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Abstract

The relationship between noncoding DNA sequence and gene expression is not well-understood.
Massively parallel reporter assays (MPRAs), which quantify the regulatory activity of large
libraries of DNA sequences in parallel, are a powerful approach to characterize this relation-
ship. We present SNPpet, a convolutional neural network (CNN)-based framework to predict
and interpret the regulatory activity of DNA sequences as measured by MPRAs. While our
method is generally applicable to a variety of MPRA designs, here we trained SNPpet on the
Sharpr-MPRA dataset that measures the activity of ∼500,000 constructs tiling 15,720 regulatory
regions in human K562 and HepG2 cell lines. SNPpet’s predictions were moderately correlated
(Spearman ρ = 0.28) with measured activity and were within range of replicate concordance
of the assay. State-of-the-art model interpretation methods revealed high-resolution predic-
tive regulatory sequence features that overlapped transcription factor (TF) binding motifs. We
used the model to investigate the cell type and chromatin state preferences of predictive TF
motifs. We explored the ability of SNPpet to predict the allelic effects of regulatory variants
in an independent MPRA experiment and fine map putative functional SNPs in loci associ-
ated with lipid traits. Our results suggest that interpretable deep learning models trained on
MPRA data have the potential to reveal meaningful patterns in regulatory DNA sequences and
prioritize regulatory genetic variants, especially as larger, higher-quality datasets are produced.

1. Introduction

Changes in gene expression play a crucial role in a wide
variety of cellular processes. Dissecting the precise mech-
anisms of gene regulation is therefore necessary to under-
stand both the normal functioning of cells and the ways
in which dysregulation of certain genes plays a role in dis-
ease states1. Gene expression in metazoans is regulated by
several distinct classes of cis-regulatory elements (promot-
ers, enhancers, insulators, and others), with the activity of
multiple enhancers being integrated to determine the ex-
pression levels of the average mammalian gene2. The ac-
tivity of each enhancer or promoter element itself is driven
by the concerted action of multiple DNA binding proteins
called transcription factors (TFs), which typically bind to
combinatorial grammars of short sequence motifs embedded
in regulatory DNA sequences.

Functional genomic assays developed over the last
decade (such as ChIP-seq, DNase/ATAC-seq, and others)
have allowed for candidate cis-regulatory elements (cCREs)
to be mapped on a genome-wide scale in a wide variety of
cell lines and tissues2,3. They have more recently been sup-
plemented by massively parallel quantitative measurements
of the regulatory activity of native cCREs and synthetic
constructs in the form of Massively Parallel Reporter As-
says (MPRAs)4–8 and Self-Transcribing Active Regulatory
Regions sequencing (STARR-seq)9–13 as well as direct high-
throughput perturbations of cCREs in their native contexts
using pooled CRISPR screens14,15.

However, determining the functional nucleotides and se-
quence patterns that drive regulatory activity in individual
DNA elements remains challenging16. This is due to the dif-
ficulty in modeling how transcription factors bind to DNA,
how their combinatorial binding activity is transformed into
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regulatory potential, and how multiple regulatory elements
modulate transcriptional activity of target genes. Growing
appreciation of the role of noncoding single nucleotide poly-
morphisms (SNPs) in numerous disease contexts17 makes
resolving these challenges all the more urgent.

To address this problem, machine learning methods such
as random forests, support vector machines (SVMs), and
convolutional neural networks (CNNs) have been trained on
functional genomics data to learn predictive models map-
ping DNA sequences to associated regulatory markers. Ex-
ample outputs include transcription factor (TF) binding,
gene expression, and alternative splicing18–22. Recently,
these approaches have been used to model regulatory activ-
ity measurements from MPRAs. An SVM-based model23

was the top performer in a challenge that benchmarked
several methods for predicting MPRA activity of DNA se-
quences flanking regulatory genetic variants24. Kalita et
al.25 developed a statistical model to estimate allelic imbal-
ance at regulatory variants based on MPRA measurements.
Here, we present SNPpet (pronounced “snip-pet”), a gen-
eral CNN-based framework to predict and interpret the reg-
ulatory activity of noncoding DNA sequences as measured
by MPRAs. We extend the work piloted by Paggi et al.26

to model the activity of nearly 16,000 distinct regulatory
regions in the K562 and HepG2 cell lines as measured by a
specific MPRA design called Sharpr-MPRA7. We find that
SNPpet’s predictive performance is close to the moderate
replicate concordance of the Sharpr-MPRA assay. We ap-
ply a feature attribution method called DeepLIFT27 to the
trained CNN model, allowing us to infer each nucleotide’s
contribution to the predicted MPRA activity of an arbitrary
input sequence. This approach enables the identification of
predictive TF motifs and grammars with cellular and ge-
nomic context-specific activity. Further, we evaluate the
ability of SNPpet to predict the allelic effects of single nu-
cleotide polymorphisms (SNPs) in an independent MPRA
experiment. We provide anecdotal examples showing how
such predictions can supplement genome-wide association
studies (GWAS) by isolating putative causal variants from
larger lists of SNPs in linkage disequilibrium with one an-
other. While focusing on Sharpr-MPRA data in this study,
SNPpet’s approach is broadly applicable to other experi-
mental designs, and we anticipate better prediction and in-
terpretation accuracy when using more reproducible assays
as input training data. Our study is a proof-of-concept that
systematic interpretation of purported “black box” neural
network models of regulatory DNA can offer a promising
route towards improving our understanding of the regula-
tory code and the effects of noncoding genetic variation on
molecular and disease phenotypes.

2. Methods

Our overall workflow consists of three major components.
First, we train and optimize CNNs that predict regula-
tory activity of noncoding DNA sequences as measured by
MPRAs. Next, we estimate the predictive contributions
(importance) of individual nucleotides in input DNA se-
quences and compare these to DNA sequence features with
known biological function. Finally, we present case studies
focused on discovering novel regulatory sequence grammars
and identifying putative functional genetic variants asso-
ciated with gene expression variation. In this section, we
first provide an overview of MPRA experiments, and then
discuss the details of these steps.

