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Abstract

Objective: We performed a retrospective analysis of an optimization algorithm
for the computation of patient-specific multipolar stimulation configurations
employing multiple independent current/voltage sources. We evaluated whether
the obtained stimulation configurations align with clinical data and whether the
optimized stimulation configurations have the potential to lead to an equal or
better stimulation of the target region as manual programming, while reducing
the time required for programming sessions. Methods: For three patients (five
electrodes) diagnosed with essential tremor, we derived optimized multipolar
stimulation configurations using an approach that is suitable for the application
in clinical practice. To evaluate the automatically derived stimulation settings,
we compared them to the results of the monopolar review. Results: We ob-
serve a good agreement between the findings of the monopolar review and the
optimized stimulation configurations, with the algorithm assigning the maxi-
mal voltage in the optimized multipolar pattern to the contact that was found
to lead to the best therapeutic effect in the clinical monopolar review in all
cases. Additionally, our simulation results predict that the optimized stimu-
lation settings lead to the activation of an equal or larger volume fraction of
the target compared to the manually determined settings in all cases. Conclu-
sions: Our results demonstrate the feasibility of an automatic determination
of optimal DBS configurations and motivate a further evaluation of the applied
optimization algorithm.
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thalamus, ventral intermediate nucleus

1. Introduction

Deep brain stimulation (DBS) has been established as a treatment for move-
ment disorders, such as Parkinson’s disease and essential tremor [24, 66], and
is currently being evaluated as a treatment for a variety of other neurological
disorders. Depending on a patient’s diagnosis and symptoms, DBS leads are im-
planted in specific anatomical targets in the brain during stereotactic surgery.
For the patients in our study, the ventrointermediate nucleus (VIM) was chosen
as target, which is a common choice to treat essential tremor [9, 45, 37].

A few weeks after implantation of the DBS lead, an initial programming
session is performed. During this session, a comprehensive monopolar review
is performed in an attempt to find optimal monopolar stimulation settings for
the specific patient. Parameters that can be varied are active lead contact(s),
stimulation voltage, pulse width, and pulse frequency. For each contact of the
DBS lead, the voltage thresholds at which therapeutic or side effects occur for
cathodic-phase-first charge-balanced pulses (hereafter referred to as cathodic
stimulation) are determined. This monopolar review may require several hours
of programming time [33, 44]. If the treatment results are not satisfactory, an
exploration of alternative stimulation configurations, such as bipolar or anodic
stimulation, may be performed [23, 62, 36, 56]. For most patients, multiple
follow-up programming sessions are necessary to refine the stimulation param-
eters, leading to a significant time effort for both patients and their caregivers.
The time expended for the manual programming of DBS patients is expected
to grow exponentially with the emerging use of DBS leads that have an in-
creased number of contacts than the previously standard quadripolar leads in
combination with implanted pulse generators (IPG) that offer multiple indepen-
dent current sources. Such stimulation setups are promising better treatment
outcomes due to their improved field-shaping abilities [11, 61, 17, 48, 60, 67].

To decrease programming times and to fully capitalize on the possibilities
of these novel lead models, different research groups have presented algorithms
for an automatic determination of optimal DBS parameters, such as stimulation
pattern, strength, etc. [18, 19, 20, 68, 47, 4]. Whereas these algorithms have
been positively evaluated in simulation studies, few data exist evaluating the
computationally predicted stimulation settings against clinical data.

In this study, we evaluate for the first time automatically optimized config-
urations for multipolar cathodic stimulation against patient data. These stimu-
lation configurations make use of multiple independent current/voltage sources,
i.e., multiple contacts are concurrently stimulating as cathodes at different volt-
ages, and the IPG is used as return electrode. We apply the algorithm proposed
by Anderson et al. [4], who evaluated it for leads with both cylindrical and seg-
mented contacts in a simulation study, and compare the determined stimulation
patterns to the results of the monopolar review for multiple patients with VIM
DBS for essential tremor.
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Table 1: Patient overview. tlead indicates the time between the initial programming session
and lead placement, tIPG the time between the initial programming session and IPG placement
(w = weeks, d = days).

Sex Age Hemisphere ET impairment (off medication) tlead tIPG

P1 W 53 Bilateral upper extremities 2 w 3 d
P2 M 64 Left upper extremities, disability of right hand 5.5 w 3.5 w
P3 M 71 Bilateral upper extremities, progressive 5.5 w 5.5 w

We expanded this optimization algorithm to additionally enforce the effi-
ciency of the stimulation, so that activation of contacts that do not stimulate
the target region efficiently is suppressed. To constrain the results of the op-
timization algorithm to settings that do not cause side effects in practice, we
ensured that the optimized stimulation settings did not exceed the side-effect
thresholds obtained during the monopolar review. The iterative procedure ap-
plied in this study to maximize the stimulation strength while avoiding stimula-
tion settings that cause side effects can similarly be applied in clinical practice,
and can potentially replace the time-consuming determination of therapeutic
and side-effect thresholds for each contact during the monopolar review.

We performed our study for patients implanted with quadrupolar leads. The
main goal of this study is a first, general evaluation of the applied optimization
algorithm with regard to the future application for newly available leads with
eight or more segmented contacts and IPGs providing multiple independent
voltage/current sources [57, 58, 1]. The IPGs implanted with quadripolar leads
do not yet support multiple independent voltage/current sources, so that the
optimization results obtained in this study can currently not be directly ap-
plied in practice. Instead, we compare the optimization results to those of the
monopolar review. We find that the optimization algorithm assigns the highest
voltage to the contact that was found to lead to the best therapeutic effect in all
cases. We further evaluate the predicted target activation and predicted power
consumption and find that the increase in predicted target activation exceeds
the change in predicted power consumption by more than 50 percentage points
in four of five cases.

