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Abstract

We present DeepSomatic, the first convolutional neural network approach for somatic variant call-

ing, which significantly outperforms previous techniques on different sequencing platforms, sequencing

strategies, and tumor purities. DeepSomatic summarizes sequence alignments into small matrices and

can incorporate more than a hundred features to capture variant signals effectively. It can be used uni-

versally as a stand-alone somatic variant caller or with an ensemble of existing callers to achieve the

highest accuracy.

Main Text

Somatic mutations are critical signatures in cancer genesis, progression, and treatment. Accurate detection of

somatic mutations is challenging due to tumor-normal cross contamination, tumor heterogeneity, sequencing

artifacts, and coverage. In general, effectively filtering false-positive calls, which are introduced by the

aforementioned issues, and precisely keeping hard-to-catch true-positive calls, which may occur with low

allele-frequency (AF) or occur in low-complexity regions, are crucial for an accurate somatic variant caller.

To date, a range of tools have been developed to address the somatic variant calling problem including

MuTect2 [1], MuSE [2], VarDict [3], VarScan2 [4], Strelka2 [5], and SomaticSniper [6]. These tools employ

different statistical and algorithmic approaches, which perform well in certain cancer or sample types for

which they were designed; however, they are limited in generalization to a broader range of sample types

and sequencing technologies and thus may exhibit suboptimal accuracy in such scenarios [7–9]. In our

earlier work, SomaticSeq [10], we used an ensemble approach to maximize the sensitivity by integrating

algorithmically orthogonal callers. It also used machine learning to integrate almost a hundred features to

keep the precision high, leading to an accuracy improvement over all individual callers. Nevertheless, the

machine-learning backbone used in SomaticSeq relies on a set of extracted features for the variants’ locations.

As a result, it cannot fully capture the raw information in the genomic contexts of the variants to further
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distinguish true somatic variants from background errors, limiting its performance in challenging situations,

such as low complexity regions and low tumor purity.

Here we address the limitation of generalizability and complexity of statistical modeling of tumor sequenc-

ing data by leveraging deep Convolutional Neural Networks (CNNs). CNNs have recently shown significant

performance in classification problems from different domains including germline variant calling [11–13] and

skin cancer classification [14]. Even so, applying CNNs to the challenging problem of somatic variant calling

has not been explored. The only previous deep learning based attempt [15] was to apply a six-layer fully-

connected neural network to a set of manually extracted features. This approach lacks the power provided

by the CNN architecture, which is to learn feature representations directly from the raw data using patterns

seen in local regions. Besides, due to the complexity of fully-connected networks, it has less generalizability

and scalability as seen in CNNs.

We introduce DeepSomatic, the first CNN-based approach for somatic variant calling that can effectively

leverage signals derived from sequence alignment, as well as from other somatic variant callers to accurately

identify somatic variants. Unlike other deep learning callers that are focused on germline variants, DeepSo-

matic is addressing a bigger unmet need in terms of accuracy due to the complexity of tumor samples. It can

effectively capture important variant signals directly from the raw data and consistently achieve high accu-

racy for different sequencing technologies, sample purities, and sequencing strategies such as whole-genome

vs. target enrichment.

The inputs to DeepSomatic’s network are candidate somatic variants identified by scanning the sequence

alignments for the tumor sample as well as the matched normal sample (Figure 1). Somatic calls reported

by other callers can also be included in this list of candidates. For each candidate locus, we construct a

3-dimensional feature matrix M (of size k × 5 × 32), consisting of k channels each of size 5 × 32, to capture

signals from the region centered around that locus. Each channel of the matrix M has 5 rows representing

the 4 nucleotide bases as well as the gapped base (‘-’), and 32 columns representing the alignment columns

around the candidate location.

