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Abstract 24 

In real-life situations, the appearance of a person’s face can vary substantially across different 25 

encounters, making face recognition a challenging task for the visual system. Recent fMRI 26 

decoding studies have suggested that face recognition is supported by identity representations 27 

located in regions of the occipito-temporal cortex. Here, we used EEG to elucidate the temporal 28 

emergence of these representations. Human participants (both sexes) viewed a set of highly 29 

variable face images of four highly familiar celebrities (two male, two female), while performing 30 

an orthogonal task. Univariate analyses of event-related EEG responses revealed a pronounced 31 

differentiation between male and female faces, but not between identities of the same sex. Using 32 

multivariate representational similarity analysis, we observed a gradual emergence of face 33 

identity representations, with an increasing degree of invariance. Face identity information 34 

emerged rapidly, starting shortly after 100ms from stimulus onset. From 400ms after onset and 35 

predominantly in the right hemisphere, identity representations showed two invariance 36 

properties: (1) they equally discriminated identities of opposite sexes and of the same sex, and 37 

(2) they were tolerant to image-based variations. These invariant representations may be a crucial 38 

prerequisite for successful face recognition in everyday situations, where the appearance of a 39 

familiar person can vary drastically. 40 

 41 
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Significance Statement 43 

Recognizing the face of a friend on the street is a task we effortlessly perform in our everyday 44 

lives. However, the necessary visual processing underlying familiar face recognition is highly 45 

complex. As the appearance of a given person varies drastically between encounters, for example 46 

across viewpoints or emotional expressions, the brain needs to extract identity information that 47 

is invariant to such changes. Using multivariate analyses of EEG data, we characterize how 48 

invariant representations of face identity emerge gradually over time. After 400ms of processing, 49 

cortical representations reliably differentiated two similar identities (e.g., two famous male 50 

actors), even across a set of highly variable images. These representations may support face 51 

recognition under challenging real-life conditions.  52 
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Introduction 53 

Efficient face recognition is a key ability in human’s everyday lives, and many studies have 54 

investigated its underlying neural mechanisms (Gobbini and Haxby, 2007; Duchaine and Yovel, 55 

2015). Recently, much progress has been made in spatially pinpointing the neural correlates of 56 

face recognition by advances in multivariate classification techniques for fMRI data (Anzellotti 57 

and Caramazza, 2014). These techniques have allowed researchers to decode face identity from 58 

different regions of the face processing network, such as from the fusiform face area (FFA; Gilaie-59 

Dotan and Malach, 2007; Nestor et al., 2011; Goesaert and Op de Beeck, 2013; Verosky et al., 60 

2013; Anzellotti et al., 2014; Axelrod and Yovel, 2015; Weibert et al., 2016), the anterior temporal 61 

lobe (ATL; Kriegeskorte et al., 2007; Nasr and Tootell, 2012; Anzellotti et al., 2014) or from a larger 62 

network extending from early visual areas towards the inferior frontal gyrus (Visconti Di Oleggio 63 

Castello et al., 2017). 64 

The temporal emergence of face identity representations, however, remains relatively 65 

unexplored. Most of our knowledge on the temporal dynamics of face recognition stems from 66 

EEG and magnetoencephalography (MEG) studies employing traditional, univariate analyses on 67 

temporally confined ERP/MEP components. Across these studies, the components associated 68 

with face recognition vary substantially: Several reports have linked face recognition to the P100 69 

and N170 components (Debruille et al., 1998; Heisz et al., 2006; Caharel et al., 2009; Rousselet et 70 

al., 2009; Liu et al., 2013), others have stressed the role of the later N250 and N400 components 71 

(Bentin and Deouell, 2000; Schweinberger et al., 2002; Huddy et al., 2003; Tanaka et al., 2006; 72 

Curran and Hancock, 2007; Gosling and Eimer, 2011; Jin et al., 2012).  73 

 74 
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So far only three studies have used multivariate pattern analysis (MVPA) to evaluate the 75 

temporal dynamics of face identity processing (Nemrodov et al., 2016, 2018; Vida et al., 2017). 76 