2.1. MPRAs and the quantification of candidate
enhancer activity

The objective of MPRA experiments is to quantify the reg-
ulatory activity of a large library of DNA sequences. This is
typically accomplished by placing these sequences in DNA
plasmids, a library of which is transfected into cells and reg-
ulatory activity is measured by high throughput sequenc-
ing of RNAs expressed from the plasmids. Most MPRA
designs rely on placing synthetic constructs of 100-200 bp
length upstream of a reporter gene, which in turn contains
barcodes specific to each such construct. The parallel, high-
throughput readout of activity of all input sequences is ac-
complished by sequencing these barcodes.

In this study, we specifically focus our analysis to the
Sharpr-MPRA design introduced by Ernst et al.7 (Figure
1A and B). In the Sharpr-MPRA protocol, 15,720 295
bp-long regions centered on DNase-seq peaks in K562 and
HepG2 human cells (an erythroleukemia and a hepatocar-
cinoma cell line, respectively) were tiled with a total of
∼487K 145 bp-long fragments; each such 295 bp-long re-
gion is tiled by 31 sequences at 5 bp intervals. The library
of 145 bp-long fragments was cloned upstream of either a
minimal promoter (minP) or a strong (SV40P) promoter,
with unique barcodes located within the reporter mRNA.
Each of these two libraries was tested in both K562 and
HepG2 cells, resulting in measurements across four differ-
ent conditions in total (Figure 1B).

While the between-replicate reproducibility of available
Sharpr-MPRA data is modest (average Spearman correla-
tion of enhancer activity across replicates = 0.40; Figure
1C and S1), this dataset has a key advantage in the fact
that that it is one of the larger MPRA studies. The large
size of the dataset makes it a particularly good fit to train
neural network models. Also, the uniform 5-bp tiling of
cCREs allows for the contributions of individual nucleotides
to regulatory activity to be evaluated more directly.
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Figure 1: Predicting regulatory activity in MPRAs using convolutional neural networks.
(A) Outline of the design of Sharpr-MPRA experiments used in this study. A collection of DNA constructs is cloned into a
plasmid library upstream of a promoter (magenta) and transfected into a population of cells. Each construct is linked to a
unique barcode (BC) located in the transcribed region; measuring the abundance of these barcodes using high-throughput
sequencing allows for evaluation of the regulatory activity of each construct.
(B) In the Sharpr-MPRA design, 145 bp-long 5-bp tilings of each of ∼15,000 candidate 295 bp cis-regulatory elements
are cloned upstream of either a minimal promoter (minP) or a strong promoter (SV40P).
(C) Reproducibility between individual replicate Sharpr-MPRA measurements of regulatory activity (shown is data for
K562 cells using the minP promoter).

(legend continued on next page)
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2.2. Training deep learning models to map DNA
sequences to MPRA activity

We trained computational models to predict MPRA regula-
tory activity (training labels) from DNA sequence (training
input) on the Sharpr-MPRA dataset. We chose convolu-
tional neural networks (CNNs), a class of predictive models
with state-of-the-art performance on tasks such as object
recognition, language processing, and medical diagnosis28.
CNNs are particularly effective at detecting spatial patterns
in input data; as the salient features in regulatory sequences
are thought to be specific combinations of consecutive base
pairs (TATA boxes, TF motifs), CNNs are well-suited to
the task of identifying key regulatory patterns.

We performed several standard data processing steps
prior to training our models. Briefly, we (i) transformed
the input data from length-145 ACGT strings to 145 × 4
“one-hot encoded” numerical arrays, in which an A corre-
sponds to [1, 0, 0, 0], a C corresponds to [0, 1, 0, 0], etc;
(ii) augmented our training dataset by adding the reverse
complement of each original sequence, with the same out-
put, as an additional example29; and (iii) z-score normal-
ized regulatory activities within each task (mean 0, variance
1). Sequences from chromosomes 8 and 18 were held out
for validation and testing respectively, with the remaining
457,174 examples (914,348 post-augmentation) composing
the training set. Using separate whole chromosomes for
training, validation, and testing ensures no overlap between
sequences in the respective sets.

We experimented over a large search space to determine
an optimal model architecture, varying the type, number,
and numerical parameters of each CNN layer. We used
the mean squared error of the predictions with respect to
the experimental data for model optimization, a common
choice for regression models. All models were trained in the
Keras framework (version 1.2.2 with Theano backend) on an
NVIDIA Tesla P100 GPU. Our final architecture (Figure
1D) consists of three convolutional layers (with ReLU ac-
tivation) followed by a fully connected layer to predict the
four tasks (K562 minP, K562 SV40P, HepG2 minP, HepG2
SV40P). Each convolutional layer has 120 scanning filters
with length 5 followed by batch normalization and dropout
(with pdropout = 0.1), two well-established measures to re-
duce model overfitting.

Most of the hyperparameters we converged upon are
generally consistent with recent literature in the field30,31,

with two notable exceptions. First, we found that adding
fully connected layers between the third convolutional layer
and the final prediction layer reduced performance. Sec-
ond, our optimal filter length was 5, which is smaller than
previous CNN filter lengths used for genomics (usually 10-
30). These findings suggest that model hyperparameters
in functional genomics are application-specific and need to
be optimized depending on the particular problem being
studied.

2.3. Using DeepLIFT to estimate the predictive
importance of individual nucleotides in regulatory

DNA sequences

Deciphering the functional nucleotide patterns and gram-
mars that are predictive of a DNA sequence’s regulatory
activity is one of the main applications of SNPpet. Given an
input sequence, we want nucleotide-resolution importance
scores quantifying each nucleotide’s contribution to the pre-
dicted output in a specific cell type. These scores then allow
downstream analyses such as identifying transcription fac-
tor recognition motifs and combinations thereof, enabling
formulation of specific biological hypotheses regarding the
relationship between DNA sequence and regulatory activity.