2. Material and methods

2.1. Patient cohort and imaging

We obtained data from three DBS patients who were diagnosed with essential
tremor. All patients gave written informed consent and all procedures were
approved by the independent research board (IRB) of the University of Utah
(#44402). Patient details are listed in Table 1. All patients were implanted
with Medtronic 3387 leads. For the evaluation of the optimization results, we
refer to these patients as PXY, where X is the patient ID between 1 and 3, and
Y the stimulation site, i.e., either L for left or R for right.

For all patients, preoperative MP2RAGE T1-weighted (T1w-) scans (voxel
size = 1 x 1 x 1 mm, FOV = 255 x 255 x 176 mm) were acquired on a 3 T
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Table 2: Results of monopolar review. Side-effect thresholds, therapeutic thresholds, pulse
width (PW), frequency (FRQ). “SE region” indicates the brain region that was associated
with the observed side effects, and “?” marks side effects that could not clearly be assigned
to one region (see Section 2.3). “o” marks the contact used in the patient’s primary program,
which was determined to provide the best therapeutic effect during the monopolar review.
“x” marks the contact used in the patient’s alternative program.

Patient # C0 C1 C2 C3 PW [µs] FRQ [Hz]

P1R Side effect [V] 0.6 0.8 0.8 3.0 60 185
SE region Vc Vc Vc Vc
Therapeutic [V] - - - 2.5
Clinically used o

P1L Side effect [V] 0.5 1.0 1.6 1.8 60 185
SE region Vc Vc Vc Vc
Therapeutic [V] - 0.8 1.5 1.6
Clinically used x o

P2L Side effect [V] 0.8 1.8 1.8 1.6 90 180
SE region Vc Vc, ? Vc Vc
Therapeutic [V] 0.7 1.5 - -
Clinically used o

P3R Side effect [V] 0.5 0.5 1.8 2.3 60 180
SE region Vc Vc Vc Vc
Therapeutic [V] - - 1.5 1.6
Clinically used o x

P3L Side effect [V] 0.7 2.8 3.4 4.0 60 180
SE region Vc IC, Vc IC, Vc IC
Therapeutic [V] - 2.0 3.0 3.8
Clinically used o x

MR scanner (MAGNETOM Prisma 3.0 T, Siemens Healthcare, Erlangen, Ger-
many). Additionally, multi-shell diffusion spectrum (DS-) MRI scans with 64
directions for each b-value (voxel size 1.49 x 1.49 x 1.5 mm, FOV = 250 x 250 x
139.5 mm, b-values = 700, 2000, 3000 s/mm2) and volumes with flat diffusion
gradient (b = 0 s/mm2) for both regular and inverted phase encoding direction
were acquired. The DSI volumes were corrected for eddy currents, head mo-
tions, and susceptibility artifacts using ACID (http://www.diffusiontools.com;
Mohammadi et al. 43, Ruthotto et al. 53) and resampled to an isotropic voxel
size of 1 x 1 x 1 mm.

Computed tomography (CT) images were acquired (voxel size = 0.75 x 0.75
x 1 mm) on an AIRO Mobile CT system (Brainlab AG, Feldkirchen, Germany)
to reconstruct the lead positions.

2.2. DBS programming notes

During each initial programming session, we recorded the voltages, pulse
widths, and frequencies at which therapeutic benefit, i.e., no tremor was ob-
served, or side effects occurred for each contact (Table 2). We noted the contact
used in the patient’s primary program that was determined to provide the best
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Figure 1: Surface visualization of lead placement relative to thalamus (gray) and IC (gray
lines) for P1R. Selected subregions of the thalamus are highlighted (Vc/VPL - red, VIM/VLpv
- yellow, Vop/VLa - green).

therapeutic effect during the monopolar review. In some cases, the treating
neurologist provided the patient with an alternative program that could be se-
lected using the patient’s personal programmer. Such second-line, alternative
contacts were also noted. We further evaluated the observed side effects to
identify the brain region whose stimulation caused them. The observed side
effects were tingling or pain of arm, leg, trunk, or face (assigned to Vc), speech
changes or difficulties (assigned to IC), and induced ataxia (unclear, possibly
cerebello-rubrospinal fibers; Reich et al. 51).

Given that only (mono- and multipolar) cathodic stimulation with the IPG
as the return electrode was considered in both the monopolar review and the
computation of optimized stimulation settings, we indicate only the contact and
the absolute value of the voltage.

2.3. Selection of target and avoidance regions for the optimization algorithm

To apply the optimization algorithm, target regions for which the stimulation
is maximized and regions of avoidance for which the stimulation is kept below a
certain threshold to minimize side effects have to be selected. In the definition of
the algorithm, we refer to this threshold as the sensitivity threshold. We chose
the VIM as the target region and the ventralis caudalis (Vc) and the internal
capsule (IC) as avoidance regions (see, e.g., Figure 1, Krauth et al. 38, Bakay
7, Figure 11.2), because stimulation of Vc or IC can lead to parasthesias or
dysarthria and motor contractions, respectively [46].

2.4. Atlas registration and fiber tractography

Preoperative imaging of each patient was used to obtain individual segmen-
tations of the target and avoidance regions VIM, Vc, and IC:
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The T1w-MRIs were nonlinearly registered to the “MNI ICBM 152 non-
linear 6th Generation Average Brain” (MNI-ICBM152, Grabner et al. 27) using
ANTs [6]. For this average brain, surface segmentations of the posteroventral
part of the ventrolateral nucleus (VLpv) and the ventral posterolateral nucleus
(VPL), which correspond to VIM and Vc, respectively, in Jones nomenclature
(see, e.g., Bakay 7, Figure 11.2), were obtained from the Morel atlas [38], which
is aligned with the MNI-ICBM152 average brain. Individual surface segmenta-
tions of VLpv and VPL aligned with the patient’s T1w-MRI were obtained by
transforming the surface segmentations from the MNI-ICBM152 average brain
to the patient’s MRI using the nonlinear transform computed in the registration.