The first 3 channels, respectively, are the reference, tumor-frequency, and normal-frequency channels

that summarize the reference bases around the candidate locus, as well as the frequency of different bases

in that region. We augment the reference sequence around the candidate locus with gaps corresponding to

the insertions in the read alignments (Figure 1a) in order to capture the insertions. Thus, each column of

tumor and normal frequency matrices represents the frequency of A/C/G/T/gap bases in the corresponding

multiple sequence alignment (MSA) column of the tumor and normal samples, respectively. The remaining

channels summarize other features such as coverage, base quality, mapping quality, strand-bias, and clipping

information for reads supporting different bases. If DeepSomatic is used in the ensemble mode, we also use
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Figure 1: (a) Toy example of input matrix preparation for a given candidate variant. Sequence alignment
information in a window of 7 bases around the candidate variant is extracted. The reference sequence is
then augmented by adding gaps to account for insertions in the reads. The augmented alignment is then
summarized into the reference matrix, the tumor count matrix, and the normal count matrix. The count
matrices record the number of A/C/G/T and gap (‘-’) characters in each column of the alignment, while
the reference matrix records the reference bases in each column. The count matrices are then normalized by
coverage to reflect base frequencies in each column. Separate channels are reserved to record the tumor and
normal coverages. (b) The input 3-dimensional matrix and the proposed DeepSomatic network architecture.
The input matrix consists of reference channel, tumor and normal frequency channels, coverage and position
channels, followed by several channels summarizing the alignment features. When used in ensemble mode,
DeepSomatic also includes additional channels for other individual callers features. DeepSomatic network
architecture consists of 9 convolutional layers structured in four blocks with shortcut identity connections.
We use two softmax classifiers and one regressor on the final layer to predict the variant type, size, and
position.
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additional channels for features reported by the individual callers. With this concise, yet comprehensive

structured representation, DeepSomatic can use the necessary information in tumor, normal, and reference

to differentiate difficult to catch somatic variants with low AF from germline variants, as well as sequencing

errors. This design also enables the use of convolutional filters in the CNN to capture contextual patterns

in the sub-blocks of the matrix.

While the germline variant caller DeepVariant [11] uses read pileup as the input, we use base frequency

summary for each column as the input. This simplifies the CNN structure, allowing a substantially more effi-

cient implementation without compromising performance. Another germline variant caller, Clairvoyante [12],

uses three channels to summarize base counts for allele counts, deletions, and insertions at the center of the

window. In contrast, we summarize all these events in a single matrix using the reference augmentation

approach described earlier, which can clearly represent all the insertion and deletion (INDEL) events across

the window.

DeepSomatic employs a novel CNN structure that predicts the type and length of a variant given the

feature matrix M (Figure 1b). The proposed CNN consists of 9 convolutional layers structured in four

blocks with shortcut identity connections inspired by ResNet [16] but with a different formation to adapt

to the proposed input structure. We use two softmax classifiers and one regressor on the final layer. The

first classifier identifies whether the candidate is a non-somatic call, SNV, insertion, or deletion. The second

classifier predicts the length of the variant with four classes (0 indicating non-variant, or lengths from 1, 2 or

greater than 2), and the regressor predicts the location of the variant. Using the output of these classifiers we

identify the set of somatic variants. If the lengths of INDELs are predicted to be larger than 2, we perform a

simple post processing step on reads overlapping that position to resolve the INDEL sequence from the read

alignment CIGAR string. This has been shown to perform well for data generated by Illumina sequencers.

For higher error rate sequencing data, more complex local realignment post-processing is conducted to resolve

the INDEL sequence.

Since DeepSomatic can be used in stand-alone and ensemble modes, we use DeepSomatic-S to denote the

stand-alone mode, while reserving DeepSomatic to denote the ensemble mode. We compared DeepSomatic

and DeepSomatic-S against the state-of-the-art somatic variant callers including MuTect2 [1], MuSE [2],

SomaticSniper [6], Strelka2 [5], VarDict [3], and VarScan2 [4], and against the ensemble approach, Somatic-

Seq [10]. We compared and contrasted performance using multiple synthetic and real datasets. We report

below, the synthetic datasets in increasing order of somatic variant calling difficulty considering the AF of

variants in the datasets.