All three investigated the temporal emergence of identity representations across changes in 77 

emotional expression, revealing that identity representations emerge relatively early within the 78 

first 200ms after stimulus onset.  79 

However, these previous studies suffer from two critical shortcomings. First, they used 80 

unfamiliar faces, whose processing is assumed to be markedly different from the processing of 81 

familiar faces, as reflected both in behavioral performance (Johnston and Edmonds, 2009) and 82 

neural activations (Natu and O’Toole, 2011). Second, variability across images of the same identity 83 

was very limited, leaving it unclear how their results generalize to everyday face recognition 84 

where individual encounters with highly-variable, "ambient" face images give rise to drastic visual 85 

differences (Mike Burton, 2013; Young and Burton, 2017; Kramer et al., 2018). 86 

In the current EEG study, we provide a temporal characterization of face identity 87 

processing, which eliminates both shortcomings: First, we used images of four celebrities, who 88 

were highly familiar to the participants (Fig. 1A). Second, for each identity, we used 10 “ambient” 89 

images (Jenkins et al., 2011), which varied substantially in a range of properties, such as 90 

viewpoint, lighting, and expression. 91 

Using representational similarity analysis (RSA; Kriegeskorte and Kievit, 2013), we show 92 

that the earliest representations of facial identity emerge shortly after 100ms post-stimulus and 93 

most robustly in posterior electrodes. Later representations, emerging from 400ms onwards and 94 

in electrodes over right occipito-temporal cortex, contained identity information for faces of the 95 

same sex and were invariant to image-based properties. Our results suggest that familiar face 96 

recognition is supported by fine-grained neural representations in the face processing network, 97 
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where identity information over time becomes increasingly invariant to other visual and 98 

conceptual properties of the face.  99 
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1 Image credits: File:Angelina Jolie at Davos crop.jpg. (2014, April 23). Wikimedia Commons, the free media 
repository. Retrieved 15:17, May 1, 2018 from 
https://commons.wikimedia.org/w/index.php?title=File:Angelina_Jolie_at_Davos_crop.jpg&oldid=122076100. 
Creative Commons Attribution-Share Alike 3.0 Unported license. 
File:LeonardoDiCaprioNov08.jpg. (2018, January 20). Wikimedia Commons, the free media repository. Retrieved 
15:18, May 1, 2018 from 

 

Figure 1. Design and Analysis Approach. A. Trial structure and stimulus examples. Stimuli were 

“ambient”, face-cropped images of four highly recognized celebrities (Angelina Jolie (AJ), Heidi 

Klum (HK), Leonardo DiCaprio (LD), Til Schweiger (TS))1. Each trial started with a fixation cross 

(250ms), followed by the stimulus image (600ms) and a blank screen (1300ms). Target trials 

containing a tilted stimulus (illustrated on the bottom) were included to ensure that 

participants maintained attention. B. The logic of the multivariate pattern analysis. Top: A 

representative ERP recording from one participant. EEGs were segmented between -200 to 

1300ms relative to stimulus onset. Bottom: For each time point separately, linear classification 

analyses were performed for each combination of individual images, using a leave-one-trial-

out scheme. This procedure resulted in a 40×40 matrix (i.e., 10 images for each of the 

4 identities) of decoding accuracies at each time point. C. Representational dissimilarity 

matrices (RDMs) showing pairwise decoding accuracies at -200, 250 and 1300ms relative to 

stimulus onset. 
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 100 

Methods  101 

Participants 102 

Twenty-six healthy participants (6 male), with an average age of 25 years (SD = 5.0) took part in 103 

the study in exchange for partial course credits or monetary compensation. The experiment was 104 

conducted in accordance with the guidelines of the Declaration of Helsinki, and with the approval 105 

of the ethics committee of the University of Jena. Written informed consent was acquired from 106 

all participants. 107 

Stimuli 108 

The stimuli were ambient, color photographs two female (Angelina Jolie, AJ; Heidi Klum, HK) and 109 

two male (Leonardo DiCaprio, LD; Til Schweiger, TS) celebrities. We selected these celebrities 110 

based on a pilot survey where we collected familiarity ratings across a range of well-known 111 

celebrities in Germany. For each identity, ten images were selected from a pool of web-scraped 112 

photographs, pre-screened for quality. Stimulus images were cropped to a rectangle centered on 113 

the inner features of the face (see Fig. 1A). To ensure substantial variation across images depicting 114 

the same identity, we selected images that minimized the structural similarity index (SSIM; Wang 115 

et al., 2004) among images of the same identity, while maximizing it among images of identities 116 

of the same sex; this was achieved by using random combination sorting with 100,000 iterations 117 

per sex category. The resulting mean SSIM values were: LD: 0.387, TS: 0.378, LD vs TS: 0.355; AJ: 118 