Individual tractography of the IC was performed using DSIStudio
(dsi-studio.labsolver.org) for each patient and hemisphere [35]. A seed region
to generate IC tractography, corresponding to the posterior limb of the IC, was
manually segmented based on the fractional anisotropy and fiber orientation
(see large solid arrow in Jellison et al. 34, Figure 11.2). We restricted our seg-
mentation to the posterior limb of the IC, since this seed region resulted in fiber
tracts that directly passed the stimulation site. Additionally segmenting the
anterior limb of the internal capsule resulted in additional fibers more distant
to the lead contacts, which therefore did not affect the optimization result, but
led to a higher computational effort. To ensure that only superior-inferior fibers,
which represent the IC, were included, we added a transversal plane inferior to
the thalamus as a region of interest (ROI).

2.5. Finite element simulation of DBS

We used the finite element method (FEM) to solve the bioelectric field prob-
lem of DBS for the Medtronic 3387 lead [15]. We obtained surface meshes of skin,
skull, cerebrospinal fluid (CSF), gray matter, and white matter using SimNIBS
2.1 (http://www.simnibs.de). We localized the lead positions based on the post-
operative CT images and generated a triangular surface mesh of the Medtronic
3387 lead with a 0.5 mm thick encapsulation layer [30]. Based on these surface
meshes, a tetrahedral volume mesh was generated using TetGen [55]. This mesh
incorporated the nodes at which we evaluated the electric potential u as mesh
vertices. These nodes are distributed on a regular grid with a size of 20 x 20
x 30 mm and an internode distance of 0.2 mm around the center of the lead.
This predefined grid defines the volume Ω on which we perform the optimiza-
tion, but we removed the nodes inside the lead and the encapsulating tissue.
The resulting tetrahedral meshes consisted of about 2.3 million nodes and 13.7
million elements.

We chose the conductivities for the different tissue compartments according
to Table 3. For the white matter compartment, we calculated DTI tensors based
on the DSI recordings using DTIFIT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and
scaled each tensor following the “direct approach with volume constraint” to
obtain anisotropic conductivity tensors [59, 29]. We solved the bioelectric field
problem with a linear FEM using SCIRun 5 (http://www.sci.utah.edu/cibc-
software/scirun.html). We clipped the elements inside the lead and modeled
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Table 3: Tissue conductivities

Tissue Value [S/m] Reference
Skin 0.43 Haueisen et al. [31], Ramon et al. [49]
Skull 0.01 Dannhauer et al. [22]
CSF 1.79 Baumann et al. [8]
GM 0.33 Haueisen et al. [31], Ramon et al. [49]
WM 0.14 Haueisen et al. [31], Ramon et al. [49]
Encapsulation 0.10 Grill and Mortimer [28]

active contacts by imposing a Dirichlet boundary condition set to the stimu-
lation voltage at the contact surface and a homogeneous Neumann boundary
condition at the insulating lead shaft. We modeled the return electrode by im-
posing a Dirichlet boundary condition of 0 V where the mesh was cut off in the
patient’s neck, as we did not consider bipolar stimulation in this study. The
passive contacts were modeled as linked nodes, i.e., considered floating.

Due to the linearity of the problem, it is sufficient to solve the bioelectric
field problem for a unit voltage of −1 V at each contact while all other contacts
are floating. For each solution of the electric potential, we computed the Hessian
matrix H, which is needed for the optimization algorithm described in Section
2.6, at each node of Ω. The voltage distributions uc and Hessian matrices Hc

for general stimulation voltages c = (c0, c1, c2, c3) follow by linear combination,
where the ci indicate the voltage applied at contact i.

2.6. Optimization algorithm

To obtain multipolar stimulation configurations, we applied a modification of
the optimization algorithm presented by Anderson et al. [4]. The algorithm relies
on the activating function as a predictor for neuronal activation [42, 50, 65, 40].
To easily obtain the activating function, we numerically calculated the Hessian
matrix of partial second derivatives of the electric potential uc:

Huc(x)i,j =
∂uc(x)

∂xi∂xj
for x ∈ Ω, i, j = 1, 2, 3. (1)

The algorithm presented by Anderson et al. [4] achieves target stimulation
by maximizing the sum of the mean of the three eigenvalues of the Hessian
taken over all positions in the target region; in avoidance regions the maximal
eigenvalue of the Hessian is kept below a threshold α (see also Section 2.7). For
the targeting or avoidance of fiber tracts, the second spatial derivative in the
direction of the fiber tract, which can be computed as vtHv for a direction v, is
considered instead of the eigenvalues. To limit the power output, the maximal
charge density at each contact is limited.

Varying the approach of Anderson et al. [4], we used the value of the second
derivative of the electric field in a direction perpendicular to the shaft of the DBS
electrode to estimate activation of both the target and avoidance regions [14].
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This choice corresponds to the assumption of an axon orientation perpendicular
to the electrode shaft, as also usually chosen for the multicompartment axon
models that are used to compute the volume of tissue activated (VTA) [14, 12, 5].
Based on the Hessian matrix, the activation at a position x with a corresponding
direction np perpendicular to the electrode shaft can be computed as

ap(x, c) = nt
p(x)Huc(x)np(x) for x ∈ Ω. (2)

Accordingly, the objective function to measure activation of the target re-
gion, ΩVIM ⊂ Ω, is defined as

f(c) =

∫
ΩVIM

ap(x, c) dx . (3)

We introduced an additional penalty term to the optimization functional to
favor stimulation settings with a higher efficiency by penalizing the stimulation
of brain tissue outside the target region ΩVIM, also referred to as stimulation
spill [19]. This term quadratically penalizes stimulation of the volume Ω−ΩVIM:

g(c) =

∫
Ω−ΩVIM

ap(x, c)2 dx . (4)

The linear weighting of ap in f , which we aim to maximize, ensures that the
mean of the stimulation over the whole target region is maximized and that the
value of f is not dominated by a few, large outliers of ap, which could result
in a strong stimulation of only small parts of the target volume. The quadratic
weighting of ap in g, which we aim to minimize, avoids strong outliers in the
stimulation of the nontarget volume.

