associated with models. Also, given equation
(17), v could be interpreted as the half of the effective number of prior samples
associated with models. Assuming that the priors account for one sample, which
is a common assumption in Bayesian statistics, we take b = 1 and v = 1

2 . Finally,
since s has always an additive effect on σk according to equation (16), we assume
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a small positive value for s, allowing that σk to be driven dominantly by data.
In all our analyses, we assumed s = 0.01.

Finally, the algorithm presented in A.3 requires stopping criteria. In our analyses,
we terminated the algorithm if the change in normalized value of parameters
between two consecutive iterations, j − 1 and j, defined as

d̂ =

√
1

K

∑
k

1

Dk

∑
i

(θ̂jki − θ̂
j−1
ki )2,

was smaller than 0.01. Here, θ̂jki is defined according to summary statistics of
parameters on the jth iteration:

θ̂jki = θki/V
1
2

ki,

where θki and V ki are the ith element of θk andVk defined in (12-13), respectively.
In our analyses, we also set 50 as the maximum number of iterations, although
almost always the algorithm stopped before hitting this number.

A.7 Exceedance probability

Using the posterior over m, one can also derive the so-called exceedance proba-
bility and protected exceedance probability, as defined in previous works [13,18].
We reproduce the equations here for completeness.

The exceedance probability of kth model, φk, is defined as the probability that
model Mk is more likely than any other model in the model-space and it is given
by

φk = Prob(mk > mj |α), ∀j 6= k. (26)

Computing protected exceedance probabilities, as defined in [18], also requires
to run the HBI under the (prior) null hypothesis, H0, that there is no difference
between models (i.e. α0 →∞). The alternative hypothesis, H1, is the original
case, in which α0 = 1. If we define L and L0 as the log-likelihood (actually the
variational lower bound as its approximation) of all data given the model-space
under H1 and H0, respectively, then the protected exceedance probability of kth
model, φ̃k, is defined as:

φ̃k = φk(1− P0) +
1

K
P0, (27)
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where
P0 =

1

1 + exp(L− L0)
. (28)

Appendix B

In this appendix, we provide the proof of the results given in sections A.2 and
A.3. The proof is given in three parts by obtaining 1) the functional form of
q(H,Z); 2) the posterior q(µ, τ ,m) and corresponding update equations; and 3)
the update equations for the posterior over latent variables, q(H,Z).

B.1 The functional form of the posterior over H and Z

Let us first consider the derivation of the functional form for the factor q(H,Z).
According to standard results in variational inference [15,16], the log of this
factor is given by:

log q(H,Z) = Eµ,τ ,m[log p(X,H,Z,µ, τ ,m)] + constant\H,\Z,

where the constant term denotes all the terms independent of the corresponding
variables. Note that the expectation is taken with respect to the current estimates
of q(µ, τ ,m). By using equation (6) and absorbing all the terms which are
independent of H and Z into the additive constant, we have:

log q(H,Z) = Eµ,τ [log p(X,H|Z,µ, τ )] + Em[log p(Z|m)] + constant\H,\Z.

Substituting the two conditional distribution on the right-hand side using equa-
tions (1-3), we have:

log q(H,Z) =
∑
k

∑
n

zkn(log Ikn + Em[logmk]) + constant\H,\Z,

where,
log Ikn = Eµ,τ [log p(xn|hkn,Mk)N (hkn|µk,T−1k )].
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Note that we have defined Tk = diag(τ k). We assume that there is a quadratic
approximation of Ikn with respect to hkn,

Ikn ∝ exp(−1

2
(hkn − θkn)

TAkn(hkn − θkn)),

which gives,

log q(H,Z) =
∑
k

∑
n

zkn(−
1

2
(hkn−θkn)TAkn(hkn−θkn)+Em[logmk])+constant\H,\Z.

Since log q(H|Z) = log q(H,Z)− log q(Z), we can read off terms involving H in
log q(H,Z) to obtain log q(H|Z):

log q(H|Z) =
∑
k

∑
n

zkn(−
1

2
(hkn − θkn)

TAkn(hkn − θkn)) + constant\H.

Requiring that this distribution should be normalized, we obtain:

q(H|Z) =
∏
k

∏
n

N (hkn|θkn,A−1kn )
zkn . (29)

Subtracting log q(H|Z) from log q(H,Z) cancels out the quadratic component
and yields log q(Z), which is a linear function with respect to zkn. Therefore, we
have:

q(Z) =
∏
k

∏
n

rzkn

kn . (30)

The functional form of q(H,Z) is then given by,

q(H,Z) =
∏
k

∏
n

rzkn

kn N (hkn|θkn,A−1kn )
zkn .

Here our goal was to obtain the functional form of the posterior over latent
variables. We will obtain values of rkn, θkn and Akn in section B.3.