For the first synthetic dataset, as in previous studies [5,10] we mixed two normal Platinum Genomes [17]

samples, NA12877 and NA12878, at 70:30, 50:50, and 25:75 tumor purity ratios to create three tumor con-
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Figure 2: (a) Performance analysis of DREAM Stage 3, DREAM Stage 4, Platinum two sample mixture,
and PacBio datasets. For the first three datasets, three tumor purity scenarios (70%, 50% and 25%) are used
while normal sample has 95% purity. For the PacBio dataset, three tumor purities (50%, 30%, and 20%)
are used while the normal sample has 95% purity. The confidence or quality scores are used to derive the
precision-recall curves. The highest F1-score achieved by each algorithm is printed on the curve and marked
with a solid circle. (b) Performance analysis of INDEL accuracy (F1-score) for different INDEL sizes.

tamination profiles, and at 5:95 ratio to create a contaminated normal sample. We used the variants in

NA12878 which were reference calls in NA12877 as truth set for the evaluation. Both DeepSomatic-S and

DeepSomatic significantly outperformed all other callers (Figure 2a and Supplementary Table 1). Deep-

Somatic’s performance improvement over other approaches increased with lower, more challenging tumor

purities (25:75 mixture). In summary, DeepSomatic yielded up to 98.4% and 96.9% F1-scores for SNVs and

INDELs respectively overall and an improvement of up to 6.7% over the best method in the lowest sample
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purity for this dataset.

For the second synthetic dataset, we used the ICGC-TCGA DREAM Challenge Stage 3 and Stage 4

datasets [18], which were constructed by computationally spiking mutations into a healthy genome of a

paired normal sample with different AFs (See Methods). We mixed the tumor and normal samples to create

three tumor mixtures and a contaminated normal sample with ratios mentioned above. DeepSomatic-S

outperformed all other stand-alone callers for both Stage 3 and Stage 4 datasets by over 10% for SNVs and

30% for INDELs on average (Figure 2a; Supplementary Tables 2 and 3). This performance improvement

increased with decreasing tumor purity (the 25:75 mixture). We further observed that DeepSomatic (the

ensemble mode) clearly outperformed both SomaticSeq and DeepSomatic-S, even though DeepSomatic-S still

outperformed SomaticSeq in more challenging scenarios, such as SNVs in the 25:75 mixture and INDELs in

the 25:75 and 50:50 mixtures. In summary, DeepSomatic yielded up to 92.1% and 89.4% F1-scores for SNVs

and INDELs, respectively, overall and an improvement of up to 34.1% over the best method in the lowest

sample purity.

For the third synthetic dataset, as in previous studies [1, 10], we constructed a tumor sample by spiking

reads from NA12878 into NA12877 in variant positions of NA12878 with spike in frequencies sampled from

a binomial distribution with means [0.05, 0.1, 0.2, 0.3] and used an independent set of NA12877 reads as pure

normal. Note that, unlike earlier strategy which mixed samples in fixed proportions yielding somatic variants

at fixed AFs, this mixing approach generated them at varying AFs ranging from 0.025 to 0.3. DeepSomatic

yielded 80.9% and 66.7% F1-scores for SNVs and INDELs, respectively, over all AFs and an improvement

of up to 4% over the best method (Supplementary Figure 1; Supplementary Table 4). For low AF variants,

the performance improvement was even higher (11% improvement for AF=0.025 and 8% improvement for

AF=0.05) (Supplementary Figure 1b).

It is worth noting that DeepSomatic consistently outperformed other callers for various INDEL sizes in

different datasets (Figure 2b; Supplementary Figure 1c; Supplementary Figure 2). For large (> 50 bases)

INDELs, since most of the short reads with variants are soft-clipped, the variant information is lost in the

pileup count matrices. For such cases, DeepSomatic benefited from other callers’ predictions, since some of

the callers like VarDict and MuTect2 used local assembly for their predictions.