Stimulation of Vc and IC is avoided by adding constraints to the optimiza-
tion problem. For the avoidance of the Vc, we kept the value of ap below the
threshold α in the region ΩVc. For the avoidance of the IC, we make use of the
fiber orientations obtained from tractography. We denote the fiber orientation
at position x by nf (x) and define af according to (2) with np replaced by nf .
As for the avoidance of the Vc, af is kept below α to avoid stimulation of the
IC.

With these constraints, our optimization problem can be formulated as the
constrained optimization problem:

Find max
c
f(c)− λg(c)

subject to 0 ≤ ci ≤ cmax for all i = 0, . . . , 4,

ap(x, c) ≤ α for x ∈ ΩVc,

af (x, c) ≤ α for x ∈ ΩIC.

(5)

The optimization problem admits a unique solution (a proof can be derived
following Wagner et al. 64), resulting in a (multipolar) stimulation pattern c =
(c0, c1, c2, c3), with ci being the stimulation voltage at contact i.
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The algorithm has been evaluated only for the optimization of (multipo-
lar) cathodic stimulation thus far [4], i.e., all active contacts are concurrently
stimulating at different voltages as cathodes, and the IPG serves as the return
electrode. In practice, the IPG has to provide independent current/voltage
sources for each contact to implement such stimulation patterns. To achieve
cathodic stimulation, we enforce 0 ≤ ci in (5), as we set ci = −1 V in our FEM
simulation. cmax allows us to define a general maximal stimulation voltage for
safety reasons or, if necessary, also for a single contact, e.g., due to known side
effects. This parameter was not employed in our study. The parameter λ de-
termines how much weight is given to the efficiency of the stimulation in the
optimization. We used λ = 0.003 in this study.

In the implementation of the algorithm, the integrals in the expressions for
f and g turn into summations over all (grid) points of Ω. We solved this con-
strained optimization problem using the Python package cvxopt (cvxopt.org).

2.7. Empirical determination of the sensitivity threshold α

In theory, the threshold α represents the value of the activating function
above which neuron firing occurs as a result of the stimulation, i.e., the fir-
ing threshold [4]. Approximate values for this threshold have been derived in
simulations of multicompartment neuron models [41, 14, 16, 4]. However, the
computation of these thresholds depends on parameters that are not accessible
in practice and are often computed under simplified model assumptions, i.e., the
axons are assumed to be perfectly straight and perpendicular to the electrode
shaft. Furthermore, it is unclear how to link these thresholds to the occurrence
of side effects in a computational model. For example, for a representation of
the IC through fiber tracts as prepared in Section 2.4, do side effects occur when
the firing threshold is exceeded for a single tract, for a certain volume fraction
of the tracts, or for all tracts?

Therefore, we do not interpret α as a fixed firing threshold, but treat it
as a patient-specific sensitivity threshold that has to be derived empirically.
Algorithm 1 is an example algorithm to determine α.

Algorithm 1 Empirical determination of the sensitivity threshold α

α = 0
repeat
• α = α+ ∆α
• Solve optimization (5) to obtain stimulation configuration c
• Program patient IPG with stimulation configuration c
• Observe therapeutic and side effects
if Improvement of therapeutic effects and no side effects then

cth = c
end if

until Side effects observed
Program patient IPG with stimulation configuration cth
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Table 4: Optimization results (boldfaced type marks clinically selected contact for compari-
son).

Patient # α [mV/mm2] C0 [V] C1 [V] C2 [V] C3 [V]

P1R 26 0.03 0.17 0.78 1.86
P1L 102 0.20 0.00 1.50 0.18
P2L 74 0.70 0.96 0.44 0.14
P3R 22 0.00 0.41 1.47 0.49
P3L 38 0.69 1.96 1.43 0.28

By applying Algorithm 1, the clinical DBS programming decreases to indi-
vidually adjusting the single parameter α, instead of determining therapeutic
and side-effect thresholds for each contact. The step width ∆α can be indi-
vidually determined by the clinician based on the increase of the stimulation
voltages c with increasing α, and a first review of a subset of possible config-
urations can be performed ahead of the programming session. The choice of
stimulation frequency and pulse width remains up to the physician. As the fir-
ing threshold of axons changes with frequency and pulse width [14, 2], a change
of these parameters during a programming session might require adjustements
of α.

In our retrospective analysis, it was not possible to observe therapeutic and
side effects. Instead, we made use of the thresholds that were obtained during
the monopolar review (see Section 2.2, Table 2). To obtain optimized stim-
ulation configurations, we incrementally increased the sensitivity threshold α
in steps of 0.1 mV/mm2 following Algorithm 1 until either the therapeutic or
the side-effect threshold was exceeded at one contact. If only a therapeutic
threshold was exceeded, the resulting configuration was adopted. If a side-effect
threshold was exceeded, α was reduced to the previous value, and the config-
uration for which all contact voltages fell below the side-effect thresholds was
adopted (Table 4).

