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Abstract  
 
By removing the confounding factor of cellular heterogeneity, single cell genomics can 
revolutionize the study of development and disease, but methods are needed to simplify 
comparison among individuals. To develop such a framework, we assayed the transcriptome in 
62,600 single cells from the testes of wildtype mice, and mice with gonadal defects due to 
disruption of the genes Mlh3, Hormad1, Cul4a or Cnp. The resulting expression atlas of distinct 
cell clusters revealed novel markers and new insights into testis gene regulation. By jointly 
analysing mutant and wildtype cells using a model-based factor analysis method, SDA, we 
decomposed our data into 46 components that identify novel meiotic gene regulatory 
programmes, mutant-specific pathological processes, and technical effects. Moreover, we 
identify, de novo, DNA sequence motifs associated with each component, and show that SDA 
can be used to impute expression values from single cell data. Analysis of SDA components also 
led us to identify a rare population of macrophages within the seminiferous tubules of Mlh3-/- 
and Hormad1-/- testes, an area typically associated with immune privilege. We provide a web 
application to enable interactive exploration of testis gene expression and components at 
http://www.stats.ox.ac.uk/~wells/testisAtlas.html. 
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Introduction  
 
The testis is an amalgamation of somatic cells and germ cells that coordinate a complex set of 
cellular interactions within the gonad, and between the gonad and the rest of the organism 
(Figure 1A). The key function of the testis is to execute spermatogenesis, a developmental 
process that operates continually in all adult mammals. The mechanisms of this process are 
important for the evolution, fertility and speciation of all sexually reproducing organisms.  
 
A deeper understanding of the transcriptional programme of spermatogenesis has potential 
applications in contraception 1,  in vitro sperm production for research and the treatment of 
infertility 2, and the diagnosis of infertility, among others. Yet, the study of the highly dynamic 
transcriptional programmes underlying sperm production has previously been limited by the 
cellular complexity of the testis. It is comprised of at least 7 somatic cells types, and at least 26 
distinct germ cell classes that identifiable by morphology 3. 
 
The testis has a number of unique genomic features: its transcriptome has by far the largest 
number of tissue specific gene (over twice as many as the 2nd ranked tissue the cerebral cortex – 
with which the testis shares an unusual similarity) 4,56; it contains the only cells in the male body 
with sex chromosome inactivation; and it features dramatic chromatin remodelling, when the 
majority of histones are stripped away during spermiogenesis and replaced with small, highly 
basic proteins known as protamines. 
 
Use of genetic tools has also enabled the dissection of the homeostatic mechanisms that regulate 
spermatogenesis, revealing both cell autonomous and non-autonomous mechanisms. However, 
most perturbations that disrupt spermatogenesis also change the cellular composition of the 
testis, frustrating the use of high throughput genomic technologies in the study of gonadal 
defects. By removing heterogeneity as a confounding factor, single cell RNA sequencing 
(scRNA-seq) promises to revolutionize the study of testis biology. Likewise, it will completely 
change the way that human testis defects are diagnosed clinically, where testis biopsy is the 
standard of care for severe cases. 
 
Here, we performed scRNA-seq on 62,600 testicular cells from the mouse testis, using wild-type 
animals and 4 mutant lines with defects in sperm production (Figure 1B).  On the basis of these 
data, we set out to develop an analysis approach that would allow us to rapidly extract 
mechanistic insights from joint interrogation of multiple mouse strains; to revisit fundamental 
questions in spermatogenesis using the new resolution of single-cell analysis; and to establish the 
utility of scRNA-sequencing for dissecting testis gene regulation in both normal and pathological 
states.  
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Figure 1. Mapping cellular diversity in the adult testis using single-cell expression profiling. (A) Anatomy of 
the testis. Adult testis are comprised of germ cells (spermatogonia, primary spermatocytes, secondary 
spermatocytes, spermatids and spermatozoa) and somatic cells. Within the seminiferous tubules, there is a single 
population of somatic cells (Sertoli). The tubules are wrapped by muscle-like “myoid” cells. Outside the tubules are 
a heterogeneous, poorly defined population of “interstitial” somatic cells. (B) Overview of the experiments. To 
establish the utility of single-cell profiling for testis phenotyping, we performed a series of experiments (i) 
comparing the quality of traditional enzymatic dissociation and more rapid mechanical dissociation, (ii) comparing 
the expression profiles of cells from total testis dissociation to testicular cells of known identity purified by FACS, 
(iii) comparing expression profiles of wildtype animals to cells isolated from 4 mutant strains with testis phenotypes. 
(C) We used Drop-seq to profile 26,615 cells from wildtype animals, with an average of 1,032 transcripts/cell and 
929 genes/cell. We compared chemical dissociation (SPG, WT1, WT2) and mechanical dissociation protocols (all 
others). (D) Expression profiles from enzymatic and mechanical dissociation showed excellent concordance 
(R=0.95). (E) We used t-SNE to visualize k-means clustering of 19,153 cells in 12 clusters. No obvious batch effects 
were detected when comparing the t-SNE clustering location of cells isolated by FACS, or either of the two total 
testis dissociation protocols. (F) Expression levels of known germ cell and somatic cell markers were used to assign 
labels to clusters. (G) Label assignment clearly indicates a spatial organization of testis cells in t-SNE space, with 
one dimension (y-axis) clearly reflecting the continuous ordering of germ cells along the developmental trajectory of 
spermatogenesis, with somatic cell populations flanking the germ cells in small pockets.  

 

Mapping the cellular diversity of the testis 
 
We first tested two methods for testis dissociation: enzymatic dissociation, a slow 2-hour 
protocol, vs. a rapid 30-minute protocol based on mechanical disruption.7 Single cell expression 
profiles from the two methods showed excellent agreement (r=0.95), and no important 
differences in cell quality or ascertainment (Figures 1D-E); thus we applied the mechanical 
dissociation approach for the vast majority of the experiments (Table S1). We performed 
scRNA-seq to generate 25,423 cell profiles isolated from total testis dissociations of 11 wild-type 
animals (WT1-WT11). We compared these to reference data for 296 spermatogonia, 199 primary 
spermatocytes, 398 secondary spermatocytes, and 299 spermatids, all purified by FACS 
(Methods).   
 
The yield of transcripts per cell was consistent with previous studies on different cell types 
(Table S2) and after QC, we retained 19,153 cells for clustering. Initially, we performed cell 
clustering. This identified 12 distinct populations, which we visualized using t-distributed 
Stochastic Neighborhood Embedding (t-SNE) (Methods, Figure 1E). By inspecting the 
expression levels of known cell type markers and comparing to FACS-sorted cells, we could 
unambiguously resolve these populations into 9 subtypes of germ cells and 2 somatic cell 
populations – Leydig cells and Sertoli cells (Figures 1F-G). Along with the expected patterns of 
expression for known markers, we identified numerous novel markers for all populations, which 
validated well with immunohistochemistry (Figure 2A, Figure S1). Noteworthy are the 
identification of Kif5b as an excellent marker of Sertoli cells that provides more extensive 
coverage of the cell body than the conventional markers TUBB and Vim, and the identification of 
Abhd5 as the first marker specific to the subcellular structure of developing germ cells known as 
the residual body.  
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Figure 2. Novel insights from single cell sequencing of wildtype cells. (A) Across all  major cell clusters, we 
identified 28 highly specific gene expression markers that were not previously reported in the literature (Figure S1). 
We attempted to validate 10 of these at the protein level. These included Nol8 (primary spermatocytes); Lrrc34 
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(spermatids); Abhd5 (residual body); Kif5b (Sertoli). (B) Pseudotime analysis provides insights into the expression 
properties of spermatogonial stem cells. By assessing the expression dynamics of genes that are proposed to act as 
spermatogonial “stem cell” (SSC) markers (Id4, Gfra1, and Zbtb16) we found that the population at the earliest 
stages of germ cell development expresses both Id4 and Gfra1. We identified a number of genes with similar 
expression dynamics to Id4 and Gfra1, but whose role in germ cell biology is poorly studied, including genes Dpp4a 
and Pramef12, (main text, Table 1, Figure S2). (C) Pseudotime analysis also allow provides quantitative, high-
resolution insights into meiotic sex chromosome inactivation (MSCI). Chromosome expression relative to autosomal 
drops to almost 0 showing near-completeMSCI before gradually partially recovering. (D) No evidence supporting 
prior report of genes escaping MSCI (E) Competing models of transcript sharing in haploid spermatocytes, 
compared to the observed pattern, which clearly demonstrate extensive sharing of transcripts from the sex 
chromosomes. 
 
Single cell RNA sequencing provides new opportunities to assess important open questions in 
the field of spermatogenesis. One long-standing challenge has been to identify molecular 
markers of spermatogonial stem cells (SSCs), operationally defined as cells which can 
successfully reconstitute spermatogenesis after transplantation into an empty niche. Various 
genes have been nominated as expression markers of spermatogonia stem cells, including Zbtb16 
(aka Plzf) 8, Id4 9,  Gfra1 10, Nanos3 11, and Lin28a 12. We performed pseudotime modeling 
(Methods): this demonstrated the expected temporal trends of expression for these genes, and 
indicated that those cells with the highest levels of Gfra1 and Id4 represent a basal state of 
development (Figure 2B and S2). We found that, in this most basal population, Gfra1 and Id4 
expression are highly correlated (r=0.92), indicating that the regulation of both genes is highly 
synchronized, as opposed to a more complex structure of expression. Compared to Gfra1, we 
found that only 17 genes in the transcriptome show a more dramatic drop in expression as SSCs 
transition to a more restricted fate, including 5 transcription factors: Utf1, Glis3, Fli1, Batf, and 
Foxf1 (Figure S2I). 
 