0.379, HK: 0.371, AJ vs HK: 0.337. Stimuli were presented centrally on a uniform gray background 119 

                                                           
https://commons.wikimedia.org/w/index.php?title=File:LeonardoDiCaprioNov08.jpg&oldid=281183411. Creative 
Commons Attribution-Share Alike 3.0 Unported license. 
These images were not part of the original stimulus set. 
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on a TFT display (1680 × 1050 pixel resolution, refresh rate 60 Hz). The experiment was written in 120 

Psychopy (Peirce, 2008). 121 

Experimental procedure 122 

A total of 1760 trials (1600 non-target and 160 target) were presented in 40 runs, each containing 123 

the ten images of the four identities once, in a pseudo-random order (with the constraint that the 124 

same identity was never repeated in two consecutive trials). Thus, photos of one identity were 125 

seen 400 times, so that a given image of a given identity was presented 40 times during the 126 

experiment. Each trial started with a fixation cross (250ms), followed by the stimulus image 127 

(600ms, subtending a visual angle of 4.4° in diameter) and finally a blank display (1300ms). Short 128 

breaks were provided after every 10 runs, but the run boundaries were not indicated otherwise. 129 

There were four target-trials in each run, where the image was rotated 10 degrees clockwise or 130 

anticlockwise. Participants were instructed to press the space bar when they saw a target image 131 

(the overall detection accuracy was at 99.52 ± 0.67%). These target trials served to ensure that 132 

the participants maintained their attention, and were not included in the analysis. An average 133 

experimental session lasted 81.5 (±5.3) minutes. 134 

At the beginning of each experiment, prior to mounting the electrode caps, participants 135 

were presented images of the four identities and were asked to name them. All our participants 136 

were able to name all four celebrities correctly. The images of this initial familiarity-testing phase 137 

were not part of the later EEG experiment. After the EEG recording, participants were asked to 138 

rate their familiarity with the identities on a 7-point scale. Mean ratings were generally high (AJ: 139 

6.12, HK: 6.30, LD: 6.15, TS: 6.11) and not statistically different for the four identities 140 

(F[3,75] = 0.243, p = 0.866). 141 
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EEG recording and preprocessing 142 

The EEG was recorded in a dimly lit, electrically shielded, and sound–attenuated chamber. The 143 

distance between the eyes and the computer screen was set to 96 cm via a chin rest. The 144 

electroencephalogram (EEG) was recorded with a 512 Hz sampling rate (bandwidth: DC to 120 145 

Hz) using a 64-channel Biosemi Active II system. Electrooculogram (EOG) was recorded from the 146 

outer canthi of the eyes and from above and below the left eye.  147 

The preprocessing pipeline was implemented in MNE-python (Gramfort et al., 2013, 148 

2014). EEG was notch-filtered at 50 Hz, band-pass filtered between 0.1 and 70 Hz, segmented 149 

from -200 to 1300ms relative to stimulus onset, and baseline corrected with respect to the first 150 

200ms. Artefact rejection was carried out using the “Autoreject” algorithm (Jas et al., 2017). The 151 

resulting data was downsampled to 100Hz to increase signal-to-noise ratio in the multivariate 152 

analyses (Grootswagers et al., 2017). 153 

Event-related potentials 154 

To test for the presence of identity-related information within the conventional ERPs we averaged 155 

data across repetitions for each facial identity, electrode and participant separately. Next, we 156 

created grand-averages of these data across six regions of interests, corresponding to the left and 157 

right anterior (Fp, AF, F, FC), central (FT, TP, C, T) and posterior occipito-temporal electrodes (PO, 158 