Multiple methods have been developed to compute fea-
ture importance scores for CNNs. A common approach in
genomics is in silico mutagenesis (ISM), in which the pre-
diction for the reference input f(Xref) is compared to the
prediction for mutated inputs f(Xmut); the score for each
nucleotide is the maximum difference f(Xref) − f(Xmut)
across the three possible mutations21,31. While intuitive,
ISM is very computationally expensive, since it requires
three forward passes through the network for each of the
145 nucleotides. Furthermore, noncoding sequences have
been shown to have redundant features, e.g. two adjacent
TF motifs with the presence of only a single one being nec-
essary to drive gene expression; an accurate predictor would
make equivalent predictions for the activity of the wild type
sequence and all sequences with one of the two motifs mu-
tated and thus ISM would fail to identify either of them as
an important feature.

Hence, we used DeepLIFT, a recently developed
backpropagation-based feature attribution method for neu-
ral networks that can estimate the predictive contribution
(importance) of each nucleotide in an input sequence to its

(D) Overview of SNPpet’s convolutional neural network architecture. The genomic DNA sequence for each tested MPRA
construct is transformed from nucleotides (in ACGT alphabet) to a 145 × 4 one-hot encoded array. Three convolution
layers and a fully-connected (FC) layer are then applied to predict four tasks (regulatory activity for the two cell lines
with each of the two promoters). Each convolutional layer consists of 120 filters of length 5 (rectangles) that move along
the sequence, searching for specific patterns of length 5 at every possible position. The first convolutional layer can be
interpreted as identifying individual DNA sequence recognition motifs, such as those recognized by transcription factors.
The second convolutional layer combines nearby potentially interacting motifs, while the third layer abstracts higher-order
grammars (positioning, spacing, and other meta-features). Finally, the FC layer synthesizes these patterns with cell type–
and promoter–specific information to make activity predictions.
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predicted output27. DeepLIFT requires a single backward
pass through the network to compute contributions for all
145 nucleotides, making it orders of magnitude faster than
ISM, and it has been demonstrated to overcome issues with
ISM and similar methods27 of the kind described above.
Throughout our analyses, we used dinucleotide-shuffled se-
quences (built-in implementation in the DeepLIFT package)
as reference when computing DeepLIFT scores.

2.4. Other referenced datasets

In addition to Sharpr-MPRA, we referenced a number of
other datasets to further understand and validate the per-
formance of our model. We discuss the relevance of these
data to SNPpet in their respective Results subsections, but
here we will briefly describe the datasets themselves.

To determine the chromatin state of the genomic re-
gions from which the MPRA fragments were designed, we
used annotations inferred by ChromHMM32. This method
applies a Hidden Markov Model to learn a cell type-specific
chromatin state for each 200 bp segment of the genome
based on histone modification and chromatin accessibility
datasets. We downloaded 25-state ChromHMM annota-
tions for the K562 and HepG2 cell types generated by EN-
CODE2. We designated any fragments drawn from regions
with “Tss” (active promoter) or “PromF” (promoter flank-
ing) states as promoter fragments; “Enh”/“EnhF” (candi-
date strong enhancer) or “DnaseD”/“DnaseU”/“FaireW”
(accessible weak enhancer) as enhancer fragments; and
“Repr”/“ReprW”/“ReprD” (Polycomb repressed) or
“Quies” (heterochromatin) as repressed fragments.

We referenced TF binding site (TFBS) predictions made
using the CENTIPEDE algorithm33 in order to deter-
mine whether predictive features extracted by DeepLIFT
agree with validated measures of biological function. Us-
ing histone modifications and DNase I footprints, CEN-
TIPEDE fits a Bayesian mixture model to discriminate
bound and unbound TF motif matches, generating fairly ac-
curate genome-wide binding maps. We downloaded the set
of K562 binding sites from www.centipede.uchicago.edu

for our analysis.
To examine the generalization of our model’s predictions

on external datasets not used during training, we chose
the MPRA performed by Ulirsch et al.34. This experiment
was designed to study the functional consequences of 2,756
GWAS variants associated with erythroid disorders, and
was well-suited to our use for multiple reasons: (1) the assay
was performed in K562 cells, allowing for comparison to our
K562 prediction model; (2) the construct length used in it
was 145 bp, the same length as in Sharpr-MPRA, facilitat-
ing the direct application of our model; (3) sequence activ-
ity measurements exhibited high reproducibility (between-
replicate Pearson r = 0.85); and (4) most importantly, it
tests the activity of both reference and mutant fragments
to quantify the effects of sequence variants on regulatory
activity. Thus, taking these data as gold standard, we eval-
uated our model’s ability to predict the effect size of the

expression change induced by such variants (described in
the Results).

We also tested our model’s ability to prioritize and fine-
map variants identified by genome-wide association stud-
ies (GWAS). For this evaluation, we used the dataset from
Willer et al.35, in which the genotypes of 2,437,752 SNPs
were correlated with fasting blood lipid levels in 189,000
European and 8,000 non-European individuals. We specifi-
cally focused our analysis to the strength of association with
low-density lipoprotein (LDL) levels, a well-studied risk fac-
tor of cardiovascular disease and myocardial infarction36.

3. Results and Discussion

3.1. SNPpet predicts measured MPRA regulatory
activities on par with replicate concordance of the

assay

We evaluated the performance of our models by comput-
ing the Spearman correlation between experimentally mea-
sured regulatory activities (averaged across replicates) and
SNPpet’s regulatory activity predictions. Because Spear-
man correlation only depends on the ranks of the data,
it is less susceptible to artificial performance inflation due
to outliers (as is Pearson’s r) or center-heavy distributions
(mean squared error).