Meiotic sex chromosome inactivation (MSCI) is an evolutionarily conserved phenomenon 
essential for proper spermatogenesis in mammals. During MSCI, transcription of sex 
chromosomes is silenced as part of a broader mechanism silencing unsynapsed chromatin 
(MSUC) 13,14. Consistent with previous reports we find that MSCI occurs at the start of 
pachytene (Figure 2C). Previous bulk RNA-seq studies suggested that some genes escape MSCI 
15,16. However, our data do not support this conclusion, and instead indicate that the “escapees” 
are actually expressed after MSCI; thus it seems likely that the original finding was an artefact 
resulting from contamination of purified sub stages with later cells (Figure 2D). 
 
Post meiotic cells have haploid genomes, meaning they have either an X or a Y chromosome but 
not both. However, cytokinesis does not fully complete in spermatogenesis resulting in 
synchronised chains of hundreds of cells, connected by µm-wide cytoplasmic bridges through 
which mRNA (or perhaps even mitochondria) could be shared 17. The extent to which mRNA 
sharing occurs is unknown, but it is a property of fundamental interest to evolutionary biology as 
most models predict a strong fitness benefit to fathers who can mask haploid selection in their 
gametes 18. Here, we find that, with respect to sex chromosome transcription, the genetically 
haploid cells are phenotypically diploid (Figure 2E) suggesting that cytoplasmic mRNA is 
efficiently shared, consistent with studies of individual genes 19. However, there remains a 
possibility that some genes are not shared, such as has been observed for the t-complex 
responder (Tcr) which functions as an antidote in the poison-antidote meiotic drive system of the 
t-complex 20. 
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Somatic cells in testis provide essential support to the germ cells throughout spermatogenesis but 
their precise functions have not been comprehensively delineated. Sertoli cells surround and 
nourish differentiating germ cells and phagocytose excess cytoplasm that is discarded by 
maturing spermatids. Leydig cells play a crucial role in germ cell maturation by maintaining 
testosterone production. Peritubular myoid cells, which are smooth-muscle-like cells, are 
involved in transporting immotile spermatozoa through the tubules. A number of studies 
suggested that somatic cells recognize different states of spermatogenesis and alter their 
functions accordingly, resulting in stage-specific patterns of transcription 21(Johnston et al. 
2008).  
 
Additional subclustering on the 2 somatic cell clusters described above revealed heterogeneity 
within testicular somatic populations. We identified 11 different somatic sub-clusters — 5 Sertoli 
sub-populations, 3 Leydig sub-populations, 2 immune cell populations. (Macrophage and 
Lymphocyte) and 1 peritubular myoid cell population (Figure S3). All three Leydig sub-clusters 
(sub-clusters 6, 7 and 9) expressed genes (Hsd17b3, Fabp3, Star, Insl3, Cyp11a1, and Cyp17a1) 
involved in known Leydig-specific biological processes including testosterone biosynthesis from 
cholesterol, beta-oxidation of fatty acids, cholesterol biosynthesis, and retinoic acid metabolism. 
Sub-cluster 7 highly expressed genes involved in mitochondrial electron transport whereas 
cluster 9 was highly enriched with genes involved in detoxification and alcohol biosynthesis. All 
five Sertoli sub-clusters (sub-cluster 2, 5, 8, 10, and 11) expressed known Sertoli cell-specific 
markers (Amhr2, Aard, Defb36, Cst12). Based on the published work on stage-specific gene 
expression in Sertoli cells (Johnston et al. 2008), four of these subclusters appear to represent 
different spermatogenic or seminiferous tubule stages. The gene expression pattern of sub-cluster 
5 resembled that of seminiferous tubule stage V-VII, whereas sub-clusters 8, 10, and 11 
resembled spermatogenic stage VII-XI, VIII-X and IX-XII, respectively (Figure S3D).  
 
Identification of gene modules using SDA 
 
One specific challenge of analysing a developmental system is that cluster-based cell type 
classification might artificially define, hard thresholds in a more continuous process. 
Furthermore, a single cell’s transcriptome is a mixture of multiple transcriptional programmes, 
some of which may be shared among cell types. In order to identify transcriptional programmes 
themselves rather than cell types, without a priori cell type classification, we applied sparse 
decomposition of arrays (SDA) 22. This is a model-based factor analysis method to decompose a 
matrix into sparse, latent factors, or “components” which identify co-varying sets of genes 
which, for example, could arise due to transcription factor binding or batch effects (Methods). 
When applied to single cell RNA-seq data, SDA generates two vectors of scores for each 
component: one reflecting which genes are active in that component, and the other reflecting the 
relative activity of the component in each cell, which can vary continuously across cells, 
negating the need for clustering (Figure 3A-D). This framework provides a unified approach to 
simultaneously soft cluster cells, identify co-expressed marker genes, and impute noisy gene 
expression (Figure 3E, Figures S4 and S5, Methods).  
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Figure 3. SDA identifies gene modules and maps them to cells. (A) We applied sparse decomposition analysis 
(SDA) to identify latent factors (“components”) representing gene modules. These components are defined by two 
vectors – one that indicates the loading of each cell on the component, and one that indicates the loading of each 
gene on the component. (B), SDA induces sparsity, so there are only few non-zero gene loadings on each 
component. (C), We identified 50 components from analysis of 20322 wildtype and KO cells (see also Figure S4). 
We illustrate interpretation of SDA components by visualization of component 5, a module of genes marking 
leptotene/zygotene.  The loadings of component 5 in t-SNE space highlights a small set of cells at the expected early 
developmental stage of meiosis. (D), The component 5 loading of all genes in the transcriptome. Each point 
represents a gene loading. Genes are ordered by genomic location. Most genes have loading of 0, but a small 
number of genes have non-zero loadings including the well-known histone methyltransferase Prdm9. For detailed 
analysis of other representative components see Figure S6.(E), The model fit by SDA can be used to impute gene 
expression values for a given cell, conditional on that cell’s estimated component loadings. Here we illustrate ability 
of imputation to improve the signal/noise ratio of expression for 7 genes with strong developmental regulation. We 
validated the utility of SDA-based imputation (Methods, Figure S5) (F), Cell component loadings for 30 germ 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2018. ; https://doi.org/10.1101/393769doi: bioRxiv preprint 

https://doi.org/10.1101/393769
http://creativecommons.org/licenses/by/4.0/


9 

components sorted by cell pseudotime. Each column corresponds to an individual cell and each row is a component. 
The component loadings are represented as a heatmap, with red colors representing positive loadings and blue 
representing negative loadings. Some components display both positive and negative loadings at distinct points in 
pseudotime. Although pseudotime information is not used in SDA analysis, SDA component loadings show 
coherent ordering throughout pseudotime. 
  
 
We inferred 50 components using SDA: these represent all the major different cell types and 
developmental stages of spermatogenesis as well as batch effects and general processes such as 
respiration (Methods, Figure S6, File S1). Encouragingly, most components contained 
relatively few highly expressed genes (Figure 3) and showed directional biases in gene 
weightings (Figure 3D) not present in the model used for inference, but consistent with 
expectations for identifying a group of co-activated (or a group of co-repressed) genes.  Overall, 
of 50 components, 6 represent batch effects, 5 are components with only a single cell, 13 are 
observed only in somatic cell types,  23 only in germ  cells, and 3 components load on both 
somatic and germ cells. Within somatic cell components, we observe components corresponding 
to Sertoli cells (n=5), Leydig cells (4), macrophages (1), lymphocytes (1), peritubular myoid 
cells (1) as well as a component that seems expressed in all interstitial cells (1). Among germ 
cells-specific components, we observe components corresponding to processes active in 
spermatogonia (5), preleptotene spermatocytes (1), leptotene/zygotene (2), pachytene (5),   
diplotene (1), and spermiogenesis (7). Thus, we find multiple sub-components within existing 
recognised meiotic stages, adding considerable resolution relative to bulk-sequencing 
approaches. For some analyses below, we considered positively and negatively weighted genes 
within a component separately, in case these represent different modes of regulation, within the 
same groups of cells. After removing 5 batch effect components we were able to perform t-SNE 
and pseudotime construction with reduced technical noise resulting in improved resolution. 
Remarkably, although pseudotime information is not part of the SDA modeling framework, the 
cell loadings of SDA components show perfect agreement with the pseudotime assignment of 
each cell (Figure 3F).  
 
One advantage of our approach is the ability to impute expression values, despite the sparsity of 
our single-cell data (mean 1,032 transcripts per cell), by combining data across cells, while still 
allowing individual cells to have their own scores. In individual cells, a lack of reads for many 
genes hinders our ability to estimate their expression. By performing imputation (Figure 3E) we 
are able to estimate expression of individual genes essential for meiosis even where zero reads 
are observed in a cell; via cross-validation, we verified that this approach uniformly improves 
our ability to rank genes according to their true expression levels, relative to using the raw read 
data (Figure S5). 
 