To assess the performance of DeepSomatic on different target enrichments, we used a whole-exome and a

targeted panel dataset from the Ashkenazi Jewish trio [19] (Supplementary Figures 3 and 4; Supplementary

Tables 5 and 6). We trained DeepSomatic and SomaticSeq on the whole-exome dataset and applied the

trained model on both the whole exome and the panel. For whole exome, DeepSomatic achieved up to 98.1%

and 90.9% F1-scores for SNVs and INDELs, respectively. For the targeted panel, DeepSomatic consistently

outperformed other callers with 98.8% F1-score for SNVs. Applying the model trained on whole-genome
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Platinum-mixture data on both target enrichment sets yielded similar performance which confirmed the

robustness of DeepSomatic (Supplementary Figures 5 and 6).

We assessed the robustness of DeepSomatic’s training for specific purity by training and testing on differ-

ent purities for the DREAM Challenge Stage 3 datasets. Supplementary Figure 7 shows that performance

degrades only marginally even when we trained and tested on very different tumor purities. We also observed

that training using data aggregated from multiple tumor purities was as good as training on individual tumor

purities (Supplementary Figure 7). This suggests that a training set incorporating multiple tumor purities

is sufficient to get a model which is robust to tumor purity variation.

We further evaluated DeepSomatic’s performance on reads with high error rates, particularly those from

the long read sequencing platforms. We used tumor-normal pair samples simulated with 20%, 30%, and 50%

AF somatic variants based on the raw PacBio reads (Figure 2, Supplementary Table 7). DeepSomatic iden-

tified somatic SNVs and INDELs with F1-scores of up to 97.9% and 80.4% respectively, which outperformed

VarDict [3] by up to 38.5% for SNVs and up to 53.3% for INDELs. This analysis confirms the capability of

DeepSomatic in detecting somatic variants even when the sequence reads have high error rate as in PacBio

long raw reads.

For all datasets discussed, we also assessed the performance of INDEL calling by different somatic callers

using the more relaxed criterion of simply predicting the positions of the somatic INDELs correctly (and

ignoring the exact INDEL sequence). Again, we observed similar superiority of DeepSomatic over other

schemes indicating that the main improvements are contributed by the proposed CNN structure and not the

post-processing INDEL resolution steps (Supplementary Figures 8 and 9).

In the absence of a high-quality, comprehensive ground truth dataset for somatic variants [20], like the

Genome-in-a-bottle gold set for germline variants, we would not be able to calculate F1 accuracy outside

of synthetic data. Fortunately, there are existing datasets with validated somatic variants we could take to

estimate the accuracy performance of DeepSomatic in real data (See Methods). We used COLO-829 [21,

22] dataset, an immortal metastatic malignant melanoma cell line-derived whole-genome dataset with 454

validated somatic SNVs. To evaluate DeepSomatic on this real WGS sample, we used models trained on the

DREAM Challenge Stage 3 with 70% purity. As shown in Supplementary Table 8, DeepSomatic achieved

the highest pseudo F1-score of 99.6% for the COLO-829 malignant melanoma sample. We also evaluated

DeepSomatic on a TCGA [23, 24] whole exome sequencing (WES) sample of colorectal adenocarcinoma

(TCGA-AZ-6601), achieving the highest pseudo F1-score of over 99.6%(Supplementary Table 9).

DeepSomatic is the first deep learning based framework for somatic variant calling and is a high-

performing universal somatic variant caller. While using the same CNN architecture, it achieves the best

accuracy for varying tumor purities across multiple datasets ranging from synthetic to real, across multiple
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sequencing strategies ranging from whole genome to targeted as well as across multiple sequencing technolo-

gies ranging from short reads to high-error long reads. Specifically for low tumor purities and low allelic

frequencies, DeepSomatic significantly outperforms other state-of-the-art somatic callers, thus demonstrating

its capability in addressing the hard problem of somatic mutation calling. We believe DeepSomatic advances

the state of the art significantly by providing a very broadly applicable approach for somatic mutation calling.