The Spearman correlation between predicted and ex-
perimentally measured values for the held-out testing set
was 0.28 (Figure 2A) (and 0.14, 0.21, and 0.22 for K562
SV40P, HepG2 minP, and HepG2 SV40P, respectively; Fig-
ure S2A-C). These values are low in absolute terms, but
in the context of the relatively weak replicate concordance
of the assay itself (Figure 1C and S1), the performance
suggests that the model captures much of the putative bi-
ological signal present in the data. For K562 minP, 61%
(the ratio between the respective Spearman correlations) of
experimental reproducibility is accounted for by SNPpet’s
predictions (averaged for the four tasks, this ratio is 52%).
We also found that the model’s prediction error for a given
DNA sequence was positively correlated with the difference
in its two replicate activity values (Spearman ρ = 0.29,
P < 10−181, Figure S2D), suggesting that more repro-
ducible data is met with more accurate prediction.

We then examined prediction performances (for the
K562 minP task) on subsets of the testing set, with each
subset consisting of all the 145 bp fragments from either
promoter, enhancer, or repressed chromatin states. As
shown in Figure 2B, SNPpet predictions generally appear
to follow similar distributions as the experimental values
for each of these three states. We observe markedly higher
performance (Spearman ρ = 0.45) for fragments within or
flanking gene promoters, suggesting that these sequences
either are more experimentally reproducible or have more
consistent predictive patterns that the model can learn.
Constructs in DNase- or FAIRE-accessible regions were also
particularly well-predicted, with an experiment-prediction
Spearman ρ = 0.57 (Figure S2E).
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Figure 2: SNPpet distinguishes active regulatory sequences at high resolution.
(A) Predicted regulatory activity z-scores vs. experimental activity z-scores for the K562 minP task.
(B) Distributions of experimental and predicted regulatory activities for different ChromHMM-inferred chromatin states.
(C) K562 DeepLIFT nucleotide score track for a strongly activating regulatory sequence (top 0.1%) containing three TF
binding sites (red) as identified by the CENTIPEDE algorithm. All three TFBSs are detected with statistical significance
(Mann-Whitney U test).
(D) Nucleotides with strong (in absolute value) DeepLIFT scores are more likely to overlap with TF binding sites than
control sequences (blue: all nucleotides, green: DNase peak centers). This trend holds for both positive (R = 0.99) and
negative scores (R = −0.94).

3.2. Analysis of predictive nucleotides inferred
from the SNPpet model

Applying DeepLIFT to our top-performing SNPpet model,
we computed contribution scores for 4 million nucleotides
lying in K562, HepG2, MCF-7, or HeLa DNase-seq peaks
(27,886 total peaks from held-out chromosomes 8 and
18; each peak was clipped to 145 bp). We examined
concordance between these scores and validated mark-
ers of regulatory function, such as putative TF bind-
ing sites (TFBS). Anecdotally, most of the strongly pre-
dicted sequences had high DeepLIFT importance scores at
CENTIPEDE-annotated TFBSs. Figure 2C shows an ex-
ample DeepLIFT score profile for a particular 145 bp frag-
ment containing three CENTIPEDE-defined TFBSs; each
of the sites is identified at fine resolution, with nucleotides
within the binding sites assigned higher importance scores
than the rest of the bases in the region (p < 5 × 10−3,
Mann-Whitney U test).

To evaluate concordance between DeepLIFT scores and
TFBSs on a broader scale, we sorted nucleotides by their
DeepLIFT scores in K562 and binned them into 1,910 quan-
tiles of 2,117 bases each. We find that DeepLIFT scores
correlate strongly with TFBS overlap in K562, with > 30%
of nucleotides in the highest DeepLIFT quantile overlap-
ping a CENTIPEDE-annotated TFBS (Figure 2D). No-
tably, this score-overlap relationship holds both for positive
DeepLIFT scores (R = 0.99;P = 3.3 × 10−72, for scores
higher than +0.2) and negative scores (R = −0.94;P =
2.2 × 10−29 for scores lower than −0.2), suggesting that
SNPpet has the potential to identify both activating and
repressive motifs that modulate gene expression in concert.

3.3. Predictive sequence patterns are enriched at
motifs of lineage-specific transcription factors

We performed several further evaluations of the ability of
SNPpet-DeepLIFT scores to identify putative regulatory
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Figure 3: SNPpet-DeepLIFT feature importance scores robustly predict functional nucleotides.
(A) Overlap between significant motif instances (Benjamini-Hochberg FDR < 0.1) identified by DeepLIFT and Sharpr.
(B) Scatter plot of average DeepLIFT scores for 1934 motifs in HepG2 (x-axis) and K562 (y-axis)37. Orange points are
discussed in the text.
(C) Sharpr-MPRA nucleotide score distributions for (i) motifs that are also DeepLIFT hits, (ii) all motifs, and (iii) neg-
ative control shuffled motifs.
(D) Distributions of average DeepLIFT motif scores for ETS, HNF4, REST, and their respective control motifs (shuffled
versions) in both K562 and HepG2. ***p < 10−200; n.s., not significant.
(E) Positional distribution of DeepLIFT scores (left) and Sharpr scores (right) with respect to the center of ETS motif
occurrences. Note that the DeepLIFT plot x-axis ranges from -50 bp to 50 bp while the Sharpr plot ranges from -100 bp
to 100 bp. All p-values are computed with the Mann-Whitney U test.

sequence patterns. We first compared DeepLIFT scores
with nucleotide-level regulatory scores as calculated in the
Sharpr-MPRA study itself, expecting considerable overlap
as both methods use the same data. To do so, we refer-
enced a compendium of mapped known TF binding mo-
tifs from Kheradpour et al.37. We separately averaged the
DeepLIFT and Sharpr scores (from K562 cells) for the 4-20
base pairs comprising each motif match (a total of ∼328,083
matches spanning 1,934 TF motifs), and evaluated whether
the mean was significantly higher than that of negative con-
trol shuffled matches using a z-test.

Out of the ∼328,000 motif matches, 51,730 were deemed
significant by at least one of the methods at a Benjamini-
Hochberg corrected false discovery rate (FDR) threshold
of 0.1. Notably, 10,556 (20.4%) of these matches were
identified by both DeepLIFT and Sharpr (Figure 3A), a
4.03-fold enrichment over the number of overlapping motifs
expected by chance if the two methods were independent.