We provide a web application to enable interactive exploration of gene expression and 
components at http://www.stats.ox.ac.uk/~wells/testisAtlas.html. 
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Table 1: Key genes from example components of different stages 

Stage (Component[s]) Example Key Genes 

Undifferentiated 
Spermatogonia (50 & 31) 

Negative C50 loadings: 
Gfra1, Ccnd2, Glis3, Zfp462, Tex19.1, Dppa4 
 
C50 loadings close to 0: 
Zbtb16 aka Plzf, Sox4, Afp, Mageb4, Foxo1 
 
Positive C50 loadings: 
Nanos3, Lin28a, Foxf1, Pramef12, Sox3 
 
(All have positive C31 loadings) 

Differentiated 
spermatogonia (33) 

Uchl1, Dmrt1, Sohlh1, Dnmt3a, Dnmt3b, Dnmt1, Scml2, Msh2, 
Map7d2, Ung 

Pre-Leptotene (2) Ctcfl, Esx1, Pou4f1 aka Brn-3a, Tex13b 

Leptotene \ Zygotene (5) DSB associated: 
Prdm9, Setdb1, Dmc1, Gm960 (aka Top6bl), Brca2, Tex15, 
Ddb2, Brip1, Msh5, Mms22l 
 
Cohesin & synaptonemal components: 
Rad21l, Smc1b, Smc3, 4930447C04Rik (aka Six6os1), Tex12 
 
Ctcfl regulated: 
Prss50, Stra8, Ugt8a, Gal3st1 
 
Others: 
Terb1 & Terb2, Inca1, Gm4969 (aka Bhmg1) 

Early Pachytene (13)  Meiotic cell cycle: Ccna1, Ccnb3, Aurka, Plk1 
piRNA associated  [Better known drosophila homologues in 
square brackets]: 
Piwil1 [Miwi], Tdrd1 [Tudor], Tdrd5 [Tejas], Pld6 [Zucchini] 
 
Protein folding: Hspa5, Calr, Hsp90b 
 
Fertilization: Zpbp, Zpbp2, 

Early Pachytene 2 (47)  Chromosome function: Hormad1, Setx, Ncaph,  Kdm1b 
 
Spindle function: Cenpe, Cntrob, Pcm1 
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Meiotic cell cycle: Stambp, Ccnb1ip1, Ccnb3, Gfra4 

Mid Pachytene (48)  Cilium/axoneme assembly: Cfap46, Cfap65, Cfap74,  Dnah2, 
Dnah12, Dnah14, Dnhd1, Ak7, Ccdc39, Mroh2a 
 
Microtubule/spindle function: Dcdc2b, Ccdc88a, Knl1 
 
Splicing: Srrm2, Tra2a, Srek1, Rbm5, Rbm25 

Pachytene and late 
pachytene (42, 39) 

piRNA associated [Better known drosophila homologues in 
square brackets]: 
Piwil1 [Miwi], Tdrd1 [Tudor], Tdrd5 [Tejas], Tdrd12 [Yb], 
Piwil2 [Mili], Mael [Maelstrom], Pld6 [Zucchini], Exd1 
[Egalitarian], Ddx4 aka Mvh [Vasa], Tdrkh [Papi], Tdrd9 
[SpnE] 
 
Meiotic cell cycle: Calm1, Calm2, Calm3, Meig1, Lyar, Spata4, 
Cetn1, Mns1 
 
Translational Repression: 
Ybx1 (aka MSY2), Ybx3, Pabpc1 
 
Cilium assembly: 
Rsph1, Ropn1l, Dnah8, Dnaaf1, Cfap36, Bbof1, Ccdc39 
 
Post-meiotic (fertilization and metabolism):  
Ldhc, Dkkl, Clgn, Spink2, Catsperz, Fbp, Cct1, Cct3, Cct4, 
Cct7 

Diplotene & Divisions (20) Cell cycle: 
Ccnb1, Ccna1, Cdc25a, Aurka, Bora, Plk1, Rgcc, Fzr1 
 
DUF622 containing: 
1700001F09Rik, Gm3453, Gm10354, Gm3149, Gm8362, 
Gm3127, Gm17019, Gm4181, Speer4e, Speer4b, Gm9758, 
Gm8232, BC061237, Gm5458, 4930572O03Rik, Gm5800, 
Gm7361, Gm8220 
 
SSXRD and KRAB-related domain containing: 
Ssxb1, Ssxb2, Ssxb3, Ssxb5, Ssxb6 
 
Others: 
Tbpl1 (aka Tlf) 
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Spermatid - Acrosome (30) Acrosomal: 
Spaca1, Spaca3 (aka Lyzl3), Spaca4, Spaca5 (aka Lyzl5), 
Spaca7; Lyzl1, Lyzl4, Lyzl4os, Lyzl6; Acrv1, Aep1, Spata9, 
Spata31, & Spata46 
 
Sperm-oocyte interaction: 
Izumo1, Izumo3, Zpbp, Zp3r 
 
Others: 
Catsper1, Catsper3, & Catsper4; 
Tekt1, Tekt2, Tekt3, & Tekt4; 
Creb3l4 aka Atce1, and 1700016D06Rik + Lrcc34 

Spermatid - Mysterious 
(35) 

Testis enriched genes of unknown function: Tex29, Lrrd1, 
Smco4, Heatr9, Hsfy2, Tepp, Spata31d1d, Tmem81, Spata25 
 
Mitochondrial function: Crls1, Slc25a41  

Spermiogenesis (17 [& 18, 
34]) 

Histone Replacements: 
Prm1, Prm2, Prm3, Tnp1, Tnp2 
 
Others: 
Smcp, Odf2, Gapdhs, Oaz3, H1fnt (aka H1t2), Pgk2, and Cabs1 
4+ Abhd5 

Leydig (40) Testosterone Biosynthesis: 
Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3 
 
Others: 
Insl3, Ptgds 

Sertoli (45) Aard, Defb36, Cst12, Ldhb, Tmsb4x, Cst9, Gstm6, Sin3b, 

Gsta4, Chchd10, Gstm7, Basp1, Wfdc10 

Macrophages (11) Csf1r, Cd163, Cd68, Adgre1 (aka F4/80), Itgam (aka CD11b), 
Mrc1, Cx3cr1, Fcgr3, C1qa, C1qb, C1qc 

T-cells (3) Ptprc (aka CD45), Il2rg, Cd3g, Cd3d, Cd3e, Trbc2, Trac, 
Ms4a4b, and Cd2 

Peritubular Myoid (32) Dcn, Cd34, Col1a2, Col3a1, Col6a1, Col4a4, Col4a1, Col1a1, 
Lamb1, Lama2, Lamb2, Des 
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Hormad1 KO (38) X & Y linked: 
Zfy1, Zfy2, Rhox2h, Rhox2d, Rhox2a, Rhox2c, Rhox2g 
 
Autosomal: 
Dnajc12, A830018L16Rik (aka C8orf34) 

Cul4a KO (25) Hist1h2al, Csmd1, Jakmip2, Tagln2, Map2k7, Lpo 

Platform Batch Effect (12) (all negative cell loading in 10X libraries, mostly positive in 
DropSeq) 
 
Gm42418, Rbm25, mt-Rnr1, mt-Rnr2, Ncl, Pet2, Vps8 

 
Germ Cell Components 
 
Five components correspond to processes in spermatogonia. Markers of undifferentiated 
spermatogonia- Zbtb16 (aka Plzf) 8, Gfra1 10, Nanos3 11 and Lin28a 12 – are spread through  
spermatogonial components 50 and 31, while component 33 contained genes involved in 
spermatogonial differentiation (Table 1).  
 
During meiosis there is an extended prophase I (lasting 14 days in mice), which is itself divided 
into a number of stages: Leptotene, Zygotene, Pachytene, and Diplotene. In Leptotene & 
Zygotene the homologous chromosomes undergo presynaptic pairing, aided by meiosis-specific 
cohesin, and induce several hundred programmed double-strand breaks at sites bound by Prdm9, 
the only known mammalian speciation gene 23; 24. We find a component with many of these 
genes, including Prdm9 and components of the cohesin complex (Figure 3C-D; Table 1). 
 
Previous approaches to germ cell transcriptional profiling have provided a single, static summary 
of pachytene expression from bulk sequencing of purified cells 15,16. Here, we are able to 
decompose pachytene gene regulation into 5 components (13, 39, 42, 47, and 48).  These 
components have a striking lack of genes loading on the X or Y chromosome (Figure S6E), due 
to meiotic sex chromosome inactivation (MSCI). Although the cell loadings for these 
components overlap in pseudotime, they differ dramatically in their dynamics (Figure 3F). For 
instance, component 13 and 47 loadings appear to fluctuate, from positive, to negative, to 
positive again, while component 42 loading is constantly negative when active. Another 
interesting observation is that the genes with strong loadings within a component don’t 
necessarily associate with a single, coherent functional process, nor even encode a set of 
transcripts that are all translated at the same point in spermatogenesis. Instead, components 13, 
39, 42 and 48 each appear to involve both a substantial number of genes required for meiosis, as 
well as a second set of genes needed for some postmeiotic process, especially genes involved in 
sperm tail formation (Table 1).   
 
The early pachytene components 13 and 47 are enriched for genes involved in the meiotic cell 
cycle (e.g. Ccna1, Cdk1), chromosome pairing and segregation (e.g. Sycp3, Dmc1, Hormad1), 
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nuclear division (e.g. Cenpe, Plk1), and piRNA processing (e.g. Tdrd1, Tdrd5, Tdrd9,  Piwil1 
and Piwil2). The next component in the sequence, 48, is an odd one restricted to a small part of t-
SNE space and enriched for a large number of genes involved in axoneme/cilia assembly (many 
members of the Cfap family and dynein genes) as well as a smaller number of genes involved in 
microtubule/spindle formation (e.g. Dcdc2b, Ccdc88a, Knl1) and  RNA splicing (e.g. Srrm2, 
Tra2a, Srek1). Component 42 and 39 (pachytene/late pachytene) are enriched for genes with 
similar biological functions - such as meiotic cell cycle, cilium assembly, piRNA processing, and 
translational suppression. These two components, as well as component 47, are significantly 
enriched for genes that are targets of the transcription factor MYBL1 (as determined by ChIP-
Seq, Figure S7B). 
 