Online Methods

ICGC-TCGA DREAM Challenge data

Stage 3 data consists of a normal sample and a tumor sample constructed by computationally spiking 7,903

SNVs and 7,604 INDELs mutations into a healthy genome of the same normal sample with three different

AFs of 50%, 33%, and 20% to create synthetic but realistic tumor–normal pairs. Stage 4 data has similar

formation, but with 16,268 SNVs and 14,194 INDELs in two subclones of 30% and 15% AF. We then

constructed an impure normal by mixing 95% normal and 5% tumor reads. We also constructed 3 tumor

mixtures by mixing tumor and normal respectively at 70:30, 50:50, and 25:75 ratios. Thus, the somatic

variants across these three tumor mixture ratios have AFs ranging from 5% to 35% for Stage 3 dataset, and

3.75% to 21% for Stage 4 dataset.

Platinum synthetic tumor data

We downloaded 200× Platinum genomes NA12878 and NA12877 and their truth germline variants [17]

to construct a virtual tumor and normal pair (ENA accession number PRJEB3246). For the normal, we

downsampled NA12877 to 50×. For tumor, we constructed three 50× in silico mixture samples with 70%,

50%, and 25% tumor purities, by independently downsampling NA12877 respectively at 15×, 25×, and

37.5×, and mixing each with downsampled NA12878 at 35×, 25×, and 12.5×. We use the heterozygous and

homozygous variants in NA12878 which are reference calls in NA12877 and are at least 5 bases apart from

each other as the truth set for the training and evaluation steps (1,103,285 SNVs and 174,754 INDELs).

Thus, depending on the zygosity of the germline variants in NA12878, somatic variants across these three

tumor mixture ratios have AFs ranging from 12.5% to 70%.

We also generated another 50× virtual tumor sample by randomly spiking reads from a downsampled

(to 50× coverage) NA12878 into a downsampled (to 50× coverage) NA12877 data at heterozygous and

homozygous variant locations in NA12878 which are reference calls in NA12877. The frequencies of spiked

reads are sampled from a binomial distribution with means [0.05, 0.1, 0.2, 0.3], thus depending on the zygosity
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of the variant, the mean somatic variants AFs ranges from 2.5% to 30%. To avoid ambiguity in the truth set,

we only used variants for which the relevant paired-end reads did not overlap any other variants (316,050

SNVs and 46,978 INDELs). This generated a contaminated tumor with reads from NA12878. We also used

another independent downsampled (to 50×) data for NA12877 as the pure normal.

For both experiments, FastQ files and truth variants were downloaded and aligned with BWA-MEM

(v0.7.15) [25] followed by Picard MarkDuplicates (v2.10.10) (https://broadinstitute.github.io/picard), and

GATK IndelRealigner and Base Quality Score Recalibration (v3.7) [26].

Real tumor–normal pair data

We used the COLO-829 immortal metastatic malignant melanoma cell line dataset [21, 22] (accession:

EGAS00000000052) to assess our approach on real tumor-normal pair data with published lists of validated

somatic mutations.

The COLO-829 dataset consists of 80× whole-genome sequencing tumor sample and its matched normal

blood COLO-829BL sample at 60×, with 454 validated somatic SNVs.

The TCGA-AZ-6601 [23,24] dataset is a whole exome sequencing of a colon adenocarcinoma tumor sample

and its matched normal tissue from TCGA. The tumor and normal samples were sequenced at depths of

145× and 165× respectively. We used 952 validated SNVs in TCGA [27] and COSMIC [28] databases as the

ground truth somatic variants for this sample.

For real data, we compute pseudo-precision as the percentage of predicted somatic variants that have

been called by at least two stand-alone callers, or have been reported as verified somatic variant in at least

two samples of the same cancer type in COSMIC database. We then compute pseudo F1-score based on the

harmonic mean of this pseudo-precision and recall.