Across all ∼328,000 motif instances, Sharpr and DeepLIFT
scores also agreed with Pearson r = 0.43 (Figure S3A).

We then computed consensus scores for each of the 1,934
TF motifs by averaging scores across all of the motif’s
matches. Because these scores are each derived from on
average ∼170 motif matches, they tend to be less noisy and
are thus more strongly correlated with their counterpart
Sharpr scores (Pearson r = 0.86, Figure S3B). We exam-
ined the top scoring motifs from this analysis, and whether
they included transcription factors known to be important
in each of the two cell lines (Figure 3B). Consistent with
known roles, ETS and AP-1 were identified as strong activa-
tors while the well-studied transcriptional repressors REST
and SNAI2 had among the most negative scores in both
K562 and HepG2 cells38. DeepLIFT also accurately re-
trieved the cell-type specificities of TFs: HNF4, a critical
TF for liver development39, scores highly in HepG2 but
not K562, while GATA1/2 and RUNX1, TFs with known
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roles in blood cells40, are specific to K562 cells. We further
confirmed that these motifs indeed represent biologically
relevant findings instead of noise by comparing the distri-
butions of scores across all motif instances of ETS, HNF4,
and REST to their respective control (instances of shuffled
versions of the motifs) distributions (Figure 3C).

Interestingly, the top scoring motif in both cell types, a
palindromic TCTCGCGAGA pattern (Figure 3B), is not
a well-characterized protein binding motif. In vitro experi-
ments and limited in vivo evidence suggest association with
the zinc finger protein ZBTB3341; we also note that the mo-
tif is listed as associated with proteins such as DYRK1A,
BRCA1, and CHD2 in multiple databases37,42, however,
this is most likely a case of spurious annotations as these
are not sequence-specific DNA binding proteins. Regard-
less of which protein(s) it is bound by, its high predictive
value according to DeepLIFT suggests that instances (and
disruptions) of this sequence may have substantial effects
on expression.

We also found that motifs with statistically enriched
DeepLIFT profiles (FDR < 0.05 when comparing the mo-
tif’s DeepLIFT scores to the shuffled motif DeepLIFT score
distribution) have significantly higher Sharpr activity than
the unfiltered set of all motifs (P = 1.6 × 10−49, Mann
Whitney U test), supporting the robustness of SNPpet-
DeepLIFT for identifying active nucleotides (Figure 3D).

Another important consideration is the resolution at
which SNPpet identifies functionally relevant nucleotides.
To address that question, we used all ∼4000 instances of
the strongly enhancing ETS motif, and computed the mean
DeepLIFT score for each position relative to the motif cen-
ter. As shown in Figure 3E (left), DeepLIFT perfectly
highlights the core 6 bp CCGGAA motif, with virtually
no signal for the surrounding base pairs. In contrast, the
Sharpr score track contains a peak near the motif cen-
ter, but the scores are still enriched for the surrounding
200 bp region, highlighting the finer resolution of SNPpet-
DeepLIFT.

Taken together, our results demonstrate that, genome-
wide, SNPpet-DeepLIFT scores tend to prioritize putative
regulatory nucleotides.

3.4. Inferring active transcription factors from
nucleotide scores

Having confirmed that SNPpet-DeepLIFT feature impor-
tance scores can broadly identify functionally relevant TF-
BSs, we sought to apply them to understand the regulatory
properties of the sequences tested in the Sharpr-MPRA. Us-
ing SNPpet’s nucleotide-resolution regulatory activity con-
tributions, we aimed to determine which transcription fac-
tors confer enhancer function to each 145 bp DNA sequence.
To do so, we downloaded position-weight matrices (PWMs)
for 344 TF motifs from the HOMER database43. For each
of the ∼974,000 sequences in the Sharpr dataset, we as-
signed a score for how well each TF’s PWM aligned with the
sequence’s DeepLIFT track (i.e., the maximum dot product

between the PWM and the DeepLIFT track across all possi-
ble positions in the sequence; this metric accounts for both
the magnitudes of the DeepLIFT scores as well as for how
closely the PWM matches the sequence, for a combined
causality estimate of how much a TF’s PWM contributed
to the CNN’s prediction). This computation results in a
∼ 974, 000 × 344 matrix, where element (i, j) can be inter-
preted as motif j’s “usage score” in controlling the expres-
sion of sequence i. We averaged across the two cell types.

First, we considered whether promoter and enhancer re-
gions are distinguished by the TFs that they use to modu-
late gene expression. For each TF, we computed its average
usage scores across all annotated promoters and across all
annotated enhancers, and calculated the ratio of its pro-
moter usage to its enhancer usage (Figure 4A). We found
that motifs for TFs in the Sp/KLF C2H2 zinc finger sub-
family are most specific to promoter regions, consistent with
previous results44,45; other motifs enriched in promoters in-
clude NRF1, ZBTB33, and c-Myc, as well as ETS-related
motifs. All of the most enhancer-specific TFs are in the AP-
1-like subfamily of bZIP transcription factors. Interestingly,
however, CREB, a bZIP factor, is a strongly promoter-
enriched TF, in agreement with previous work highlighting
its functional differentiation from AP-146.

We next characterized correlated pairs of predictive TF
motifs across the entire dataset (Figure 4B). As expected,
we find that TFs within the same family cluster together;
however, many of these correlations might be accounted for
by the similarity of the underlying motifs rather than true
co-occurrence of distinct motifs. The remaining TFs sepa-
rate into two clusters, largely differentiated by promoter or
enhancer specificity as discussed above.