Component 20 is particularly interesting. This component contains a number of genes known to 
be expressed in diplotene and or key regulators of cell division in addition to the Ssx family of 
genes (discussed further below) and also shows an enrichment of genes characterised by the 
presence of a DUF622 domain (18 in the top 88 genes) (Table 1). This fascinating gene family is 
rodent-specific and arose from duplication of the gene Dlg5 25. It has previously been shown that 
many DUF622 genes experience similar epigenetic changes as the sex chromosomes during 
spermatogenesis, despite being located on the autosomes 26.  Genes in this component are likely 
to be functional during meiotic divisions and perhaps the very first events thereafter.  
 
We identified 7 post-meiotic components characterizing wildtype biology. Round spermatid 
component 30 contains many genes associated with the acrosome, an organelle which forms a 
nuclear cap containing hydrolytic enzymes used in fertilization 27 (Table 1). In addition, the gene 
Lrrc34 has a high loading. We verified by immunofluorescence that the protein is indeed 
localised to the acrosome of  round spermatids (Figure 2A). 
 
Component 35, which is essentially concurrent to component 30 in pseudotime,  is the most 
mysterious of all components that we detected.  Dozens of protein-coding genes in this 
component are highly enriched in testis expression but have no known function (Table 1). This 
component also harbors a substantial number of genes with no apparent ortholog in humans. The 
existence of such a set of poorly characterized genes likely reflects the difficulty of studying 
postmeiotic male germ cells - these cells cannot be differentiated in vitro, contain numerous cell-
type specific processes, and express many genes which are rapidly evolving.  
 
The spermiogenesis components 17, 18 and 34 all contain many genes known to be expressed at 
the latest stages of spermiogenesis, before transcriptional arrest due to replacement of histones 
with protamines 28 (Table 1). In addition, Abhd5 (aka CGI-58), a protein previously detected in 
testis lipid droplets 29, has high loadings specifically in these late components (17 & 18) and we 
show by immunofluorescence that it serves as an excellent marker of the residual body, a 
subcellular structure that has historically lacked a specific molecular  marker. (Figure 2A). 
 
Somatic Components 
 
In addition to components for the germ cell transcriptional programmes we identified 
components for at least 5 different somatic cell types (Sertoli, Leydig, Macrophages, T-cells, and 
peritubular myoid cells). Some components clearly mark multiple cell types that resolve 
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separately in t-SNE space, while others mark groups of cells that may contain cryptic 
heterogeneity obscured by overlapping gene expression patterns.  Leydig cells are responsible 
for the majority of testosterone production. Component 40 contains all of the key genes of 
testosterone biosynthesis within the top 55 genes, in addition to other well-known Leydig 
markers (Table 1 and Figure S6G). 
 
Sertoli cells are responsible for nursing germ cells by providing nutrients and signalling, in 
addition to forming the blood-testis barrier and phagocytosing the residual body and apoptotic 
cells. Genes in component 45 have high correspondence (27 out of the top 30 markers) to 
previously discovered genes enriched in Sertoli cells (Table 1; 30. 
 
Although the central section of the seminiferous tubules is immune privileged, in the interstitial 
space there are tissue resident macrophages (equivalent to Kupffer cells in liver or microglia in 
brain). Component 11 shows many key macrophage markers in the top 100 genes (Table 1). We 
also find a smaller group of T-cells represented by component 3 with high loadings for the T-cell 
markers (Table 1). 

De novo inference of transcription factor binding sites 
 
The presence of many dynamic and finely tuned transcriptional programmes naturally leads to 
the question of their regulation. We used an existing approach31 to discover de novo motifs 
enriched in the promoter regions of the top 250 positive and negative genes (separately) for each 
component (Methods). We compared the resulting motifs with known motifs from the 
HOCOMOCO database, resulting in 16 groups of matched motifs, as well as one group of 
identified de novo motifs not clearly associated to a known motif, but most similar to the binding 
target of ATF1 (Figure 4A, Figure S7A). 
 
These include multiple well-known master regulators of spermatogenesis Mybl1 32,  Rfx2 33,  and 
Crem 34. In addition, we found Spi1 (aka PU.1), a known master regulator of macrophage 
differentiation 35, specifically in the macrophage component 11, and distinct from the similar 
Stat1 motif that we observed in some later meiosis components. Analysis of ChIP-seq data for 
MYBL1, RFX2 and CREM validated our conclusion that covariation of expression in many 
components reflects a transcriptional programme (Figure S7B).  
 
In our initial analysis we frequently identified the same motif (e.g. Sp2) in multiple components. 
Therefore, we looked at the association of motif presence/absence for particular genes with the 
component loadings, across all components for each motif (Figure 4B). This revealed an 
obvious “switch” with one group of transcription factors appearing to regulate early meiosis 
(prior to the meiotic division), and another group regulating meiosis post-division, with only the 
similar MLX and CREM motifs strongly spanning this divide. Moreover, most meiotic motifs 
spanned several components. This implies that promoter motifs might offer “broad-scale” 
control, but differences at “fine scales” among individual components might instead be driven by 
TF binding to more distant enhancer regions, mRNA degradation by microRNA, or other post-
translational mechanisms. Hence, additional work will be required to fully delineate the 
mechanisms controlling meiotic transcription. 
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Figure 4. Components show shared cis-regulatory features. (A) Motifs discovered from the promoter sequences of 
genes with high component loadings. In each motif logo pair the lower logo shows the de novo inferred motif and 
the upper logo shows the motif in the HOCOMOCO database with the best match to the de novo motif. Orange “T” 
indicates this transcription factor is highest expressed in testis in GTEx database (half T indicates second highest). 
Green “I” indicates that a knockout of this gene produces an infertility phenotype. Blue “L” indicates a knockout of 
this gene is embryonic lethal. Red “M” indicates this gene is required for macrophage development. * after Atf1 
indicates that we believe that the true transcription factor recognizing the de novo motif is not ATF1, but the tau 
isoform of CREM. (B) Association of gene loadings with the probability each de novo identified motif is found in 
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the genes for each component. Coloring is an asinh scaled z-score from a correlation test between gene loadings and 
motif probabilities (calculated using the MotifFinder package from the denovo motifs. See also Figure S7), where 
red (blue) indicates positive (negative) association. The components (rows) are ordered by pseudotime. The column 
“CREM-t” shows the association with the motif probabilities using the denovo motif best matching Atf1 (i.e. the 
lower motif in the Atf1 pair in panel A). The additional column “CpG” shows association with number of promoter 
CpG dinucleotides for each component. Across the top of the panel, color bars indicate whether each motif contains 
a CpG, and whether the corresponding transcription factor is known to be methylation sensitive. 
 
Strikingly, all but one of the pre-division motifs as well as MLX/CREM contain CpG 
dinucleotides (Figure 4), with most, including the non-CpG exception (NFYA) also being 
sensitive to DNA-methylation in their binding36,37. None of the post-division motifs contain 
CpGs (p=0.007 by Fisher’s exact Test for CpG occurrence). Indeed, we found an even stronger 
pattern of association simply using the count of CpG occurrences as a pseudo-motif (Figure 4B), 
indicating a major shift away from expression of genes whose promoters are CpG-rich as meiosis 
progresses. 
 
To find potential effectors of this switch we looked in the component active at the stage of 
meiotic division, component 20. We found an enriched family of testis-specific proteins 
specifically expressed at this time characterized by the presence of both SSXRD and KRAB-
related domains. The SSXRD domain has been studied in the context of synovial sarcomas 
where it was found to associate with the CpG binding protein CXXC2 (KDM2B) which is a 
component of a non-canonical polycomb complex 38. Interestingly another non-canonical 
polycomb component Dcaf7 also has a high loading in component 20 39. It has previously been 
observed that H3K27me3, a mark deposited by polycomb complex 2, increases dramatically 
between pachytene and the round spermatid stage 40. The KRAB-related domain has been 
studied as part of PRDM9 (the only other gene outside of the X-chromosome cluster to contain 
both the KRAB-related and the SSXRD domains), where it has been shown to interact with a 
number of proteins including the CpG binding CXXC1 41, 42.  
 
As we inferred these motifs de novo we were able to discover previously unknown motifs. 
Indeed, we identified a motif with similarity to the ATF1/CREM motifs in the late components, 
but with the addition of a CAA tail and lacking the central G nucleotide which would otherwise 
form a CpG dinucleotide (Figure 4A). We hypothesise that, plausibly, this may represent the 
binding motif of the tau isoform of CREM known to be active in late spermatogenesis 43. 
Consistent with the more general pattern of CpG occurrence we find this ATF1/CREM-t motif 
highly associated with post-division components; in fact it is the most strongly associated motif 
in multiple such components (Figure 4B). 