Whole-exome and targeted panel data

To assess DeepSomatic on different target enrichment experiments we used whole-exome datasets from the

Ashkenazi Jewish trio [19]. We downloaded deep-sequenced (200× coverage) whole-exome alignment files

for HG003 and HG004 (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/), along with the high-confidence germline

variants. We then used mixtures of random 70×, 50×, and 25× downsamples of HG004 and 30×, 50×, and

75× downsamples of HG003, to construct 70%, 50%, and 25% pure tumor samples, respectively. We also

constructed a 95% pure normal by mixing 95× HG003 and 5× HG004 downsampled alignments. For our

analysis, we used Agilent SureSelect Human All Exon V5 BED file. The ground truth somatic variants were

identified similar to the Platinum synthetic tumor data (11,720 SNVs, 878 INDELs). Depending on the
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zygosity of the germline variants in HG004, somatic variants across these three tumor mixture ratios have

AFs ranging from 12.5% to 70%

For validating the performance on target panel, we restricted the above alignment and truth data to Illu-

mina’s TruSight inherited disease panel bed file (216 SNVs, 5 INDELs). We only evaluated the performance

on SNVs due to the limited number of true INDELs in the target panel region.

PacBio data

For long-reads analysis, we downloaded the high-confidence germline variants for HG002 sample (ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/) [19]. We built the long-reads error profile using the CHM1 dataset [29]

(SRA accession SRX533609). We then simulated a 100× pure normal sample using the VarSim simulation

framework [30] in combination with the LongISLND in silico long-reads sequencer [31]. Using a set of random

somatic variants, we also simulated a 100× pure tumor sample with the same error profile. We used NGMLR

(v0.2.6) [32] to align the sequences. We then mixed a 47.5× downsample of pure normal alignment and 2.5×

downsample of the pure tumor alignment to form the 50× normal pair with 95% purity, and mixed 40×,

35×, and 25× independent downsamples of normal respectively with 10×, 15×, and 25× downsamples of

pure tumor, to construct 50× tumor mixtures of 20%, 30%, and 50% purity. We restrict the training set to a

120 megabase region in chromosome 1 (with 39,818 truth somatic SNVs and 38,804 truth somatic INDELs),

and the testing set to whole chromosome 22 (with 12,201 truth somatic SNVs and 12,185 truth somatic

INDELs). Somatic variants across the three tumor mixture ratios have AFs ranging from 20% to 50%.

Candidate variant preparation

As the first step, we scan tumor read alignments to find candidate locations with evidence of variants. Many

of these positions have either germline variants or erroneous calls made due to the complexity of the genomic

region, or sequencing artifacts. We apply a set of liberal filters on the set of candidate locations to make

sure the number of such locations is reasonable. In general, for SNVs, we required AF≥ 0.03 or more than 2

reads supporting the SNV and Phred scaled base quality score larger than 19 (larger than 14 for real WES

dataset) as the minimum requirements. For 1-base INDELs, we required AF≥ 0.02 or more than one read

support. For INDELs larger than 1-base, we require AF≥ 0.03. For the ensemble approach, we also included

any variants detected by other callers as input candidate. For the PacBio dataset, we used AF≥ 0.1 for

SNVs and INDELs larger than 1-base, and AF≥ 0.15 for 1-base INDELs.

For the DREAM Challenge dataset, we excluded variants existing in dbSNP [33] from the input candi-

dates.
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Input variant matrix

For each candidate position, we prepare a 3-dimensional matrix M with k channels of size 5×32 (Figure 1a).

The 5 rows in each channel corresponds to 4 DNA bases A, C, G, and T, and the gap character (‘-’). Each

of the 32 columns of the matrix represent one column of the alignment.