More interesting are observed correlations between TFs
of different families. For example, we find that HNF4 and
GATA motifs are strongly correlated; indeed, previous work
has found that the two TFs can have coordinated func-
tions47. Another example involves MafB and MafK, which,
despite different binding motifs, also correlate well, support-
ing previously predicted heterodimerization between the
two48. In contrast, some TF pairs are very weakly corre-
lated. For example, Sp/KLF factors do not correlate with
the bZIP family (AP-1-like), possibly reflecting their differ-
ential promoter-enhancer preferences Figure 4A.

3.5. SNPpet predicts allelic effect of genetic
variants tested in an independent MPRA

experiment

We next aimed at establishing to what extent SNPpet reg-
ulatory predictions generalize beyond the Sharpr-MPRA
dataset. To this end, we used MPRA data from Ulirsch
et al.34, in which the regulatory activity of a number of ref-
erence sequences and mutated versions of each of these se-
quences were experimentally tested using MPRAs in K562.
By computing the change in activity between the mutated
and reference sequences, the authors quantified the regula-
tory impact of 8K variants, of which 40 had statistically
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Figure 4: SNPpet reveals patterns of transcription factor activity.
(A) For each TF, we computed the ratio of average “usage” in promoter sequences relative to enhancer sequences. The
plot contains z-scores of this ratio for 27 selected transcription factors, colored by their motif family (left).
(B) Clustered correlation matrix of TF usage for the 27 factors from (A). Each cell is colored according to the motif usage
Spearman correlation for a given pair of TFs across all ∼974,000 sequences. Rows are colored by their motif family.

significant effects. We generated analogous predictions for
each of these 40 reference and mutant sequences, calculated
the differences in predictions, and then compared SNPpet-
inferred variant effects to the actual experimental data. We
chose the in silico mutagenesis approach over DeepLIFT in
this case, as we were specifically interested in how alleles of
individual SNPs affect predicted reporter expression.

We find that SNPpet variant scores are well-correlated
with experimentally measured variant scores (Figure 5A).
Of the 40 variants examined, SNPpet correctly identifies the
direction of effect (i.e., increase or decrease in expression)
for 32 of them. We explored one of the SNPs predicted
to increase expression by both MPRA data and SNPpet,
rs2269907. As shown in Figure 5B, this variant is located
in an active candidate enhancer region and also lies within
a ChIP-seq peak for the JunD transcription factor49. The
variant appears to be correcting a mismatch in the JunD
motif, likely causing JunD to bind and positively regulate
gene expression.

These observations suggest that SNPpet learns regula-
tory patterns that can generalize to contexts other than the
specific MPRA dataset it was trained on.

3.6. SNPpet scores can prioritize genetic variants
associated with lipid traits

Genome-wide association studies (GWAS) have identified
thousands of noncoding genetic loci associated with hun-
dreds of complex traits and diseases. Noncoding disease-
associated genetic variants tend to be enriched in regulatory
elements and affect regulatory molecular phenotypes such
as TF binding, chromatin accessibility and gene expres-
sion2,50,51. However, identifying the causal variants within
disease-associated loci is often challenging due to linkage
disequilibrium between multiple highly correlated SNPs in
each locus52. We wanted to test whether SNPpet could
potentially prioritize likely causal variants within complex
trait-associated loci based on their predicted impacts on
MPRA regulatory activity.

Complex diseases that are influenced by gene misregu-
lation are often cell-type specific. We therefore chose traits
associated with liver, since we could leverage our SNPpet
MPRA predictions in HepG2 liver carcinoma cells. We ref-
erenced a GWAS in which genotypes at ∼2.4M loci were
analyzed to find SNPs significantly correlated with LDL
cholesterol levels35. We then scored these SNPs using the
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Figure 5: SNPpet variant score predictions agree with experimental data.
(A) Regulatory activity changes in between reference and mutated sequences predicted by SNPpet agree with experi-
mentally measured changes34. Red points indicate variants that were significant in the wild-type K562 condition (see
description in Methods)
(B) Detailed examination of a particular variant, rs2269907 at chromosome 17 position 44,294,214. The distribution of
epigenetic marks and JunD ChIP-seq signal2 around the variant reveals that it lies in an active region49; the variant
appears to correct a mismatch in one of the base pairs of a JunD motif, allowing JunD to bind and regulate expression.

in silico mutagenesis (ISM) procedure described in Section
2.3. That is, we generated a SNPpet prediction for the ref-
erence sequence, containing the wild type allele of the SNP
and 72 base pairs of surrounding context upstream and
downstream (1 + 2 · 72 = 145, length of the inputs to our
model), and we also generated mutated predictions for the
three possible nucleotide changes at the location of the SNP.
Each SNP’s ISM score is the greatest absolute value differ-
ence from the reference prediction across the three mutants.
We again used ISM instead of DeepLIFT as we were specif-
ically interested in testing changes to predicted expression
as a result of individual sequence variants.

We expanded the dataset of GWAS-tested SNPs (tag
SNPs) to include all other SNPs in LD (R2 ≥ 0.8) with
them. We scored both the tag SNPs and all of their proxy
SNPs, and each tag SNP was ultimately assigned an LD-
adjusted score: i.e., the maximum ISM score over all the
variants in its LD block.

Overall, we find that statistically significant tag SNPs
with GWAS p-values less than 5 × 10−8 have higher LD-
adjusted ISM scores than insignificant (p > 0.1) variants
(Mann-Whitney U test: p = 8.8 × 10−9; Figure S4A).
The effect size of this difference, however, is relatively small,
with the former set having a 15% higher mean score than
the latter set. To tell whether the LD score adjustment im-
proved our discriminative power, we compared unadjusted
ISM scores for significant tag SNPs to the unadjusted scores
of insignificant tag SNPs. There was no difference between
these two distributions of scores (p = 0.60; Figure S4B),
suggesting that the tag SNPs tested in GWAS usually aren’t

driving their predicted regulatory effects; their proxy SNPs
must be considered to elucidate their putative function. We
also observe a low but significant negative correlation be-
tween LD-adjusted ISM scores and p-values of the corre-
sponding tag SNPs (ρ = −0.07, p = 3.1 × 10−37); that
is, higher SNPpet scores are weakly associated with lower
GWAS p-values (Figure S4C). It is worth noting that pre-
dicting trait-association of variants from a model trained to
predict MPRA activity or any regulatory molecular marker
is a very challenging task since there isn’t a bidirectional
correspondence between the regulatory impact of a variant
and its causal association with a trait. Models trained on
higher quality MPRA datasets and adaptively fine-tuned
on trait-association statistics may exhibit improved perfor-
mance on this prediction task.