P, O, I). The central electrodes (Fpz, AFz, Fz, FCz, Cz, CPz, Pz, POz, Oz, Iz) were included in both the 159 

left and the right clusters; this was done to maintain sufficient electrode counts for the 160 

multivariate analyses (see below). For reasons of consistency, the same electrode clusters were 161 

used in both analyses. The posterior clusters included the electrodes typically yielding the largest 162 

face-sensitive N170 components (Rossion and Jacques, 2008). First, we tested for identity 163 

selectivity by using a one-way repeated measures ANOVA with identity (4) as a factor. Second, 164 
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we averaged the two female and two male face elicited ERPs and performed a paired t-test for 165 

testing sex-specific differences. Third, we tested if the ERPs differed for the two identities within 166 

the same sex by comparing the ERPs for the two female as well as for the two male identities with 167 

each other in t-tests.  168 

Representational Similarity Analysis 169 

To model the neural organization of face representations, we performed a representational 170 

similarity analysis (RSA; Kriegeskorte et al., 2008) on the EEG data. In this analysis (Fig. 1B/C), the 171 

neural dissimilarity between all pairs of face images (i.e., between all 40 individual images), was 172 

modeled as a function of different predictor matrices (see below). 173 

Neural dissimilarity. Neural dissimilarity was extracted by performing a linear classification 174 

analysis, where pairwise decoding accuracies were used as a measure of representational 175 

dissimilarity. Classification analysis was carried out using the CoSMoMVPA toolbox (Oosterhof et 176 

al., 2016). Linear-discriminant-analysis (LDA) classifiers were trained and tested on response 177 

patterns across all 64 electrodes, separately for each time point across the epoch (downsampled 178 

to 100 Hz, i.e., with a 10ms resolution) and separately for each pair of images. Training and testing 179 

was done in a leave-one-out scheme (Fig. 1B): classifiers were trained on all but one trials for each 180 

of the two conditions, and tested on the left-out trials. This procedure was repeated until each 181 

trial was left out once, and classification accuracy was averaged across these repetitions. Pairwise 182 

classification time-courses were smoothed with a 30ms (i.e., 3 consecutive time points) averaging 183 

window (Kaiser et al., 2016). This classification analysis led to one representational dissimilarity 184 

matrix (RDM; 40×40 entries, with empty diagonal) for each time point (Fig. 1C).  185 

Modelling neural dissimilarity. To model the neural dissimilarity, we created four 186 

categorical predictor RDMs. Each predictor RDM covered 40×40 elements, and contained zeros 187 
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where the entries represented comparisons of similar images (i.e., similar on the dimension of 188 

interest, see below) and ones, where the entries reflected comparisons of dissimilar images. To 189 

quantify correspondence between the predictor RDMs and the neural RDMs, we unfolded the 190 

lower off-diagonal elements of the matrices into two vectors (i.e., the diagonal of both matrices 191 

was discarded) and correlated the vectors using Spearman's correlation coefficients. These 192 

correlations were computed separately for each time point, leading to a time series of 193 

correlations that reflected the correspondence of the neural data and the predictor. Individual-194 

participant correlations were Fisher-transformed. 195 

Modelling identity Information. For assessing differences between the four identities, all 196 

comparisons within a given identity (e.g., two images of AJ) were marked as similar (0) and all 197 

comparisons between two identities (e.g., an image of AJ and an image of TS) were marked as 198 

dissimilar (1) (Fig. 3A). 199 

Modelling sex information. For assessing differences between face sexes, all comparisons 200 

within the same sex (e.g., an image of AJ and an image of HK) were marked as similar (0), and all 201 

comparisons between the different sexes (e.g., an image of AJ and an image of TS) were marked 202 

as dissimilar (1). To avoid confounding sex information with identity information, all comparisons 203 

within the same identity (e.g., two different images of AJ) were excluded from this analysis (as 204 

including these comparisons would overestimate the effect of sex) (Fig. 3C).  205 

Modelling identity information between and within sexes. To uncover interactions 206 

between sex and identity processing, we constructed identity predictor RDMs that only covered 207 

all comparisons across the sexes or within one sex. The between-sex RDM was generated from 208 

the identity predictor matrix by removing all comparisons of two different identities of the same 209 

sex (e.g., an image of AJ and an image of HK), leaving only comparisons within identity (0) and 210 
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between identities of the opposite sex (1). The within-sex RDM was generated from the identity 211 

predictor matrix by removing all comparisons of two identities of different sexes (e.g., an image 212 

of AJ and an image of TS), leaving only comparisons within identity (0) and between identities of 213 

the same sex (1) (Fig. 3E). Note that this within-sex analysis tests for identity representations in 214 

more thorough way: by removing between-sex comparisons, the more pronounced differences 215 

between faces of the opposite sex (due to face sex, and due to visual differences) are eliminated. 216 