Characterization of testicular defects 
 
The flexibility of the SDA modeling framework allows the identification of sets of genes that 
show significant covariation in extremely small numbers of cells. We reasoned that a joint 
analysis of mutant and wildtype cells using SDA would allow us to decompose expression 
variation into batch effects, normal gene regulation, and mutant-specific processes that reflect 
pathology. We selected four mutants to profile as models of male infertility – three mutants with 
known molecular mechanisms (knockouts of Mlh3, Hormad1, and Cul4a) as well as one knockin 
of a transgene (Cnp) that led to idiopathic infertility. Clear differences in histopathology were 
observed between testicular sections of wild-type and mutants (Figure 5A).  
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Figure 5.  Characterization of mouse mutants with testicular phenotypes. (A) Histology sections from wildtype and 
mutant testis, illustrating the phenotypes observed in wildtype and the 4 mutant strains characterized by Drop-seq.  
Three of the strains, Mlh3-/- (REF), Hormad1-/- (REF) and Cul4-/- (REF) have known pathology, while strain CNP 
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represents an unpublished transgenic line with spontaneous male infertility. (B) When compared to wildtype, cells 
from mutant strains exhibit significantly higher fractions of transcripts derived from mitochondrial genes, indicative 
of elevated rates of apoptosis. (C) We performed t-SNE clustering of both wildtype and mutant cells. All of the 
clusters observed by t-SNE on wildtype alone, were observed, but a few new clusters emerged from inclusion of 
mutant strains. See also Figures S3 and S4. (D), Mutant strains occupied distinct locations within t-SNE space, 
reflecting both the absence of certain cell types in some strains (e.g. Mlh3-/- and Hormad1-/-) , as well as 
derangement of expression in remaining cells (e.g. Hormad1-/-). (E) Counting individual cell types provides a 
quantitative phenotype of cellular heterogeneity in each strain.  (F) Cumulative distribution of cells along 
pseudotime from each mouse strain. The data clearly indicate that Hormad1-/- cells arrest prior to Mlh3-/- cells in 
the pachytene stage of spermatogenesis, while Cul4a-/- and CNP mice show quantitative deviation from WT in the 
abundance of postmeiotic cells. (G) As a way to summarize the SDA analysis of each strain, we plot the proportion 
of cells with strong component loadings from each strain separately. If cells are randomly distributed across 
components then we would expect the fraction of cells from each mutant to be the proportion of total cells 
sequenced from that mutant (dashed horizontal lines). Instead there are clear enrichments of component loadings in 
particular mutants, providing a fingerprint of pathology for those strains. Arrows indicate six components (3, 16, 26, 
32, 40, and 49) that were enriched for cells from both Mlh3-/- and Hormad1-/- strains, but no other strains. SDA 
components are sorted by developmental stage, as indicated by horizontal lines across the top of the panel. SPG = 
spermatogonial components; L/Z = leptotene/zygotene components; P = pachytene components; D = diplotene 
components; SPTD = components in spermiogenesis; SOMA = somatic cell components. 
 
Seminiferous tubules in Mlh3-/- and Hormad1-/- mice exhibited a complete early meiotic arrest 
and absence of spermatozoa. Cul4a-/- sections showed a partial impairment of spermatogenesis, 
indicated by a significant decrease in number of post-meiotic cells and abnormal spermatids. 
Sections from both Cul4a-/- and Cnp mice presented giant multinucleated cells but this type of 
cell was more prevalent in Cnp seminiferous tubules. Histological sections of Cnp mice 
displayed a clear defect in spermatogenesis as abnormal spermatids were observed; however, it is 
inconclusive which stage of spermatogenesis was affected without further molecular analysis.  
 
After performing histological confirmation of testis defects in each animal to be sequenced, we 
generated 36,400 single cell profiles from mutant strains (Table S1). Cells from Mlh3-/- and 
Hormad1-/- animals showed higher rates of apoptosis compared to wild-type, Cul4a and Cnp 
(2% vs 14.5%, Figure 5B). We performed joint clustering and t-SNE visualization of all high-
quality wildtype and mutant cells, which produced 32 distinct clusters. Based on differentially 
expressed markers in each cluster, we identified all subtypes of germ cells and somatic cell 
populations identified from the wildtype analysis, as well as 2 additional germ cell subtypes and 
2 additional somatic cell types: undifferentiated spermatogonia, sex chromosome activated 
meiotic cells, immune cells, and peritubular myoid cells (Figure 5C and Figure S2). 
 
Careful examination and quantification of cell-type composition differences in each mutant 
strain recapitulated the known pathology of mutants (Mlh3-/-, Hormad1-/- and Cul4a-/-) at an 
exquisite resolution. The location of mutant cells in t-SNE space illustrated absence of certain 
cell types within spermatogenesis. Consistent with the known biology, we observed that both 
Mlh3-/- and Hormad1-/- cells arrest at different stages of meiosis I; mid-pachytene and 
leptotene/zygotene respectively (Figure 5D). Derangement of certain cell types in the 
developmental trajectory was also observed as leptotene/zygotene Hormad1-/- cells and post-
meiotic Cul4a-/- cells formed distinct clusters. By tallying counts of cells within each hard 
cluster, we generated a digital readout of the cellular composition of wildtype and mutant 
animals (Figure 5E).  
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Pseudotime analysis provided an even finer level of resolution for staging the time of onset of 
developmental problems in each strain (Figure 5F). By performing joint pseudotime analysis on 
all strains simultaneously, it will, in theory, be possible to fine map the timing of developmental 
defects. For instance, it is well known that it takes about 34.5 days for Type A spermatogonia to 
develop into mature spermatozoa 44. Given that our pseudotime-ordered set of 16,950 germ cells 
spans this entire developmental process, we estimate that the mean difference in developmental 
age between pseudotime-adjacent cells is 3 minutes. Although further work is needed to confirm 
a linear mapping of pseudotime to real time, we can use that mapping to estimate the difference 
in the mean time of arrest of Hormad1-/- cells and Mlh3-/- cells to be 12 days. This difference is 
reflected in the SDA components as well; Mlh3-/- animals have cells that load on pachytene 
components 47, 42 and 39, while Hormad1-/- animals do not. 
 
HORMAD1 is a meiosis specific protein that regulates chromosome recombination, synapsis, 
and segregation. HORMAD1 normally marks un-synapsed chromosomes (such as the sex 
chromosomes). While HORMAD1 is removed by TRIP13 on synapsis, it persists on asynapsed 
chromosomes, which then undergo MSUC, leading to MSCI for the sex chromosomes 45,46. In 
Hormad1-/- spermatocytes, double-strand break formation and early recombination are disrupted 
as marked by the reduction of yH2AX, DMC1, and RAD51 foci. As expected, joint clustering 
analysis of wildtype and mutant cells indicated that all Hormad1-/- germ cells experience 
apoptosis at early pachytene of meiosis I due to checkpoint failures. Along with this arrest 
phenotype, the Hormad1-/- leptotene/zygotene cells form two distinct clusters outside of the 
leptotene/zygotene cells of all other strains (Clusters 30 and 32, Figure S2). A list of significant 
differentially expressed genes between the two clusters included a number of sex chromosome 
genes (Table S2).  Consistent with these observations, we found one SDA component (38) with 
much higher loadings on the sex chromosomes than autosomes (Figure 6A, Table 1), and for 
which those cells showing significant loadings are all Hormad1-/-. We find that not only does 
Hormad1-/- fail to silence previously expressed sex-linked genes, many previously unexpressed 
sex-linked genes such as Rhox2h have high expression (Figure 6B). Interestingly, there are also 
multiple autosomal genes with high loadings. This may be due to ectopic expression of sex-
linked transcription factors; for example, Zfy1 and Zfy2 were previously shown to cause 
pachytene arrest when misexpressed 47. We find a very strong association between genes in this 
component and genes overexpressed in mice which have mutations in either Hormad1 (p<10-35) 
or Trip13 (p<10-150) 48; Figures S6A-D). 
 
MLH3 is an essential protein required for crossover formation in early meiosis and for binding of 
MLH1 to meiotic chromosomes. Studies on Mlh3-/- testes have shown depletion of 
spermatocytes and some spermatogonia due to apoptosis in diplonema induced by a reduction of 
chiasmata and a loss of recombination nodules 49. Interestingly, in contrast to Hormad1-/-, we 
found no obvious transcriptional phenotype in Mlh3-/- cells either by SDA analysis or by 
comparison of expression levels between hard-clustered wildtype and mutant cells (other than 
differential expression of Mlh3). Instead, Mlh3-/- spermatocytes might simply trigger apoptosis 
through existing checkpoint protein machinery assembled earlier in development. Using the 
simple pseudotime analysis described above, we can estimate that if a transcriptional response 
was triggered, it must last less than 33 minutes for it to be missed in our sample of cells (Figure 
5F).   
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Figure 6.  Dissection of strain-specific pathology. (A) SDA component 38 is comprised largely of genes on the X 
chromosome, with a gene loading direction that indicates failure of X inactivation. As illustrated by the cell scores 
(loadings) for this component, it is restricted to Hormad1-/- cells. (B) Pseudotime analysis indicates that Hormad1-/- 
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cells diverge developmentally from all other strains around leptotene/zygotene. In this illustration, the X-linked gene 
Rhox2h is shown to have low or no expression in all cells prior to meiosis, and then rapidly increased expression 
specifically in Hormad1-/- cells until this lineage arrests. (C) Component 25 is the component most strongly 
enriched for Cul4a-/- cells. (D) We identified 6 components with shared enrichment for both Mlh3-/-  and Hormad1-
/- cells; these components contained genes with numerous significant GO associations related to Alzheimer’s 
disease (AD) pathology (main text, Figure 5G). For each SDA component, we tested for association between 
known AD genes and genes with either positive (P) or negative (N) loadings on that component. AD genes are 
highly enriched for expression in component 11, corresponding to macrophages. (E) Further investigation of protein 
expression of AD genes revealed APOE+ (green) cells within the tubules of Mlh3-/- and Hormad1-/- but not WT. 
These cells showed nuclear morphology different from native germ cells or Sertoli cells, and stain positive for the 
macrophage marker F4/80. The inset table summarizes raw data on the frequency of APOE+ tubules obtained by 
microscopy. The frequency of APOE+ tubules is more common in each mutant strain when compared to WT by 
Fisher’s exact test.  Scale bar = 50mm. 
  