We next wanted to test whether combining information
from GWAS with SNPpet predictions could better prior-
itize variants. We plotted each SNP with its ISM score
on the x-axis and its negative log GWAS p-value on the
y-axis (Figure 6A). In this setup, putatively causal vari-
ants localize to the upper right or upper left quadrants,
as those points have both large effects on predicted ex-
pression and strong correlation with disease phenotypes.
We focused on SNPs with absolute value ISM scores above
0.45 and p-values below 5 × 10−8, which revealed 263 vari-
ants associated with low-density lipoprotein levels. Most of
the top mutations occurred proximally upstream or within
introns of previously implicated cholesterol/cardiovascular
disease genes, including LPIN3, FADS1/2, HLA-C and
APOB 36,53–55.
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Figure 6: Dissecting rs174593, a putative causal variant for reduced LDL cholesterol levels.
(A) Volcano plot with SNPpet mutation scores on the x-axis and negative log GWAS p-values on the y-axis. Putatively
causal variants in the upper right and upper left regions localize to cardiovascular disease-related genes.
(B) DeepLIFT track and saturation mutagenesis scores of the locus surrounding rs174593, a potential FADS2 cis-
regulatory element. As highlighted by DeepLIFT, the C allele at that position creates an ELK1 motif match, increasing
predicted FADS2 expression compared to the T allele.

We focused on the variant rs174593 (in LD with tag
SNP rs174591) at the FADS locus, which is predicted to
result in a +0.92 change in regulatory activity z-score and
has a GWAS p-value of 10−17. This SNP lies in an intron of
FADS2, which codes for fatty acid desaturase 2, an enzyme
that converts long-chain saturated fatty acids to polyunsat-
urated fatty acids (PUFAs)56. Notably, PUFA levels are in-
versely correlated with blood LDL content57. To further in-
vestigate the putative mechanisms through which rs174593
influences gene expression, we computed DeepLIFT scores
of surrounding nucleotides and also performed a complete
saturation mutagenesis of the 25 base pairs on either side
of the SNP (Figure 6B). As shown in Figure 6B, the
mutant C allele of the variant creates a near-perfect match

to the strongly activating ELK1 transcription factor motif
(Figure 3B), potentially causing ELK1 to bind and in-
creasing FADS2 expression. While Figure S5A suggests
only modest chromatin activity at the rs174593 locus in
HepG2 cells3, tissue expression data from GTEx58 impli-
cate rs174593 as an eQTL in liver cells with 92% posterior
probability (Figure S5B-C). Further, ChromHMM anno-
tations using Roadmap Epigenome3 data predict rs174593
to be located in the “Enhancer” or “Genic enhancer” states
for multiple tissues (Heart, Testis, Esophagus, among oth-
ers) in which FADS2 is expressed and rs174593 is a FADS2
eQTL (GTEx; Figure S5C), suggesting that the variant
may influence disease through its effects on non-liver tis-
sues as well. As higher FADS2 expression increases PUFA
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production and therefore decreases plasma LDL levels, the
mutant C allele of rs174593 may have a protective effect
by reducing risk of LDL cholesterol-mediated atherosclero-
sis59.

While rs174593 is only an anecodotal example, the
fine-mapping approach described here may become sys-
tematically successful when integrated with higher-quality
datasets and more accurate models of multiple regulatory
phenotypes. Our preliminary work with SNPpet hints at
how interpreting predictive models can identify putative
mechanisms through which disease mutations exercise their
influence rather than simply identifying SNPs that are only
correlated with disease, therefore multiplying the utility of
thousands of existing genome-wide association studies.

4. Discussion

In recent years, functional genomic assays such as the nu-
merous methods for profiling chromatin features, MPRAs,
and pooled CRISPR perturbation screens have produced
genomic data at unprecedented breadth, depth, and detail.
MPRAs in particular present a highly scalable platform for
finely dissecting the regulatory code of individual noncod-
ing DNA elements, as they allow for large numbers of short
sequences to be tested in parallel and in diverse cellular con-
texts. The expression-based readout of MPRAs is comple-
mentary to to other assays like ChIP-seq (protein binding)
and DNase-seq (chromatin accessibility), which do not di-
rectly measure effects on gene expression. Predictive models
trained on MPRAs are hence more likely to be sensitive to
identifying functional regulatory patterns that affect gene
expression.

The increasing size and design complexity of MPRAs
in the literature motivated us to develop SNPpet, a CNN-
based predictive model for learning de novo regulatory pat-
terns from noncoding DNA sequences based on their MPRA
activity. We applied SNPpet to model the Sharpr-MPRA
dataset, demonstrating that SNPpet can predict quanti-
tative regulatory activity with moderate accuracy within
the range of replicate concordance of the assay. We then
used state-of-the-art model interpretation approaches such
as DeepLIFT and ISM to decipher the predictive sequence
features learned by the model which correspond to motifs
of contextually relevant transcription factor complexes. We
demonstrated the ability of SNPpet to generalize and pre-
dict the impact of genetic variation on regulatory activity
measured in independent MPRA experiments. Finally, we
tested SNPpet’s ability to predict variants associated with
complex traits from GWAS studies. Using LDL cholestrol
GWAS as a case study, we found that SNPpet’s variant
prioritization scores only weakly correlated with association
statistics even after accounting for LD. However, by combin-
ing GWAS summary statistics with SNPpet predictions, we
were able to prioritize some candidate causal variants. Our
case study of SNP rs174593 showcased the use of interpre-
tation methods such as DeepLIFT and ISM to provide hy-

potheses about regulatory mechanisms of a putative causal
variant. By integrating other widely available epigenomic
datasets (DNase-seq, histone ChIP-seq) with higher-quality
MPRA data, we expect to train far more accurate gene ex-
pression predictors; used in the way we preview here, these
models may play a significant role in the quest towards map-
ping the relationship between sequence variants and gene
expression changes in the context of human disease.