Sensor-space RSA. To track representational organization across electrode space, we 217 

additionally repeated the RSA across the six electrode clusters also used in the ERP analysis (see 218 

above). Including central electrodes (Fpz, AFz, Fz; FCz, Cz, CPz; Pz, POz, Oz, Iz) in both left- and 219 

right-hemispheric clusters yielded electrode counts of 9, 15, and 13, for the anterior, central, and 220 

posterior clusters, respectively. All technical details of the cluster-specific RSAs were identical to 221 

the analysis using all available electrodes.  222 

Controlling for image similarity. To quantify similarity on the image level, we computed 223 

pixel similarities for all pairs of images. Each image (220×220 pixels in 3 color layers) was first 224 

unfolded into a vector; these vectors were then correlated for each pair of images. A pixel RDM 225 

was generated by using 1 – correlation as the dissimilarity measure. As the pixel RDM explained 226 

some variance in the face identity RDM (R2=.06), neural identity representations could in principle 227 

partly reflect pixel similarities. Hence, we used a partial correlation approach (Cichy et al., 2017; 228 

Groen et al., 2018), where we repeated the key analyses while removing the pixel RDM by 229 

partialing it out. This analysis revealed representations of face identity that are invariant to pixel-230 

based image similarities.  231 
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Statistical testing 232 

To identify significant effects across time, we used a threshold-free cluster enhancement 233 

procedure (Smith and Nichols, 2009)with default parameters. Multiple-comparison correction 234 

across time was based on a sign-permutation test (with null distributions created from 10,000 235 

bootstrapping iterations) as implemented in CoSMoMVPA (Oosterhof et al., 2016). The resulting 236 

statistical maps were thresholded at Z>1.64 (i.e., p<.05, one sided against zero).  237 

 238 

Results 239 

Event-related potentials reflect face sex, but not face identity 240 

Following traditional EEG studies on face perception, we first performed a univariate ERP analysis 241 

across six electrode clusters (Fig. 2). ERPs were different for the four identities primarily in the 242 

bilateral posterior electrode clusters (main effect of identity in a four-way ANOVA, Fig. 2E/F, 243 

purple line) starting from 100ms for the left and 120ms for the right hemisphere (Fig. 2), 244 

remaining significant throughout the length of the epoch. The other electrode clusters showed 245 

weaker and less temporally persistent differences (A-D). The difference between identities 246 

however originated from the significantly different ERPs for female and male faces from 190ms 247 

(left) and 150ms (right), throughout the length of the epoch. By contrast, within-sex comparisons 248 

led to no significant results at any of the time-points over either of the electrode clusters. These 249 

results support prior studies showing that ERP signals more prominently reflect face sex than face 250 

identity (Mouchetant-Rostaing et al., 2000; Freeman et al., 2010). In the following we applied 251 

multivariate pattern analysis to further probe the emergence of identity information with higher 252 

sensitivity.  253 

 254 
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Figure 2. ERP Results. Grand-average ERPs were significantly differed across the four identities 

(purple significance markers), particularly in the posterior electrode clusters (E, F). This effect 
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was driven by a pronounced difference between male and female faces (black significance 

markers). Identities of the same sex were not discriminable from ERP responses in any of the 

clusters, suggesting that ERPs primarily reflect face sex, rather than face identity. Red, blue, 

yellow and green show the average ERPs for the four celebrities. Horizontal lines denote 

statistical significance (p<0.05, FDR-corrected for multiple comparisons). Shaded ranges denote 

standard errors of the mean. 