CUL4A is a major component of the E3 ubiquitin ligase complex called CRL4 which is known 
to regulate cell cycle, DNA replication, DNA repair, and chromatin remodelling 50. Studies on 
Cul4a-/- mice noted that some spermatocytes arrest at the pachytene stage of meiosis I induced 
by the pachytene checkpoint, whereas remaining spermatocytes complete meiosis but the 
resulting spermatozoa present oligoasthenospermia and severe malformations 51. The molecular 
basis of observed abnormal phenotypes in spermatozoa remains unclear. Our joint analysis 
revealed that pre-meiotic and meiotic Cul4a-/- cells clustered well with wildtype cells but certain 
phases of post-meiotic cells formed distinct clusters on the t-SNE plot (Figure 5D). We 
identified a single SDA component (25) that was highly specific to Cul4a-/- cells (Figure 6C 
and Table 1). This component corresponds to dozens of genes that are overexpressed in Cul4a-/- 
mutants when compared to all other strains, with GO enrichments related to spermatid 
development, motility and capacitation. These findings are consistent with the observed 
phenotype of Cul4a-/- mice and provide new leads to investigate mechanisms of pathology. 
 
The cells from Cnp mice did not form distinct clusters, nor did they show SDA component 
loadings distinct from wildtype cells. Although the presence of multinucleated giant cells, 
hypocellular seminiferous tubules and infertile phenotype point to a serious defect in 
spermatogenesis, it is difficult to determine which stages are affected using single-cell 
expression data. One possible explanation of missing important biological signals may be that 
Cnp mice presents a partial arrest phenotype which masked the developmental abnormalities. 
Another possible explanation is that droplet-based sequencing library preparation may 
undersample the cells with aberrant transcriptional signatures. 
 

A convergent phenotype of meiotic arrest mutants 
 
Despite the differences in cell composition or component loadings among mutant strains, we 
identified 6 somatic components -3,16, 49, 40, 26, and 32- showing a specific enrichment for 
Mlh3-/- and Hormad1-/- cell loadings when compared to all other strains (Figure 5G). Three of 
these components, 16, 49 and 26, were highly enriched for genes involved in amyloid-beta 
formation, metabolism, and clearance, including Apoe, App and Clu (Table S3).  Excessive 
production of amyloid-beta, which is a primary cause of Alzheimer’s disease, was not previously 
reported in these mutants, and the possible physiological role of such production is unclear. We 
tested multiple antibodies to human amyloid-beta that failed to work on our tissue. To further 
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evaluate the expression of Alzheimer’s disease (AD)-related genes across all 5 mouse strains, we 
tested individual SDA components for enrichment of expression of AD risk genes identified in a 
recent GWAS, identifying component 11 (macrophages) as specifically and strongly enriched 
(p< 10-12, Figure 6D and Figure S6F).  Immunofluorescence staining for the protein product of 
one well-studied AD gene, Apoe, in wildtype animals showed low levels of specific staining 
confined to the interstitial space (Figure 6E). Both Mlh3-/- and Hormad1-/- displayed interstitial 
cell with more intense staining of APOE, as well as a greater abundance of APOE+ cells. Most 
remarkably, we found a rare population of APOE+ cells within the tubules of Mlh3-/- and 
Hormad1-/- that are never observed in wildtype. We screened 4,959 tubule cross-sections to 
establish more precise estimates of APOE+ cell frequency in these three lines (Methods). When 
compared to the frequency in wildtype tubules (0/2496 tubules), we see higher frequencies of 
intratubular APOE+ cells in Mlh3-/- (25/707 tubules, 3.5%, p< 2.2 x 10-16) and Hormad1-/- 
(98/1756 tubules, 5.6%, p< 2.2 x 10-16). These APOE+ cells displayed a nuclear staining and 
morphology that are distinct from normal germ cells and Sertoli cells, and appeared more similar 
to APOE+ cells outside of the tubules.  These cells stained for F4/80, a well-established 
macrophage antigen, which was quite surprising, as it is widely believed that only preleptotene 
spermatocytes transit the blood-testis barrier 52; 53. Co-staining of F4/80 with an antibody for 
activated CASPASE-3, a marker of apoptosis, failed to identify any double positive cells, so we 
exclude the possibility that intratubular F4/80 protein expression was somehow an artefact of an 
apoptotic cell population. A deep review of the literature indicated that intratubular macrophages 
have been described previously, always in the context of testicular disease 54; 55. The 
mechanisms by which macrophages transit the blood-testis barrier, and the corresponding cues 
for migration, await further investigation.  

Discussion 
 
The extensive cellular heterogeneity of the testis has limited the application of genome 
technology to the study of its gene regulation and pathology. Here, we described how the SDA 
analysis framework can be applied to single-cell RNA-sequencing data of the testis to overcome 
the challenge of heterogeneity by summarizing gene expression variation into components that 
reflect technical artifacts, cell types, and physiological processes. Rather than clustering groups 
of cells, SDA identifies components comprising groups of genes that covary in expression, and 
represents a single cell as a sum of such components. This revealed previously uncharacterised 
complexity, with multiple different components even within recognised meiotic stages such as 
pachytene. We also identified components corresponding to highly specific and interpretable 
pathology in one or more mutant strains. 
 
By performing de novo motif analysis, we observed that it is possible to identify transcription 
factors critical for the meiotic program without prior knowledge, as well as other motifs not 
currently well characterised. It seems likely that our analysis of promoters is only a first step 
towards what is possible here via – for example – analysis of enhancers and other regulatory 
sequences, and we hope that future data will allow this, working towards identifying the full set 
of transcription factors, and their targets, used in mammalian spermatogenesis. The apparent 
dramatic change away from the use of factors binding CpG dinucleotides, and whose binding is 
often disrupted by methylation of such dinucleotides, after the first meiotic division, is one area 
for such further research – whether this involves Ssx genes, DUF622-containing genes, or other 
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factors. More generally, in combination with temporal information from pseudotime analysis, it 
will be possible to create a model of the cascade of gene regulation, and by comparison across 
species, better understand the constraints on the precise timing and ordering of regulatory events. 
 
Finally, we note that gene expression components (for example those identified by SDA) 
represent an attractive way to build a dictionary of pathology of the testis. The construction of 
new component models using a larger panel of mutants with known pathology will accelerate the 
interpretation of idiopathic mutants, and, ultimately, could provide a framework for a much more 
advanced diagnosis of human infertility than is currently in practice.  
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MATERIALS AND METHODS 
Mice 
  
All animal experiments were performed in compliance with the regulations of the Animal 
Studies Committee at Washington University in St. Louis under protocol #20160089. Mice were 
housed in a barrier facility under standard housing conditions with ad libitum access to food and 
water and a 12hr:12hr light/dark cycle. All single-cell RNA sequencing experiments were carried 
out with sexually mature animals (ages of mice in this paper vary from 11- 38 weeks) except for 
Pou5f1-EGFP transgenic animal testes which were collected at post-natal age (P) 7. For specific 
age of mouse at the time of testes collection for different batches, please refer to Table S1. 
Samples for histological studies were also collected at the time of testes collection for single-cell 
RNA sequencing. The mouse lines used in this paper are the following: 
  
1.  C57BL/6J male mice were used for Hoechst-FACS and total testis single-cell RNA 
sequencing experiments. 
2.  B6;CBA-Tg(Pou5f1-EGFP)2Mnn/J reporter mice were used for enriching and isolating 
spermatogonia type A cells. Testes from five mice at post-natal age P7 were pooled to generate 
single-cell suspension and FACS sorted for GFP positive cells, followed by Drop-seq. 
3.  B6.129-Mlh3tm1Lpkn/J heterozygotes were bred to maintain the colony and male 
homozygotes were used for Drop-seq experiments. 
4.  B6;129S7-Hormad1tm1Rajk/Mmjax heterozygotes were bred to maintain the colony and 
male heterozygotes were used to Drop-seq and 10X Chromium experiments. 
5.  B6;129 Cul4a-/- mice were used for generating Drop-seq data 
6.  C57BL/6J CNP-EGFP BAC-TRAP mice were used for Drop-seq data 
 
Single-cell Suspension Preparation 
Mechanical Dissociation of Testes 
Two different types of testicular dissociation protocols were used in this paper: enzymatic and 
mechanical. Both enzymatic and mechanical protocols were previously published in 56 and 57.  
These methods were modified appropriately for single-cell RNA sequencing. 
For mechanical dissociation method, fresh testes were decapsulated in 1X DMEM and cut into 
small pieces (approximately 2-3mm3). These tissue fragments were transferred to a 50µm 
Medicon, a tissue disaggregator and tissue fragments were dissociated in 1mL 1X DMEM for 5 
minutes on Medimachine. The resulting single-cell suspension was aspirated from Medicon with 
a 3mL needless syringe. This dissociation/aspiration step was repeated three times and total of 
3mL single-cell solution was retrieved. Then the single cells were filtered through sterile 40um 
strainers twice and triturated for 1 minute with a wide orifice disposable Pasteur pipet. Cells 
were spun down at 500xg for 10 minutes at 4°C and re-suspended in 2mL 1X DMEM. Finally, 
cells were filtered once more with sterile 50um filter, adjusted to 100 cells/µl concentration, and 
placed on ice until processed for Drop-seq or submission to Genome Technology Access Center 
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at Washington University in St. Louis for 10X Genomics Chromium service. Single-cell RNA 
sequencing experiments were performed within ~30 minutes of testes collection for mechanical 
dissociation. 
  