For each candidate location, we extract the tumor and normal read alignments. As shown in Figure 1a, we

then consider the read alignments of tumor and normal sample to the reference as an MSA. To this end, we

augment the reference sequence by adding gaps to the reference sequence, when there is insertion in reads. It

must be noted that this process does not need any further realignment of the original read alignments of input

BAM files, but only restructuring the alignments into MSA format by assigning additional columns wherever

insertions has occurred. If there are multiple distinct insertions in multiple reads after a specific position, we

consider them as left-aligned sequences and put them in the same set of columns (See for instance insertions

of A and C bases in the 9th column of the toy example in Figure 1a). With this read representation, we

find the frequency of A/C/G/T/- characters in each column and record separate matrices for tumor and

normal samples (channels C2 and C3 in matrix M). In channel C1, we record the reference base (or gap) in

each column. Channels Ci (4 ≤ i ≤ k) record other alignment signals in tumor and normal samples, such as

coverage, base quality, mapping quality, strands, clipping information, edit distance, alignment score, and

paired-end information. For instance, for the base quality channel, we have a matrix of size 5 × 32 for each

sample which records the average base quality of reads that have a given base (for a given row) in each

column. As another instance, for the edit distance channel, we have a matrix of size 5 × 32 for each sample

which records the average edit distance of reads that have a given base (for a given row) in each column.

One channel of matrix M is devoted to specify the column where the candidate is located in. In the current

implementation, we use total of 26 channels in the stand-alone DeepSomatic-S approach.

For the ensemble extension of DeepSomatic, we also included additional channels to capture features

reported by each of the 6 individual callers used. In this implementation, we used 93 additional channels to

represent features extracted from other callers, and alignments reported by SomaticSeq. Thus, the ensemble

mode of DeepSomatic had 119 input channels for each candidate matrix.

For each candidate location, we report the alignment information in a window of 7 bases around the

candidate. We reserve 32 columns to take into account the augmented alignment with insertions. In rare

cases where we have a large insertion, 32 columns may not be enough to represent the alignment. For such

cases, we truncate the insertions so that we can record at least three bases in the vicinity of the candidate.
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CNN architecture

The proposed CNN (Figure 1b) consists of 9 convolutional layers structured as follows. The input matrices

are fed into the first convolution layer with 64 output channels, 13 kernel size and Relu activation followed

by a batch normalization and a max-pooling layer. The output of this layer is then fed to a set of four

blocks with shortcut identity connection similar to ResNet structure. These blocks consist of a convolution

layer with 3 kernels followed by batch normalization and a convolution layer with 5 × 5 kernels. Between

these shortcut blocks, we use batch normalization and max-pooling layers. The output of final block is fed

to a fully connected layer of size 240. The resulting feature vector is then fed to two softmax classifiers and

a regressor. The first classifier is a 4-way classifier that predicts the variant type from the four classes of

non-somatic, SNV, insertion, and deletion. The second classifier predicts the length of the predicted variant

from the four categories of 0, 1, 2, and ≥ 3. Non-somatic calls are annotated as zero size variants, SNVs

and 1-base INDELs are annotated as size 1, while 2-base and ≥ 3 size INDELs are respectively annotated

as 2 and ≥ 3 size variants. The regressor predicts the column of the variant in the matrix, to assure the

prediction is targeted the right position and is optimized using a smooth L1 loss function.

The CNN has less than 900K parameters which enables us to have a highly efficient implementation by

using large batch sizes. The whole-genome training process took ∼8 hours on a machine with 8 Tesla K80

Nvidia GPU’s.

CNN training

For DREAM Challenge, Platinum, and target enrichment datasets, we randomly split the genomic regions

to 50% training and 50% testing sets. For hyper-parameter tuning, we only used 10% of the genome in the

DREAM Challenge Stage 3 experiment and used the derived parameters in all other experiments. For the

PacBio dataset, we trained DeepSomatic on a 120 megabase region on chromosome 1, and tested it on all of

chromosome 22.

The DREAM Challenge dataset has 15,507 somatic mutations for Stage 3 and 30,462 somatic variants

for Stage 4. For better network training, we spiked in ∼95K more SNVs and ∼95K more INDELs with

similar AF distributions to the original DREAM data into the tumor samples of Stages 3 and 4 using

BAMSurgeon [18].