B.2 The posterior over µ, τ and m

We continue with obtaining the functional form and update equations for the
other variational factor q(µ, τ ,m). The posterior of m is independent from the
posterior over µ and τ because the log-posterior decomposes into the terms that

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2018. ; https://doi.org/10.1101/393561doi: bioRxiv preprint 

https://doi.org/10.1101/393561
http://creativecommons.org/licenses/by-nc-nd/4.0/


only depend on m and terms that only depend on µ and τ :

log q(µ, τ ,m) = EH,Z[log p(X,H,Z,µ, τ ,m)] + constant\µ,τ ,m

= EH,Z[log p(H|Z,µ, τ ) + log p(µ, τ )] + EZ[log p(Z|m) + p(m)]

+ constant\µ,τ ,m,

where we have used equation (6). This implies that the variational posterior
q(µ,T,m) factorizes to give q(µ,T)q(m). Thus, the posterior over µ and τ is
given by:

log q(µ, τ ) = EH,Z[log p(H|Z,µ, τ )] + log p(µ, τ ) + constant\µ,τ ,

in which we absorbed any terms independent of µ , τ into the additive constant.
Substituting for the distributions on the right-hand side, we have:

log q(µ) =
∑
k

∑
n

EH,Z,τ [zkn logN (hkn|µk,T−1k )]+∑
k

logN (µk|a0, (bTk)
−1) +

∑
k

log G(τ k|v, s) + constant\µ,τ .

Note that we have defined Tk = diag(τ k). Using equation (B.1) and by absorbing
terms independent of µk and τ k into the additive constant, we have:

log q(µk, τ k) =
∑
n

1

2
rkn log |Tk| −

∑
n

1

2
(µk − θkn)

TrknTk(µk − θkn)+

−
∑
n

1

2
rknTr(A

−1
knTk) +

1

2
log |Tk|+

− 1

2
(µk − a0)

TbTk(µk − a0)+

+

Dk∑
i=1

logG(v, s) + (v − 1) log τki − sτki + constant\µk,τk .

As the right-hand side is quadratic with respect to µk, the posterior over µk

also takes the form of a Gaussian with a variance depending on τ k:

q(µk|τ k) = N (µk|ak, (βkTk)
−1),

where
ak =

1

Nk + b
(
∑
n

rknθkn + ba0)
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βk = b+Nk,

and Nk is given by:
Nk =

∑
n

rkn.

By subtracting log q(µk|τ k) from log q(µk, τ k), we obtain the posterior over τ k:

q(τ k) = G(τ k|νk,σk),

where

σk =
1

2

∑
n

diag(rkn[(θkn − θk)(θkn − θk)
T +A−1kn ])

+
1

2

bNk

b+Nk

diag((θk − a0)(θk − a0)
T) + s

νk = v +
1

2
Nk,

and θk is given by:

θk =
1

Nk

∑
n

rknθkn.

Finally, we consider the factor q(m):

log q(m) = EZ[log p(Z|m)] + log p(m) + constant\m.

Substituting for the two distributions on the right-hand side, we have

log q(m) =
∑
k

∑
n

rkn logmk + logC(α0) +
∑
k

(α0 − 1) logmk + constant\m.

Therefore q(m) takes the form of Dirichlet distribution:

q(m) = Dir(m|α),

where α has components αk given by,

αk = α0 +Nk.
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B.3 The posterior over H and Z

We have already seen in section B.1 that q(H,Z) could be written,

log q(H,Z) =
∑
k

∑
n

zkn(log Ikn + Em[logmk]) + constant\H,\Z,

where,
log Ikn = Eµ,τ [log p(xn|hkn,Mk)N (hkn|µk,T−1k )].

Since we have already obtained q(µ, τ ), we can now compute Ikn:

log Ikn =+ log p(xn|hkn,Mk)−
1

2
Dk log 2π +

1

2
E[log |Tk|]

− 1

2
ET,µ[(hkn − µk)

TTk(hkn − µk)].

By using equation (9), log Ikn is given by:

log Ikn = log p(xn|hkn,Mk)−
1

2
Dk log 2π +

1

2
E[log |Tk|]

− 1

2
(hkn − ak)

TE[Tk](hkn − ak)−
1

2
E[Tr(Tk(βkTk)

−1)],

which can be written in the form,

log Ikn = log p(xn|hkn,Mk)N (hkn|ak,E[Tk]
−1) + λk,

where λk is independent of hkn and is given by

λk =
1

2
E[log |Tk|]−

1

2
log |E[Tk]| −

1

2

Dk

βk
,

Substituting the moments of Tk = diag(τ k) with their values under q(τ k),

logE[τ k] = Dk log νk −
∑
i

log σki,

E[log τ k] = Dkψ(νk)−
∑
i

log σki,

gives equation (23).

Now, we make a quadratic approximation of p(xn|hkn,Mk)N (hkn|ak,E[Tk]
−1)

with respect to hkn (for example using Laplace approximation or any other
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method):

p(xn|hkn,Mk)N (hkn|ak,E[Tk]
−1) '

fkn exp(−
1

2
(hkn − θkn)

TAkn(hkn − θkn)).

Substituting this approximation into log Ikn, we obtain

log Ikn = log fkn −
1

2
(hkn − θkn)

TAkn(hkn − θkn) + λk.

Therefore, we have:

log q(H,Z) =
∑
k

∑
n

zkn

(
+ log fkn −

1

2
(hkn − θkn)

TAkn(hkn − θkn)

+ λk + E[logmk]
)
+ constant\H,\Z.

Subtracting this equation from log q(H|Z) given by the log of equation (29), we
have:

log q(Z) =
∑
k

∑
n

zkn log ρkn + constant\H,\Z,

where

log ρkn = log fkn +
1

2
Dk log 2π −

1

2
log |Akn|+ λk + E[logmk].

Requiring that q(Z) be normalized, we obtain equation (30), where

rkn =
ρkn∑K
j=1 ρjn

,

which completes the proof.
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