3. Results

The optimized stimulation settings obtained following the description in Sec-
tion 2.7 are shown in Table 4. Most importantly, the optimization algorithm
assigns the highest voltage to the contact that was found to drive the best ther-
apeutic effect during the monopolar review in all cases. In the three cases where
an alternative therapeutic contact was determined (P1L, P3R, P3L), the opti-
mization algorithm assigned the second highest voltage to these contacts, and
for P2L the second highest voltage was assigned to the second contact for which
a therapeutic threshold was found. For P1R, a therapeutic threshold was found
for only one contact.

To quantitatively compare the optimization results and those of the monopo-
lar review, we computed the predicted target activation and the predicted power
consumption. The predicted target activation is a common measure to evaluate
the performance of optimization algorithms, and is calculated as the volume
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Figure 2: a) Target activation, measured in % of ΩVIM for which ap is above the sensitivity α,
for the result of the optimization algorithm (purple) and clinically chosen stimulation setting
(orange). b) Predicted power consumption for the result of the optimization algorithm and
clinically chosen setting.

fraction of the target region for which the stimulation exceeds a predefined
threshold [4, 47, 20]. The predicted target coverage is a computational tool to
simulate and compare the efficiency of different stimulation patterns; it does
not necessarily correspond to the target activation in practice. We visualize the
percentage of the target volume ΩVIM for which ap is larger than the sensitivity
threshold α in Figure 2a, where for each patient and hemisphere the individually
determined values for α are used (Table 4).

We computed the predicted power consumption following Fakhar et al. [26]

P =
3∑

i=0

IiVi =
∑
i

V 2
i

Zi
PW · FRQ, (6)

where Ii, Vi, and Zi are current, voltage, and impedance at contact i, re-
spectively, and PW and FRQ are pulsewidth and frequency. Since we did not
have measured impedance values available for each contact, we instead relied on
impedance values obtained from the FEM simulations to calculate the predicted
power consumption, which is sufficient for our goal of comparing the predicted
power consumption of the optimized and the clinically found stimulation set-
tings. The obtained impedance values ranged from 1095 Ω to 1131 Ω, which is
within the commonly observed range [15].

Figure 2a and Table 5 show that the optimization result leads to a pre-
dicted target activation that is at least equal to the activation of the clinically
determined configurations in all cases. For all cases except P1L, the predicted
target activation could be clearly improved by at least about 32% (P1R) using
the algorithm-derived configurations that employ two or more contacts concur-
rently. Comparing the changes in predicted target activation with the changes
in predicted power consumption (Figure 2b, Table 5), we find that in all of
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Table 5: Change in predicted target activation and predicted power consumption for optimized
stimulation settings in comparison to monopolar stimulation with the best therapeutic effect.

Patient # Target activation Power consumption

P1R 31.9% -34.4%
P1L 2.6% 2.7%
P2L 45.9% -27.9%
P3R 65.9% 14.0%
P3L 146.2% 60.9%

these four cases the improvements in target activation outmatch the change in
predicted power consumption by at least 50 percentage points. For P1R and
P2L, we find improvements in predicted target stimulation of more than 32%
and a simultaneous reduction of the predicted power consumption of more than
28%. This result is achieved by concurrently stimulating at multiple contacts
with voltages lower than for the clinically determined monopolar setting. For
P3R and P3L, we find improvements in predicted target stimulation of more
than 66%, but a simultaneous increase of the predicted power consumption of
more than 28%. This result is achieved by concurrently stimulating at multi-
ple contacts, where the voltage at the contact that was found to provide the
best therapeutic effect during the monopolar review in the optimized multipolar
stimulation pattern is nearly equal to the voltage that was clinically determined.

Next, we analyze two cases in more detail. We chose P1R exemplaric for the
four cases in which multiple contacts are activated concurrently, and we chose
P1L as the only case in which only a single contact gets assigned a significant
voltage.

3.1. Analysis of P1R
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-26

-13
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Figure 3: P1R - Visualization of VIM (green), ap and af mapped on Vc and IC (left colorbar in
mV/mm2) and stimulation voltage mapped on lead contacts (right colorbar in V), respectively,
for a) optimization result and b) monopolar stimulation with 2.5 V at C3.
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For P1R, Figure 3 shows that both C2 and C3 are inside the VIM (green),
thus similarly contributing to the target stimulation. However, C2 is closer to
the Vc than C3, whereas the IC is relatively distant from both of these contacts.
C0 and C1 are both (mostly) outside the VIM, thereby stimulating the VIM
less efficiently than C2 and C3. Accordingly, C2 and C3 are are the only active
contacts in the multipolar configuration obtained from the optimization, with a
higher voltage assigned to C3, which stimulates the Vc less.

3.2. Analysis of P1L
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Figure 4: P1L - Visualization of VIM (green), ap and af mapped on Vc and IC (left colorbar in
mV/mm2) and stimulation voltage mapped on lead contacts (right colorbar in V), respectively,
for a) optimization result, b) monopolar stimulation with 1.5 V at C2.

For P1L, we find that C2 is fully contained in the lateral part of the VIM,
whereas C1 is found to be inside both the target and avoidance region. C0 lies
inferior to the VIM partially inside the avoidance region, and C3 lies superior
to the VIM. Thus, C1 and C2 would lead to the best target stimulation, but C1
also leads to a strong stimulation of the Vc. All contacts lead to only a low stim-
ulation of the IC. These considerations explain why the optimization algorithm
leads to a nearly exclusive activation of C2 – the other contacts are either in
the avoidance region (C0, C1) and/or do not stimulate the VIM efficiently (C0,
C3). Already the slight activation of C0 in the optimized stimulation setting
leads to noticeable stimulation of the Vc.