Enzymatic Dissociation of Testes 
Solutions necessary for enzymatic dissociation were prepared fresh prior to testes collection and 
these solutions are as follows: 120U/mL collagenase type I in 1X DMEM; 50mg/mL trypsin in 
1mM HCl; 1mg/mL DNase I in 50% glycerol. For enzymatic dissociation method, decapsulated 
fresh testes were collected in 15mL conical tubes, one testis per tube. Each testis was dissociated 
in 6 mL of collagenase type I solution and 10µl of DNAse I solution with horizontal agitation at 
120rpm for 15 minutes at 37°C. Tubules were decanted for 1 minute vertically at room 
temperature and supernatant was discarded. Another 4mL of collagenase type I solution, 50µl of 
trypsin solution and 10µl of DNAse I solution were added to each tube and incubated with 
horizontal agitation at 120rpm for 15 minutes at 37°C. Testicular tubules were triturated with a 
plastic disposable Pasteur pipet with a wide orifice for 3 minutes. Another 30µl of Trypsin 
solution and 150µl of DNAse I solution were added and incubated for 10 minutes with horizontal 
agitation at 120rpm. Then 400µl Fetal Bovine Serum (FBS) was added to deactivate dissociation 
enzymes. Finally, collected single-cell suspension was passed through 40µm filter twice and 
stored on ice until processing for Drop-seq. These cells were processed within 1.5 hour of the 
testes collection. 
         For digesting Pou5f1-EGFP mice testes, we adapted a protocol described previously 58. 
Briefly, testicular tubules/fragments were incubated in 200µg/mL trypsin solution for 15- 20 
minutes with intermittent pipetting followed by 300µl FBS addition for inactivating trypsin. 
Single-cells suspension was filtered through 50µm filters twice and stored on ice until FACS. 
  
Isolation of Germ Cell Populations by Flow Cytometry 
Hoechst-FACS for spermatocytes and spermatids 
For isolation of major germ cell populations, we adapted a Hoechst-FACS protocol and 
sequential gating strategies described in (Lima et al. 2017). Briefly, 10µl Hoechst and 2µl of 
propidium iodide (PI) were added to single-cell suspension obtained from one testis and 
incubated at room temperature for 20 minutes. Then single-cell suspension was filtered through a 
50um cell strainer. Cells were sorted and analyzed using Beckman Coulter MoFlo Legacy cell 
sorter and Summit Cell sorting software. First, debris were excluded based on forward scatter 
(FSC) and side scatter (SSC) plot pattern. Single cells were gated by adjusting FSC and pulse 
width threshold. Dead cells were gated and removed based on PI intensity. A minimum of 
500,000 events were observed before proceeding to gating on different germ cell populations. 
Then, cell count histogram was plotted based on Hoechst blue fluorescence and observed three 
peaks, representing haploid (1C), diploid(2C), and tetraploid (4C) populations. Then Hoechst-
blue and Hoechst-red fluorescence intensities were plotted to refine spermatocytes and 
spermatids populations. 
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Spermatogonia type A 
For isolating spermatogonia type A cells from the Pou5f1-EGFP reporter mice, cells were 
analyzed and sorted with the same cell sorter and software described above section. Similar 
sequential gating strategies were followed. Debris were excluded, single cells were gated and 
dead cells were excluded. Then, GFP+ cells were gated on a plot of GFP vs FSC. 
  
Single-cell RNA Sequencing Library Generation 
Drop-seq Procedure 
Drop-seq sequencing libraries were generated according to a protocol described previously 
(Macosko et al. 2015). Cells and beads were diluted to co-encapsulation occupancy of 0.05. Two 
bead lots were used for generating Drop-seq data (For more details, see Table S1). Individual 
droplets were broken by perfluorooctanol, followed by bead harvest and reverse transcription of 
hybridized mRNA. After Exonuclease I treatment, aliquots of 2000 beads were amplified for 14 
PCR cycles (all necessary PCR reagents and conditions were identical to Macosko et al. 2015). 
PCR products were purified using 0.6x AMPure XP beads and cDNA from each experiment was 
quantified by Tapestation analysis. 600pg of cDNA was tagmented by Nextera XT with the 
custom primers, P5_TSO_Hybrid and Nextera 70X. The single-cell sequencing library from each 
batch was either pooled with another batch or sequenced separately on the Illumina HiSeq2500 
at 1.4pM or MiSeq at 8pM, with custom priming (Read1CustSeqB Drop-seq primer). 
  
10X Genomics Procedure 
A single-cell suspension from a Hormad1-/- mouse was processed through the 10X Genomics 
Chromium instrument according to the manufacturer’s protocol. Briefly, single cells were added 
to microfluidics chip channel along with oil and barcoded gel beads and sorted into droplets. 
Within the gel beads emulsion, cells were lysed, RNAs were reversed transcribed, cDNA were 
amplified and sequencing libraries are constructed. Generated single-cell sequencing libraries 
were sequenced on Illumina HiSeq2500. 
  
Histological Methods 
Collection and Processing of Testes 
For histological studies, testes were collected in 4% paraformaldehyde (PFA), incubated 
overnight at 4°C and washed with 70% ethanol. For hematoxylin and eosin staining, testes were 
collected in modified Davidson fixative and after 24-hour incubation at room temperature, 
tissues were transferred to Bouin’s solution for another 24-hour incubation at room temperature. 
Fixed testes were dehydrated through a series of graded ethanol baths and embedded in paraffin. 
Then 5µm sections were cut on clean glass slides. 
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Hematoxylin & Eosin (HE) Staining 
Hematoxylin & Eosin staining was performed on each mouse line (Wildtype, Mlh3-/-, Hormad1-
/-, Cul4a-/-, and CNP-EGFP) to assess overall morphology of testicular tissue. Slides were 
deparaffinized with xylene and rehydrated through a series of graded ethanol bath to PBS. 
Standard HE staining protocol was adapted from Belinda Dana (Department of Ophthalmology, 
Washington University in St. Louis) and followed with Hematoxylin 560 and 1% Alcoholic 
Eosin Y 515. 
  
Immunofluorescence Staining 
Prior to immunofluorescence staining, antigen retrieval was performed by boiling slides in citric 
acid buffer for 20 minutes and tissue sections were blocked in blocking solution (0.5% Triton X-
100 + 2% goat serum in 1X PBS) for an hour at room temperature. Primary antibodies were 
diluted to antibody-specific dilution (see Key Resources Table) and incubated overnight at 4°C 
in a humid chamber. Then, slides were incubated in secondary antibodies (1:300 dilution) at 
room temperature for 4 hours in a humid chamber. After the secondary antibody incubation, 
sections were stained with Hoechst (1:500 dilution), washed with 1X PBS and mounted with 
ProLong Diamond Antifade Mountant for visualization under confocal microscope. 
  
Computational Methods 
Preprocessing of Drop-seq Data 
Paired-end sequencing reads were processed, filtered and aligned as described in Macosko et al. 
2015. The specific steps and tools for this process is further outlined in Drop-seq Computational 
Cookbook (http://mccarrolllab.com/wp-content/uploads/2016/03/Drop-
seqAlignmentCookbookv1.2Jan2016.pdf). STAR aligner was used to map the processed reads to 
mouse genome. A STAR indexed genome was generated using mm10 mouse genome and 
GRCm38 gene annotation (release version 76) with default setting. Following the alignment, 
digital gene expression (DGE) matrices were generated for each experimental batch. 
  
Preprocessing for 10X Chromium Data 
One Hormad1-/- mutant data was generated from 10X Genomics Chromium. Cellranger toolkit 
was used to de-multiplex, align reads to mm10 genome, collapse UMIs and generate gene-cell 
matrices. This digital gene expression matrix was combined with DGEs of Hormad1-/- Drop-seq 
data. 
  
Quality Control for Wildtype Single-cell RNA Sequencing Data 
DGEs from all wild type experiments were combined into one DGE matrix for further quality 
control steps. We used a R package, SingleCellExperiment, to create R object that stores gene 
expression information, dimensionality reduction coordinates, cell-specific size factors for 
normalization and meta-data. The information for meta-data included experimental batch, type of 
sample preparation, and type of sample. In addition, the R package scater was used to remove 
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poor quality cells. First, cells were filtered based on the total number of unique molecule 
identifier(UMI) counts detected per cell. For the wildtype-only analysis, we filtered cells with 
less than 440 UMI counts. Then, cells with less than 370 unique genes were removed. We also 
filtered cells based on the ratio between mitochondrial RNAs to total RNAs. This ratio was used 
to remove cells that are likely being dead or stressed. Cells with greater than 5% of this ratio 
were removed. Genes that were not detected in at least two cells with more than one transcript 
count were filtered. After a series of filtering steps, the final DGE had 19153 cells with 11977 
genes. This filtered digital expression matrix was used for Seurat downstream analyses. The 
mean UMI count was 1295 and mean number of expressed genes was 793. We corrected for 
differences in library sizes of batches using scran, a R package that is developed for library size 
normalization in single-cell RNA sequencing. 
  
K-means clustering and differential expression analysis 
After quality control and normalization steps, Seurat was used to perform clustering and 
visualization of the data. A Seurat R object was created from the post-QC DGE without 
additional quality control and normalization steps. Highly variable genes were identified and 
used for performing Principal Component Analysis (PCA) to reduce the dimensionality of the 
data. A number of statistically significant principle components (PCs) to use for clustering was 
defined by plotting the variability explained by each PC in decreasing order and determine 
statistically significant PCs. Cells were clustered by K-nearest neighbor (KNN) graph-based 
algorithm implemented in Seurat. The resolution of the clustered data will always be either under 
or over-clustered so to address this issue, we adapted the suggestion by Seurat developers. We 
first slightly over-clustered data (i.e. created more clusters than necessary) and merged clusters 
that are transcriptionally indistinguishable. To test for which clusters to be merged, the out-of-
bag error (OOBE) method from a random forest classifier was used. We noticed that cells with 
low number of genes and UMIs were forming clusters on t-SNE plot so these clusters were 
removed. Finally, differentially expressed markers of all clusters were identified using Seurat 
and this information was used as an input for generating potential novel cell-type specific 
markers for validation experiments via immunofluorescence. 
  