 255 

Tracking the emergence of face identity representations  256 

To reveal identity information in the EEG signals, we generated an identity predictor RDM, which 257 

reflected the 40 images’ dissimilarity in identity (Fig. 3A). We then correlated the neural RDM 258 

with this identity RDM separately at every time point. This analysis revealed significant 259 

correlations from 110ms onwards, peaking at around 410ms (peak t[25]=5.97) and lasting across 260 

the whole epoch (Fig. 3B), suggesting rapidly emerging and long-lasting face identity information 261 

in the signal.  262 

Our stimulus set contained faces of both sexes, and faces within the same sex share more 263 

visual and conceptual properties than faces of opposite sexes (O’Toole et al., 1998). To determine 264 

whether such sex differences could be retrieved from the EEG signals, we correlated the neural 265 

RDM with a sex predictor RDM separately at every time point (Fig. 3C). This sex predictor RDM 266 

only contained between-identity comparisons, so that this analysis reflected face sex 267 

independently of identity. We found significant sex information from 140ms to 680ms, peaking 268 

at 270ms (peak t[25]=4.39) (Fig. 3D). This indicates that the early EEG signals also contain reliable 269 

differences between sexes, emerging at a similar time point as identity-specific information but 270 

decaying more rapidly.  271 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/393652doi: bioRxiv preprint 

https://doi.org/10.1101/393652
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure. 3: RSA Results. To reveal identity-specific representations, we modeled the 

representational organization obtained from EEG signals with different predictor matrices (A, 

C, E). We observed temporally persisting identity information starting from 110ms after 

stimulus onset (A, B). Similarly, we found strong sex information in the neural organization, 

emerging between 140ms and 680ms (C, D). Tracking identity information for faces of same 

and opposite sexes revealed that identity information for same-sex faces was relatively 

delayed, emerging only after 400ms (E, F). Early identity information was significantly reduced 

for between-sex comparisons (black significance markers), suggesting that early identity coding 

partly relies on differences in face sex. Horizontal lines denote statistical significance (p<0.05, 

corrected for multiple comparisons). Shaded ranges denote standard errors of the mean. 

 272 

The presence of sex information in the signal suggests that identity information may be 273 

processed differently as a function of the sex of the face. Specifically, as faces of the same sex are 274 

more similar in various aspects (including their visual appearance), discriminating between the 275 
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four facial identities may overestimate the amount of genuine identity information in the signal. 276 

We thus split our analysis into comparisons between faces of opposite and of the same sex by 277 

correlating the neural RDMs with two separate predictor RDMs (Fig. 3E).  278 

For one of these predictor RDMs (“between-sex”) we only included comparisons between 279 

the two sexes, while for the other RDM (“within-sex”) we only included comparisons within the 280 

same sex. We observed strong identity information for opposite-sex faces that could be retrieved 281 

from as early as 100ms until the end of the epoch and peaking at 260ms (peak t[25]=7.40). 282 

Identity information, however, differed when restricting the analysis to within-sex comparisons: 283 

it emerged significantly later, at around 400ms, and peaked at 1,050ms (peak t[25]=5.97) (Fig. 284 

3F). When directly comparing identity information for the between- and within-sex comparisons, 285 

we found significantly higher identity information for the between-sex analysis between 140ms 286 

and 660ms. This suggests that early identity representations partly reflect differences in face sex. 287 

By contrast, after 660ms, face sex did not influence identity representations, suggesting the 288 

emergence of identity representations that are invariant to commonalities and differences across 289 

the two sexes. 290 

 291 

Face identity information predominantly originates from right posterior sources 292 

As highlighted by previous neuroimaging studies (Rossion et al., 2003, 2012) (for a recent review 293 

see Yovel, 2016), and evident from our univariate results (see above), face-selective responses 294 

are strongest over right posterior electrodes. Using response patterns across the whole scalp may 295 

therefore partly obscure face identity information in the multivariate analyses. We thus repeated 296 

the RSA separately for each of the six electrode clusters used in the univariate analysis, expecting 297 

the strongest identity information in the right posterior cluster (Fig. 4).  298 
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For the posterior electrode clusters we found the most pronounced identity information, 299 

and a marked difference between hemispheres. In the left posterior cluster, four-way identity 300 

information (where sex may contribute to identity encoding) emerged from 120ms post-stimulus 301 

onset and peaked at 560ms (peak t[25]=4.85) (Fig. 4E). However, restricting the analysis to within-302 

sex comparisons abolished identity information over this electrode cluster in the signal entirely. 303 