4. Discussion

In this study, we performed a retrospective evaluation of an algorithm for
the automated optimization of DBS configurations that utilize independent cur-
rent/voltage sources for each contact, as they are available in novel IPGs [1, 58].
The computed stimulation configurations are in good agreement with the results
of the monopolar review; in all cases, the optimization algorithm assigned the
strongest stimulation voltage to the contact that was clinically selected, and the
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predicted target activation achieved by the optimization algorithm was at least
equal to the clinically determined settings; in four of five cases, the predicted
target activation was improved.

4.1. Impact

The results obtained in this study are an important demonstration of the
capabilities of the applied optimization algorithm, and they encourage its further
evaluation for an application in clinical practice. Our results indicate that Vc
and IC are appropriate avoidance regions for the automated optimization of
VIM stimulation.

To date, most clinicians explore the space of possible stimulation param-
eters by first evaluating each contact individually in a monopolar review and
then using clinical intuition and heuristics to refine their results. This method,
since it relies on intuition, is challenging to teach and not guaranteed to find an
optimal result. As novel electrodes with an increased number of contacts and
IPGs with multiple independent current/voltage sources continue to proliferate,
the parameter space for DBS programming grows exponentially, and manual
exploration of the parameter space becomes even more complicated and time
consuming. Our proposed semiautomated method improves upon this manual
process by replacing the review of stimulation voltage or current on each elec-
trode contact by the review of a single parameter, the sensitivity threshold α.
This reduction of the parameter space is achieved by applying an optimization
algorithm that utilizes individual representations of target and avoidance regions
obtained from the pre- and postoperative imaging data, which are functionally
ignored during a monopolar review. The necessity of iteratively determining α
(vs. directly computing stimulation settings based on a fixed threshold) arises
from our inability to perfectly map models of stimulated tissue to perception
(i.e., side effects) at the level of each individual patient, although this limitation
may ultimately recede as our modeling and imaging methods improve (see also
Section 2.7).

The approach we chose in this study to obtain the sensitivity threshold α
(Algorithm 1) could be directly applied in clinical practice: The clinician starts
to program the patient with a multipolar stimulation configuration that was de-
termined using a low value of α. Subsequently, α gets incrementally increased,
and the patient programming is updated with a new optimization result. This
step is repeated until side effects occur, where the initial value of α and the
step width ∆α are determined by the clinician based on the stimulation volt-
ages proposed by the optimization. Finally, the configuration that achieved the
best therapeutic effects with the lowest stimulation amplitudes and without side
effects is selected. Our simulation results predict that the stimulation config-
urations obtained from this procedure might lead to equivalent, if not better,
target activation compared to the results achieved with a classical monopolar
review. In future studies, it has to be determined whether this equivalent/better
predicted target activation also leads to equivalent/better therapeutic outcomes.
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4.2. Related work

Different algorithms for the automated optimization of DBS configurations,
which mainly differ in the formulation of the objective function (i.e., (5) in our
case), have been proposed. The algorithm applied in this study is based on the
work of Anderson et al. [4], and the objective function we employed is compara-
ble to the one proposed by Wagner et al. [64] for transcranial direct current stimulation (tDCS).
Through the addition of the functional g as defined in (4), we were able to modify
this algorithm to simultaneously maximize stimulation of the target region, min-
imize stimulation of other brain regions, and stay below the side-effect threshold
in the avoidance regions.

Similar to our approach, Peña et al. [47] defined an objective function based
on a modified activating function (MAF), which is a smoothed activating func-
tion. They defined an objective function with three objectives: maximize the
volume of the target region that is stimulated above a fixed MAF threshold
(MAFT), minimize the volume of the avoidance region that is stimulated above
the same MAFT, and minimize power consumption. The weighting factors
between these objectives were chosen based on a subjective ranking of the im-
portance of the objectives. Compared to our objective function, the stimulation
of the avoidance region is not as strictly enforced in this approach. Whereas
our approach directly enforces this avoidance through a constraint in the op-
timization problem (5), a stimulation above threshold in the avoidance region
is penalized in the approach of Peña et al. [47], but not strictly excluded. For
example, if the threshold is at the same time exceeded for a large volume of the
target region and a clearly smaller volume of the avoidance region, a configu-
ration might still be considered optimal. The limitation of power consumption
serves a similar purpose as our functional g, enforcing the efficiency of the stim-
ulation.

Instead of using the activating function as a measure of stimulation, Cubo
et al. [20] proposed an optimization algorithm based on the electric field strength.
For a given contact configuration and a fixed electric field threshold, this ap-
proach penalizes understimulation in the target region quadratically, whereas
overstimulation is penalized linearly. Stimulation of avoidance regions exceeding
the threshold is prevented by constraining the optimization problem, similarly
to (5). Cubo et al. [20] concluded that, in order to achieve meaningful opti-
mization results, the brain volumes to be avoided should be exactly specified
and the efficiency of the stimulation should be considered in the optimization.
Furthermore, in line with our considerations in Section 2.7, Cubo et al. [20]
concluded that “the threshold values [. . . ] to decide which brain volumes are
stimulated [. . . ] appear to be patient specific.”

The study designs to evaluate the different proposed optimization approaches
and the parameters to judge the optimization results differ vastly between the
discussed studies by Anderson et al. [4], Peña et al. [47], and Cubo et al. [20].
It is therefore not possible to make any conclusions about which of the pro-
posed algorithms would lead to the best results in practice based on the current
knowledge. A comparison of different optimization approaches in a simulation
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or patient study has yet to be performed. Such a study is not only important to
compare the strengths and weaknesses of the different optimization approaches,
but merging the evidence from multiple algorithms might also help to increase
the trust of clinicians in the results of optimization algorithms.