We conclude with a discussion of limitations of our study
as well as general caveats associated with interpreting reg-
ulatory models trained on MPRAs. In this study, our pri-
mary goal was to explore the application of neural network
models trained on MPRA data to interpret regulatory DNA
sequences and noncoding variation. We have not included a
systematic comparison of our SNPpet CNN model to strong
baseline predictive models such as SVMs. We plan to focus
on rigorous model comparisons in the future. There are also
several feature attribution methods for interpreting neural
network models. Here, we have used two state-of-the-art
methods namely DeepLIFT and ISM. In the future, we hope
to perform systematic comparisons of other interpretation
methods and study the stability and uncertainty of dis-
covered patterns across multiple bootstrapped models and
model architectures. Further, the moderate replicate con-
cordance of the Sharpr-MPRA assay presented a significant
challenge to train a high-fidelity model. While MPRAs can
test hundreds of thousands of sequences simultaneously, we
have found several published datasets to exhibit high vari-
ance in replicate measurements (results not shown), limit-
ing the ability to train reliable models. We expect that data
quality will improve with further optimization of the assays.
In addition, MPRAs typically test relatively short sequences
that likely do not encompass complete regulatory elements.
Finally, most MPRAs have been performed using episomal
DNA plasmids rather than native chromatin, leaving open
the question to what extent their output is directly trans-
latable to the native genome, in which overall chromatin
context plays a significant role in determining regulatory
output. Using models trained on MPRAs alone as variant
effect predictors may be ill-advised, as we observed many
SNPs disrupting regulatory sequences that are active in
MPRAs but endogenously repressed (and vice-versa). Some
of these limitations are being addressed, as long-fragment
(∼500 bp) STARR-seq datasets10 and genome-integrated
MPRAs60 have become recently available. CNN models
such as SNPpet can easily adapt to these assays. Transfer
learning approaches may also be able to boost predictive
models of in vivo transcription factor binding, chromatin
state, and gene expression by pre-training on MPRA exper-
iments. In conclusion, neural network models trained on
a diverse collection of high-quality datasets coupled with
powerful interpretation frameworks have the potential to
finely decode cis-regulatory grammars and functional ge-
netic variation in regulatory DNA sequences.
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Availability

All the code to reproduce the analyses described in the
paper is available at https://github.com/kundajelab/

mpra. The raw weights and architecture of the final Keras
model are also in the Github repository; these files can be
imported into a Python script to make activity predictions
for arbitrary 145-nucleotide sequences.
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Supplementary Materials

Supplementary Figures

Supplementary Figure 1: Between-replicate correlations for the four experimental groups in Sharpr-
MPRA.
(A) Correlation for fragments tested in K562 cells using the minimal promoter (minP); same plot as Figure 1C with
added marginal distributions.
(B) K562 cells with the SV40P promoter.
(C) HepG2 cells with minP.
(D) HepG2 cells with SV40P.
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Supplementary Figure 2: Detailed look at SNPpet’s prediction performance.
(A) Correlation between experimental regulatory activity z-scores and predicted regulatory activity z-scores for the K562
SV40P task (analogous to Figure 2A). These predictions are for fragments in the held-out test set (Sharpr fragments in
chromosome 18).
(B) Performance for HepG2 minP task.
(C) Performance for HepG2 SV40P task.
(D) Positive correlation between the difference in regulatory activity across replicates vs. prediction error, i.e., fragments
with more noisy experimental values have reduced prediction accuracy.
(E) Improved prediction performance (ρ = 0.57) for fragments lying in accessible putative enhancers designated as
’DnaseD’ or ’FaireW’ states by ChromHMM annotations for the K562 cell type.
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Supplementary Figure 3: Agreement between SNPpet-DeepLIFT and SHARPR nucleotide scores at tran-
scription factor motif matches.
(A) Correlation between averaged DeepLIFT vs. averaged SHARPR nucleotide scores at each of the 328K motif matches
that overlap at least one Sharpr-MPRA fragment. Each datapoint corresponds to a particular motif instance.
(B) DeepLIFT vs. SHARPR correlation of the average motif match scores across all matches of one of the 1,934 different
TF motifs. Each datapoint corresponds to a particular motif.

Supplementary Figure 4: SNPpet LD-adjusted ISM scores offer some discriminating power between sig-
nificant and insignificant GWAS variants.
(A) Boxplots showing distributions of LD-adjusted SNPpet ISM scores (using the HepG2 minP model) for significant
(P < 5×10−8) GWAS variants correlated with LDL cholesterol vs. insignificant (P > 0.1) GWAS variants. The significant
variants are scored higher (P = 8.8 × 10−9).
(B) Boxplots showing distributions unadjusted SNPpet scores for significant vs. insignificant GWAS tag variants. With-
out accounting for linkage disequilibrium, there is no difference in scores between significant and insignificant variants.
(C) Genome-wide correlation between LD-adjusted SNPpet variant scores and P -values of association of the variants with
LDL cholesterol levels.
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Supplementary Figure 5: Further evidence for rs174593 as a regulator of FADS2 expression.
(A) HepG2 epigenetic landscape in the genomic neighborhood of rs174593.
(B) Sorted FADS2 expression boxplots for a number of different tissue types from the GTEx consortium58.
(C) FADS2 expression vs. rs174593 genotype for three tissues that express FADS2 from (B). Notably, aorta and esophagus
cells display greater epigenomic activity at the rs174593 locus (data from Roadmap, not shown) and have stronger eQTL
signal, suggesting that rs174593 may act as a disease variant through these (or other) tissues.
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