We trained the network using a batch size of 1000 with SGD optimizer with learning rate of 0.01, and

momentum of 0.9, and we multiplied the learning rate by 0.1 every 400 epochs.

Since, in general, the input candidate locations have significantly more non-somatic (reference or germline)

calls than true somatic variants, in each epoch, we use all the true somatic variants in the training set and
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randomly selected non-somatic candidates with twice the number of the true somatic variants. We used a

weighted softmax classification loss function, to balance for the number of candidates in each category. For

DREAM Challenge data, since we added more synthetic mutations in the training set, we boosted the weight

for the non-somatic category to achieve higher precision on test set.

For assessing synthetic target enrichment datasets, we used whole-exome and whole-genome data as the

training set.

To test on real WGS sample COLO-829, we used models trained on DREAM Challenge Stage 3 with 70%

purity for SomaticSeq and DeepSomatic callers. For the real WES sample TCGA-AZ-6601, we prepared a

training set using data from another TCGA WES dataset, TCGA-AZ-4315 [27]. We mixed the tumor and

normal alignments from this dataset and split the mixture into two equal alignments. We then used one

alignment as the pure normal and spiked in ∼91K random SNVs and ∼9K random INDELs into the other

alignment using BAMSurgeon to generate a synthetic tumor sample for training. We used models trained

on this synthetic tumor-normal WES dataset to test DeepSomatic and SomaticSeq on the real WES dataset,

TCGA-AZ-6601.

Training on multiple purities

For more generalizable training, we combine the generated training input matrices from different tumor

purities in the DREAM Stage 3 dataset, and used the combined set for training the network. We then

applied the trained model on each of the individual purities.

Other callers

We used Strelka2 (v2.8.4), Mutect2 (v4.0.0.0), SomaticSniper (v1.0.5.0), MuSE (v1.0rc), VarDict (v1.5.1),

VarScan2 (v2.3.7), and SomaticSeq (v2.7.0) somatic variant callers in our analysis, with their default settings.

We used VarDict as an alternative approach to DeepSomatic on PacBio data. To enable calling somatic

variants on high-error rate long reads, we used VarDict with “ -m 10000 -Q 1 -q 5 -X 1 -c 1 -S 2 -E

3 -g 4 -k 0 ” parameter settings. Besides, as in DeepSomatic, we used AF≥ 0.1 for SNVs and AF≥ 0.15

for INDELs.

To train SomaticSeq, we also followed the same 50% train/test region splitting as used for DeepSomatic.

For the precision-recall analysis, variants were sorted based on the confidence or quality scores assigned by

each tool. For MuSE, we used the tier assignments as the sorting criterion. For VarDict, VarScan2, MuTect2,

Strelka2, and SomaticSniper we respectively use SSF, SSC, TLOD, SomaticEVS, and SSC values reported

in the VCF file for sorting. For SomaticSeq and DeepSomatic, we use the variant quality score in the QUAL
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field. DeepSomatic reports quality scores for the predicted variants based on the probabity of predictions by

CNN.

To analyze performance on real samples, we used the PASS somatic calls from different callers (For

VarDict we restrict to calls with StrongSomatic status). For DeepSomatic, we used 0.97 as the quality score

threshold for WGS and 0.6 for WES.

Computational complexity

For whole-genome data, scanning 50× tumor and normal alignments to find candidates, extracting features,

and preparing the input matrices can take ∼12 hours on a dual-14 core Intel Xeon® CPU E5-2680 v4

2.40GHz machine. The whole-genome training process can take ∼8 hours on a machine with 8 Tesla K80

Nvidia GPU’s (90 Seconds per epoch of size 580,000). Depending on the cutoff AF on candidate variants,

computing the network predictions for the candidate variants on a 50× whole genome data can take ∼50

minutes (with AF cutoff of 0.05, 3.5M candidates) to ∼2.5 hours (with AF cutoff of 0.03, 11M candidates)

with 8 Tesla K80 Nvidia GPUs.
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