The proposed algorithms focus on optimizing the stimulation voltages for
optimal target activation, but they do not directly take into account stimulation
pulse width and frequency, which can also have a significant influence on the
stimulation effects [52, 10, 2]. For now, the choice of pulse width and frequency
remains the responsibility of the clinician.

In our approach, the balance between optimal stimulation of the target and
power efficient stimulation can be regulated through the choice of the parameter
λ. To keep the application of the optimization algorithm simple, it is important
that λ does not have to be individually adjusted for each patient. In our study,
we kept λ fixed at a value of 0.003 for all patients and leads. This choice of λ led
to optimization results in which the highest voltage was assigned to the contact
that was found to lead to the best therapeutic effect in the monopolar review for
all patients and leads. Furthermore, the optimized stimulation patterns were
predicted to be more efficient than the monopolar stimulation in four of five
cases, as the increase in predicted target activation exceeded the variation in
predicted power consumption by more than 50 percentage points. However,
the choice of λ depends on many implicit parameters of the modeling pipeline,
so that this value of λ is for now valid only for the specific modeling pipeline
described in Sections 2.5 and 2.6. In future studies, generally applicable values
of λ should be derived in larger patient groups, and separate patient groups
should be used to determine λ and to evaluate the optimization results to avoid
any bias.

Alternatively, to directly obtain numerous optimization results for varying
weighting parameters, Peña et al. [47] performed a particle swarm optimiza-
tion and computed a Pareto front. It has to be determined in future studies
whether users prefer to obtain a single optimization result for a fixed parameter
or numerous optimization results to choose from.

With regard to the sensitivity threshold, values in a range from 5 - 40
mV/mm2 as thresholds for axon activation have been reported [50, 40, 14, 39].
For P1R, P3R, and P3L, the empirically determined sensitivity thresholds (see
Table 4) are within this range, whereas this range is exceeded for P1L and P2L.
The variation of α between 20 and over 100 mV/mm2 underlines the importance
of individually determining α to achieve a proper stimulation.

4.3. Limitations

Our results are a first indication that automatically optimized stimulation
settings for multipolar stimulation can lead to meaningful results in comparison
to clinical data, while at the same time improving the predicted target coverage.
However, with three patients and five evaluated leads, the sample size of this
study is small, and further research is needed to validate the results of this
study.

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 8, 2019. ; https://doi.org/10.1101/393900doi: bioRxiv preprint 

https://doi.org/10.1101/393900


Besides the comparison of the results of the optimization algorithm to those
of the monopolar review, we evaluated predicted target activation and pre-
dicted power consumption to determine the possible improvements in stimula-
tion. These simulation-based measures can give first hints regarding possible
improvements in stimulation through the use of optimized stimulation settings,
but they cannot replace a direct evaluation of the optimized stimulation settings
in patients. An evaluation in patients has to be a main goal of future studies.

The retrospective study design limits the identification of stimulation set-
tings that possibly cause side effects. For P3L, our approach to determine the
sensitivity threshold α led to an optimization result that assigned high stim-
ulation voltages to multiple contacts, which led to a major increase in pre-
dicted target activation (+146.2%, Table 5) and in predicted power consump-
tion (+60.9%). In practice, despite being below the side-effect threshold for
monopolar stimulation for each single contact, stimulation with the optimized
configuration might nevertheless lead to side effects. Stimulation in the avoid-
ance regions resulting from multipolar stimulation is the sum of the stimulation
from each contact; stimulation with multiple contacts at relatively high volt-
ages in the multipolar setting could lead to a higher stimulation of the avoid-
ance regions than in the monopolar settings for which the side-effect thresholds
were determined. This larger amount of stimulation of the avoidance regions
through multipolar stimulation settings could not be taken into account in our
retrospective study design, where we relied on the side-effect thresholds derived
from monopolar stimulation as the stopping criterion for Algorithm 1.

Applying Algorithm 1 for P3L in practice, we would expect to find a smaller
value for α, since therapeutic and side effects would already be observed before
the voltages of the single contacts exceed the thresholds that were observed in
the monopolar review. As a result, the theoretically computed improvement
of the target activation through the optimized stimulation settings could be
reduced, but even at a reduced value of α an improved target activation can be
expected.

Whereas the motivation for an automatic determination of optimal DBS set-
tings is the emerging use of leads with segmented contacts in combination with
IPGs providing multiple independent current/voltage sources in clinical prac-
tice, the data utilized in this study were obtained for quadripolar leads with
cylindrical contacts. The IPGs used for such leads commonly do not offer mul-
tiple independent voltage/current sources, which would be necessary to imple-
ment the optimized multipolar stimulation configurations in practice. However,
the results of the optimization could be used to guide the clinician in the se-
lection of the relevant contacts during a monopolar review, as the optimization
algorithm assigns the highest voltage to the contact that was found to lead to
the best therapeutic effect in all cases. Also, the use of double monopolar con-
figurations, with multiple contacts stimulating at the same voltage, might be
considered given the optimization results for P1R, P2L, P3R, or P3L.

The optimization problem (5) is less complex to solve for a quadripolar lead
instead of a lead with eight or more possibly segmented contacts. Nevertheless,
our study is a first demonstration of the feasibility of applying the optimization
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algorithm in practice. Furthermore, the relatively simple programming of the
quadripolar lead used for the patients in this study enabled the clinicians to
select close-to-optimal stimulation settings in the monopolar review, helping us
to obtain a reliable reference for the evaluation of the optimization results. An
equally detailed monopolar review is commonly not performed for leads with
segmented contacts due to the time burden for patients.