Sparse Decomposition of Arrays (SDA) 
Combined raw DGEs were processed through a series of quality control and normalization steps. 
Cells were fewer than 200 UMI counts were removed and genes in lower half of expression 
means were removed. Cells were normalized by square root transformation of total transcript 
counts per cell and genes were normalized to unit variance. All expression values were capped to 
maximum of 10. Then, SDA was run with 50 components for 10000 iterations on the filtered and 
normalized data which had 20322 cells and 19262 genes. Briefly, SDA decomposes a DGE into 
a number of components represented by two matrices. The columns vectors of the first matrix 
indicate how much a given component is active in each cell and the rows of the second matrix 
indicates which genes are active in a given component. SDA convergence was confirmed using 
the change in free energy, as well as the change in fraction of posterior inclusion probabilities 
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(PIPs) less than 0.5. The distribution of PIPs, cell scores, and gene loadings were also assessed. 
SDA was also run five times with different seeds as well as with different number of components 
to ensure stability of the results. Components with a single high loading in one cell (1, 46, 4, 18, 
14) were removed to visualize relationships between the components. To visualize and quantify 
the  biological relationships among cells, t-SNE was run on a version of the component scores 
matrix with potential technical artifacts and batch components removed, using a perplexity of 50. 
Technical components were manually identified as meeting one or both of the following criteria: 
two batches of the same mouse line had opposite or very different cell scores (components 6, 12, 
22, 28, 41, 29) and or if the highest loading genes were all or mostly ribosomal or pseudogenes 
(components 25, 9, 43). To assess uncertainty in the t-SNE embedding t-SNE was run multiple 
times with different seeds (Figure S6) 
  
To generate a pseudo-timeline we used a similar approach to that implemented in SCUBA. We 
iteratively fit a principal curve through the t-SNE plot with increasing degrees of freedom from 4 
to 9 using the curve from the previous run as the starting point. Each cell was then assigned to 
the closest position on this curve. Somatic cells and the Hormad1 X-activated cells were 
excluded during pseudotime construction. Somatic cells were defined by thresholding the cell 
scores of somatic components. 
  
Imputed gene expression values (the posterior means of the SDA model) were computed as the 
matrix product of the cell scores and gene loadings matrix from SDA. 
  
Component names were assigned based on known maker genes from the literature and cross 
checked for consistency against clustering of the components by t-SNE using the absolute gene 
loadings or cell scores matrix with a low perplexity (2). Components representing batch effects 
were identified by plotting cell scores by experimental batch and checking for biological 
subgroups with opposing cell scores. Plotting the cell scores on t-SNE also revealed ‘patchy’ 
patterning for technical components compared to biological components which tended to vary 
instead by pseudotime. 
  
We also ensured the KO cells were not unduly affecting the estimated components by separately 
performing an SDA analysis with only WT cells (normalised separately but with the same 
parameters). The same number of iterations, number of components, and random seed, were 
used. We correlated the gene loadings of the Mixed WT & KO SDA analysis with the WT only 
analysis and found strong correspondence for those WT components which contained many cells 
(Figure S7). 
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Validation of SDA Imputation 
  
In order to formally quantify the accuracy of SDA imputation, we performed a validation study 
comparing the ability of SDA imputation to correctly predict single cell gene expression data 
compared to two other simpler approaches. First, we randomly split the post-QC RNA-
sequencing reads from the full dataset into two batches: with 20% probability a read is assigned 
to the “test” dataset, and with 80% probability it is assigned to the “training” dataset.  Next we 
create three predictors of gene expression levels for each cell, using the “training” dataset: we 
call these “Imputed”, “Cellwise Training” and “Average Training”. The “Imputed” predictor is 
the SDA-imputed expression level for each gene and each cell based on running SDA on the 
“training” dataset. The “Cellwise Training” predictor is simply the expression level of each gene 
in the training dataset for that cell, scaled to the library size of the cell. The “Average Training” 
predictor for each combination of gene & cell is the average expression level of the gene across 
all cells in the dataset. 
  
To compare the accuracy of the three predictors for gene expression imputation, we evaluate an 
objective function for each predictor and each cell, which we call the “quantitative predictive 
accuracy curve” or QPAC. The QPAC for each predictor is created by rank ordering all genes in 
a single cell by the predicted level of expression of those genes, from high-to-low (Figure S5). 
For each rank (abscissa), the ordinate is the cumulative sum of “test” data reads for all genes up 
to that rank (i.e. all genes with higher predicted expression than the current rank). The QPAC is 
similar in spirit to a receiver operating characteristic (ROC) curve. The area under the curve 
(AUC) for each QPAC is informative about prediction accuracy; a completely random predictor 
is expected to produce an AUC of 0.5, while a method with some predictive utility will have an 
AUC > 0.5. A perfect predictor will have an AUC approaching 1.0 (but the maximum possible 
AUC will be determined by the true data). A higher level summary of the results was obtained by 
calculating an average AUC across all cells for each predictor.  
  
Transcription Factor Motif Analysis 
 
To discover de novo motifs enriched in each component we used the MotifFinder software - an 
iterative Gibbs sampler described in 31. We ran MotifFinder on the repeat masked promoter 
sequences from Mus Musculus GRCm38 of the top 250 positive and negative genes (separately) 
for each component. For each component 10 different regions around the TSS were used (150, 
200, 250 bp upstream and downstream of the TSS (separately), and 200, 300, 400, and 800 bp 
centered on the TSS). Each run was repeated three times with different seed motifs (each of 
length 6bp) and each of those repeated three times with different seeds. MotifFinder was run for 
100 iterations in each case. 
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The resulting de novo motifs were annotated with known motifs from the HOCOMOCO 
database (V11) using Tomtom from the MEME suite. We subset the matches by taking the 
match with the minimum q-value for each HOCOMOCO target for those with a q-value of less 
than 0.001. This resulted in 124 different matches from 92 de novo motifs. These were manually 
grouped into 16 categories based on similarity of the motifs. Within each group a single ‘most 
likely acting’ motif was chosen based on external suggestive evidence such as if a knock out of 
the TF causes infertility, if the TF is specifically expressed in testis by RNA-Seq data, or if the 
TF is previously known to bind testis expressed genes by ChIP-Seq. 
  
To find good motifs with poor matches to currently known motifs we plotted the sum of the 
information content by the E value for each de novo motif. We found a cluster of motifs with 
poor E values but large total information content – most of these matched best to ATF1. 
  
In order to determine patterns of association of motifs with pseudotime, we performed 
correlation tests between the gene loadings of each component and the probability of the motif 
being present at the promoter of these genes. To find probability of motif presence per gene 
promoter we used MotifFinder but fixed the position weight matrix to either one of our de novo 
motifs (Figure 4) or a motif from the HOCOMOCO database (Figure S7A) and ran MotifFinder 
for 20 iterations. We assessed convergence through the change in proportion of sequences 
containing the motif. 
  
We used published ChIP-Seq data for the transcription factors Mybl1 32, Crem 59, and Rfx2 33 to 
validate our conclusion that some SDA components correspond to genes coregulated by these 
transcription factors. We performed a Fisher’s exact test on the overlap of the genes suggested 
from the ChIP-Seq studies for each of the three transcription factors with the top 500 genes for 
each SDA component (positive and negative loadings separately). For Mybl1 the genes are those 
that Bolcun-Filas had determined as potential direct targets of MYBL1 (those that were bound in 
ChIP and were mis-regulated in repro9 mice, from their Table 1). For Crem the genes were those 
that are “found in the cross-section between DE genes from Kosir et al. and genes bound by 
CREM in testis from Martianov et al” (i.e. the top 50 genes from Kosir, et al. Supp Table 4). For 
Rfx2 the genes are the genes from Kistler et al. that are bound by RFX2 by ChIP-seq and are 
statistically significantly downregulated at P30 (from their Table S1). 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
  
Apolipoprotein E (ApoE) Immunofluorescence Signal Quantification 
To quantify the frequency of ApoE protein signal in wild-type and mutant animals, we counted 
the total number of intact testicular tubules present on slides and the number of tubules with 
ApoE protein signal using a confocal microscope at 20x. A Fisher’s exact test was used to test 
the hypothesis that the frequency of ApoE-positive tubules was the same in wildtype, Mlh3-/- 
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and Hormad1-/- strains. 
  
 DATA AND SOFTWARE AVAILABILITY 
 
Raw data and processed files for Drop-seq and 10X Genomics experiments are available under 
GEO accession number GEO: GSE113293 
  
R markdown files that enable simulating main steps of the analysis are available upon reasonable 
request. Custom R code used is available at www.github.com/MyersGroup/testisAtlas and 
archived at DOI: 10.5281/zenodo.1311483. 
 
SDA is available from https://jmarchini.org/sda/ 

Supplemental Information 
 
Table S1.  Summary of all wildtype and mutant single-cell RNA-sequencing experiments. 
 
Table S2. Summary of all differentially expressed genes in total joint wildtype and mutant cell 
clusters  
 
File S1 A ZIP file containing results of the full SDA analysis reported in the manuscript, which 
can be loaded and explored in the R computing environment. 
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