Similarly, in the right posterior cluster (Fig. 4F) we found robust four-way identity information, 304 

starting from 110ms after stimulus onset and peaking at 230ms (peak t[25]=4.81). Crucially 305 

however, the right posterior cluster also showed reliable within-sex identity information 306 

throughout the epoch, emerging at the same time, after 110ms and peaking around 530ms (peak 307 

t[25]=5.40). This result suggests that signals recorded from electrodes close to the typically face-308 

selective ERP recording sites of the right hemisphere contain widespread identity information, 309 

even when visual and conceptual properties are more robustly controlled for. 310 

 311 
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Figure 4. Sensor-space RSA Results. When repeating the RSA for the six electrode clusters used 

in the ERP analysis, we found strongest identity information in the posterior clusters (E/F). This 

identity information was lateralized to the right hemisphere: In the right central and posterior 
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electrode clusters (D/F), we observed significant within-sex identity information, with an early 

onset (110ms) in the right posterior cluster. The corresponding left-hemispheric clusters (C/E) 

only yielded identity information when also the between-sex comparisons were included. The 

anterior clusters (A/B) did not yield substantial identity information. Horizontal lines denote 

statistical significance (p<0.05, corrected for multiple comparisons). Shaded ranges denote 

standard errors of the mean. 

 312 

The left central cluster (Fig. 4C) primarily showed four-way identity information, emerging 313 

slightly later as compared to the posterior cluster, after 200ms, peaking at 560ms (peak 314 

t[25]=5.10). By contrast, the right central cluster not only yielded four-way identity information 315 

(from 150ms, peaking at 480ms, peak t[25]=4.97), but also within-sex identity information, 316 

emerging later than that of the posterior cluster, after 550ms and peaking at 1,100ms (peak 317 

t[25]=3.11). 318 

 Signals recorded from the two anterior clusters did not yield substantial identity 319 

information (Fig. 4A/B), suggesting that identity information primarily originates from sources in 320 

visual cortex.  321 

 322 

Late representations of face identity are invariant to image properties 323 

Our stimulus set was constructed to mirror natural variations across different encounters with a 324 

familiar person. This was achieved by selecting stimuli that ensured a high degree of variability 325 

within each identity (see above), so that image-based stimulus properties are unlikely to account 326 

for the emergence of identity information. To explicitly rule out this possibility, we performed a 327 

control analysis, where we additionally modeled image-based similarities between stimuli. This 328 

was done by constructing pixel RDMs, which reflected the images’ dissimilarity in pixel values; 329 
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these pixel RDMs were partialled out in the subsequent analysis. We focused the control analysis 330 

on the within-sex comparison, which forms the most robust test of face identity representations, 331 

and on the two electrode configurations where it was most robustly found (all electrodes and  332 

right posterior electrodes).  333 

 334 

 In the analysis using all electrodes, we found no modulation of identity information after 335 

removing the pixel RDM (Fig. 5B). By contrast, when focusing on the right posterior cluster, we 336 

found a modulation of identity information when controlling for image-based similarity (Fig. 5C). 337 

 

Figure 5. Controlling for Image Similarity. In a partial correlation analysis, we tracked within-

sex identity information while controlling for the images’ pixel dissimilarities (A). When using 

data from all electrodes, removing pixel dissimilarities did not significantly impact identity 

information (B). For the right posterior cluster, where early within-sex identity information was 

found in previous analysis (Fig. 4F), controlling for pixel dissimilarity had a significant impact 

(C): early identity information (90-230ms) was significantly reduced when controlling for pixel 

dissimilarity, whereas later identity information was not impacted and remained significant 

from 460ms after onset. These results suggest that later representations of face identity are 

invariant to image-based properties. Horizontal lines denote statistical significance (p<0.05, 

corrected for multiple comparisons). Shaded ranges denote standard errors. 
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Early within-sex identity information, emerging between 90ms and 230ms was significantly 338 

reduced when controlling for pixel dissimilarity. By contrast, later within-sex identity information 339 