The reliability of the optimization algorithm depends on the accuracy of the
underlying model, i.e., the representations of target and avoidance regions as
well as the simulations of the bioelectric fields. In our study, representations
of VIM and Vc were obtained by nonlinearly registering highly accurate thala-
mus segmentations of the Morel atlas [38] to the individual patient MRIs (see
Section 2.3). Individual representations of the IC were obtained based on the
patient’s DSI, which was processed with high accuracy (see Section 2.1). We
manually inspected the quality of the underlying nonlinear registration of the
Morel atlas to the patient MRIs and the segmentation of the IC for each pa-
tient and found no notable deviations. However, given the low MRI contrast
within the thalamus, deviations in the segmentation of VIM and Vc cannot be
ruled out and could affect the accuracy of the optimization algorithm. Future
studies should investigate how possible inaccuracies in the representation of tar-
get and avoidance regions affect the results of the optimization algorithm. At
the same time, researchers also need to investigate whether the complex head
models used in this study can be simplified without significantly affecting the
accuracy of the optimization, e.g., by using simplified volume conductor models
that include fewer conductive compartments or by relying on representations of
the IC obtained from a brain atlas instead of individual segmentations [32].

Besides geometric inaccuracies, uncertainties in the parameters underlying
the individual volume conductor models, e.g., the tissue conductivities, can
influence the results of the optimization algorithm. Most conductivity uncer-
tainties affect the impedance of all contacts almost equally, e.g., when an encap-
sulating tissue compartment with constant conductivity is assumed [15, 54, 21].
Our proposed algorithm is robust against these kinds of uncertainties, because
simultaneous changes of the impedance for all contacts lead only to a variation
of the sensitivity threshold α, which is in any case determined individually (see
Section 2.7, Algorithm 1). Recently, Cubo and Medvedev [21] have presented an
approach for the online estimation of tissue conductivities in DBS to decrease
the conductivity uncertainties in volume conductor modeling, which could be
applied in future studies.

Differences in contact impedances that are not accounted for in the com-
putational model would vary the voltages assigned to the affected contacts in
the optimized stimulation configuration. To properly model such impedance
differences, more detailed volume conductor models than those commonly used
nowadays might be necessary. The conductivities of most compartments, such
as gray matter, white matter, or CSF, were shown to have a small influence on
the contact impedance [13]. The conductivities of these compartments are often
assumed to be homogeneous [54, 19, 21], but even modeling anisotropic white
matter conductivities, the contact impedances in our simulations varied only
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between 1095 Ω to 1131 Ω. Given the strong influence of the encapsulating tis-
sue conductivity on the contact impedance [15], it might therefore be necessary
to assign different conductivity values to different segments of the encapsulating
tissue to properly model impedance differences.

Accurate impedance values are also important when considering current-
controlled stimulation, as provided by most state-of-the-art IPGs. The ap-
plication of the optimization algorithm for current-controlled stimulation is
straightforward using Ohm’s law, but requires knowledge of the different contact
impedances.

To minimize computation times, the optimization algorithm used in this
study, as well as the algorithms proposed by Peña et al. [47] and Cubo et al.
[20], approximate stimulation effects. It was shown that such approximations,
whether based on the activating function or on the electric field strength, can
properly predict activation spread for monopolar cathodic stimulation when
compared to computations of multicompartment neuron models [5, 14]. Fur-
thermore, Peña et al. [47] found good agreement between the activation pre-
dicted by the MAF and multicompartment neuron models. A central issue in
this regard is the selection of the threshold values for the activating function, as
these may depend on multiple parameters [14]. In this study, we circumvented
this problem by iteratively determining the sensitivity threshold α (see Section
2.7).

Besides the effects of model simplifications (approximation of neuron activa-
tion through activating function), the effects of numerical inaccuracies also have
to be taken into account. The numerical method that was used, i.e., a linear
first-order FEM, was shown to achieve high numerical accuracies for bioelectric
field simulations. We took great care in the creation of the mesh and chose a
resolution that guarantees an accurate solution of the bioelectric field problem.
To maximize the accuracy of the simulation at the points at which the volt-
age was evaluated, we included all these points in our finite element mesh. In
future studies, especially when including novel leads with segmented contacts
that lead to more complex electric field patterns, the use of current-preserving
FEM approaches should be considered to avoid numerical errors [25, 63]. The
use of the MAF instead of the activating function as proposed by Peña et al.
[47] also might alleviate numerical inaccuracies.

5. Outlook

The results of this retrospective study are an important demonstration of the
applicability of the optimization algorithm to automatically determine DBS set-
tings exploiting multipolar settings with multiple independent current/voltage
sources in clinical practice. Whereas the results of this study demonstrate that
the chosen target and avoidance regions for VIM DBS lead to meaningful op-
timization results, similar studies have to be performed to determine the cor-
rect/necessary regions for other DBS targets, such as the subthalamic nucleus
or the globus pallidus internus, and for different lead models, especially those
including segmented contacts.
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In future studies, the optimization algorithm should be applied during pa-
tient programming to evaluate whether the optimized settings lead to better
treatment outcomes. The basic approach for an application in practice is laid
out in Section 2.7. The results of this study are promising with regard to the
simplification of the programming of novel DBS leads with more than four con-
tacts. Furthermore, given that recent simulation studies have demonstrated the
possible benefit of anodic stimulation [3], the optimization algorithm should also
be evaluated without being restricted to cathodic stimulation in both computa-
tional and patient studies.
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Modeling of the human skull in eeg source analysis, Human brain mapping
32(9): 1383–1399.

[23] Deli, G., Balas, I., Nagy, F., Balazs, E., Janszky, J., Komoly, S. and Kovacs,
N. [2011]. Comparison of the efficacy of unipolar and bipolar electrode
configuration during subthalamic deep brain stimulation, Parkinsonism &
related disorders 17(1): 50–54.

[24] Deuschl, G., Schade-Brittinger, C., Krack, P., Volkmann, J., Schäfer, H.,
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