(from 460ms) emerged independently of image-based properties. Together, these results suggest 340 

that later representations of face identity are robust to image-based changes, but genuinely 341 

reflect face identity. These neural representations might thus be a crucial prerequisite for efficient 342 

face recognition across visually different encounters with a person. 343 

 344 

Discussion 345 

In the current study, we applied representational similarity analysis to EEG signals to investigate 346 

the neural dynamics of familiar face recognition. Our results show that face identity can be rapidly 347 

recovered from EEG response patterns, even with highly variable, “ambient” face stimuli (Jenkins 348 

et al., 2011). In more fine-grained analyses, we uncovered a gradual emergence of face identity 349 

coding: Early identity information is modulated by face sex and by visual image properties. By 350 

contrast, later identity information, emerging after 400ms and primarily in the right hemisphere, 351 

is unaffected by these factors. This finding suggests that after 400ms representations genuinely 352 

reflect face identity. These later representations may be the basis for real-world face recognition, 353 

allowing the identification of an individual across different encounters and against similar-looking 354 

other faces. 355 

 In everyday life, the facial appearance of a single person can be highly variable. This 356 

variability makes it challenging to match an individual encounter with a face to an identity 357 

representation stored in memory (Bruce et al., 1999; Clutterbuck and Johnston, 2002; Jenkins et 358 

al., 2011; Andrews et al., 2015). The invariant identity representations revealed here are ideal for 359 

extracting face identity from different encounters, as they discriminate identities of the same sex, 360 
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across variations in visual properties. The late emergence of such representations is compatible 361 

with the involvement of conceptual identity representations in the medial and anterior temporal 362 

cortices (Quiroga et al., 2005; Mormann et al., 2008); linking our EEG results with functional 363 

neuroimaging data (Cichy et al., 2014, 2016) could directly test this possibility in the future. 364 

How do these seemingly late identity representations support rapid face recognition in 365 

the wild? While these representations are useful under great variability and in the presence of 366 

distracting face information, face recognition is sometimes easier than this: In real-life situations, 367 

we often know which person to expect, which visual properties are diagnostic of him or her, and 368 

where the person likely shows up. Under such conditions, motor responses in face recognition 369 

tasks can be faster than 400ms (Besson et al., 2017). This observation suggests that face identity 370 

can sometimes be inferred from earlier representations that do not need to be highly invariant. 371 

Future studies could thus test whether different representational stages are crucial for face 372 

recognition under varying demands.  373 

 Our study revealed a pronounced right-hemispheric lateralization of identity information: 374 

face identity information was strongest in electrodes over the right, as opposed to the left, visual 375 

cortex. Specifically, only signals recorded over right occipito-temporal cortex contained identity 376 

information which is invariant to both face sex and image-based properties. This right-lateralized 377 

topography is consistent with sources in the visual face processing network that has a strong right-378 

hemispheric lateralization (Axelrod and Yovel, 2015; Yovel, 2016). Interestingly, neuroimaging 379 

work showed that specifically right-hemispheric activations predict behavioral performance in 380 

familiar face recognition (Weibert and Andrews, 2015), suggesting that these identity 381 

representations could play an important role in face recognition. However, this notion has to be 382 
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explicitly tested in the future, as caution needs to be applied when inferring cortical sources from 383 

EEG scalp topographies. 384 

Besides identity coding, our findings also offer insights into the cortical coding of face sex. 385 

As our stimulus set contained faces of opposite sexes, we could also track the emergence of sex 386 

information. Face sex can be rapidly retrieved from EEG signals, both in univariate and 387 

multivariate analyses, and predicts cortical organization from 140ms. This finding corroborates 388 

previous ERP studies, which have suggested that face sex is extracted early and affects a variety 389 

of face-related ERP components (Mouchetant-Rostaing et al., 2000; Ito and Urland, 2003, 2005; 390 

Kloth et al., 2015). As opposed to the temporally sustained identity information, sex information 391 

displayed a more transient nature, and vanished shortly before 700ms after onset. This difference 392 

between identity and sex information suggests that the two properties are coded somewhat 393 

independently at later processing stages. 394 

In conclusion, we provide a characterization of the neural dynamics underlying familiar 395 

face recognition. Representations of face identity emerged gradually across the visual processing 396 

cascade. Invariant identity representations were observed after 400ms of processing. We suggest 397 

that these representations are crucial for face recognition across different encounters with a 398 

person.  399 

  400 
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