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Abstract 24 

In this study, we describe the key transcripts and machine learning models developed 25 

for classifying the early and late stage samples of Papillary Thyroid Cancer (PTC), 26 

using transcripts’ expression data from The Cancer Genome Atlas (TCGA). First, we 27 

rank all the transcripts on the basis of area under receiver operating characteristic curve, 28 

(AUROC) value to discriminate the early and late stage, based on an expression 29 

threshold. With the expression of a single transcript DCN, we can classify the stage 30 

samples with a 68.5% accuracy and AUROC of 0.66. Then we implemented various 31 

combination of multiple gene panels, selected using various gold standard feature 32 

selection techniques. The model based on the expression of 36 multiple transcripts 33 

(protein coding and non-coding) selected using SVC-L1 achieves the maximum 34 

accuracy of 74.51% with AUROC of 0.75 on independent validation dataset with 35 

balanced sensitivity and specificity. Further, these signatures also performed well on 36 

external microarray data obtained from GEO, predicting nearly 70% (12 samples out 37 

of 17 samples) early stage samples correctly. Further, multiclass model, classifying the 38 

normal, early and late stage samples achieves the accuracy of 75.43% with AUROC of 39 

0.80 on independent validation dataset. With correlation analysis, we found that 40 

transcripts with maximum change in correlation of their expression in both the stages 41 

are significantly enriched in neuroactive ligand receptor interaction pathway. We also 42 

propose a panel of five protein coding transcripts, which on the basis of their 43 

expression, can segregate cancer and normal samples with 97.32% accuracy and 44 

AUROC of 0.99 on independent validation dataset. All the models and dataset used in 45 

this study are available from the web server CancerTSP 46 

(http://webs.iiitd.edu.in/raghava/cancertsp/). 47 

 48 
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 51 

Introduction 52 

Last few decades witnessed a sharp upsurge in the prevalence of thyroid cancer 53 

worldwide making it the fifth most common cancer in women. The exposure to 54 

radiation and environmental carcinogens are possible reasons implicated for its rise 55 

(Pellegriti et al., 2013). Histopathologically, there are four types of thyroid cancer, 56 

stated as Papillary, Follicular, Medullary and Anaplastic. Together, PTC (Papillary 57 

Thyroid Carcinoma) and Follicular Thyroid Carcinoma (FTC) are known as 58 

Differentiated Thyroid Cancer (DTC) and constitute the majority of thyroid 59 

malignancy as well as the most common endocrine malignancy (Hay et al., 2002). 60 

According to American Cancer Society, the early stage (stage I and stage II) survival 61 

rate of PTC is nearly 100% but that reduces to 55% in stage 4 (American Cancer 62 

Society, Cancer Facts & Figures 2017). This statistics already opinions the need for 63 

early detection of thyroid cancer. 64 

Fine needle aspiration (FNA) biopsy of the thyroid nodule along with subsequent 65 

cytological categorization is a reference method for thyroid cancer diagnosis. It has 66 

been reported that the diagnostic precision of FNA has been subjected upon the skill of 67 

operator, intrinsic characteristics of nodules and cytology interpretation (Haider et al., 68 

2011). One of its limitations includes that its limited capability to identify follicular 69 

lesions (Gharib, 1994). Due to various limitations of FNA cytology, several 70 

immunohistochemical markers have been projected and their efficacy in thyroid 71 

cancer diagnosis, is being evaluated. Hector battifora mesothelial antigen-1 (HBME-1) 72 

(Nga et al., 2008) and Galectin-3 (GAL-3) (Chiu et al., 2010) have shown promising 73 
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results as diagnostic biomarkers. The severity of thyroid cancer has been shown to 74 

correlate with overexpression of EGFR (Sethi et al., 2010). In spite of accumulating 75 

knowledge of genetic alterations accompanying the thyroid cancer incidence in the last 76 

20 years (Zolotov, 2016), genomics-based thyroid cancer diagnosis is yet to be realized. 77 

The stage wise genome expression analysis can complement the understanding of 78 

cancer progression and its correlation to clinical characteristics. The increasing 79 

availability of big data has paved the path for deeper understanding of cancer biology 80 

in terms of clinical diagnostic and therapeutic capability. One such resource is the 81 

TCGA, a public endeavor aimed at establishing a comprehensive catalog of genomic 82 

alterations occurring in cancers inferred from large-scale genome sequencing of 83 

cancerous tissues accompanied by multidimensional analyses (Tomczak et al., 2015). 84 

The big and diverse data generated by TCGA, available to the scientific community, is 85 

an incentive to understand the cancer progression and proliferation that would help in 86 

devising cancer management solutions. Among the various types and levels of cancer 87 

data like genomic mutations, copy number variations, gene fusions, etc., the mRNA 88 

expression data is also available for thyroid cancer tissues as well as the associated 89 

normal tissues. 90 

The principal paper of PTC from TCGA discussed the genomic landscape of thyroid 91 

cancer and identified imperative driver mutations. It also proposed the reclassification 92 

of thyroid cancers into molecular subtypes for better understanding of underlying 93 

mechanisms (Cancer Genome Atlas Research, 2014). Many other studies have tried to 94 

reanalyze this data to study survival, progression and differential expression (Chai et 95 

al., 2016;Stokowy et al., 2016;Choi et al., 2017;Yi et al., 2017). Chai et al have shown 96 

that the expression of BRAF is associated with high tumor aggressiveness regardless 97 

of the BRAF mutation status. So this indicates that the expression and mutation status 98 
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are both important in determining the prognostic risk factors. Other study illustrates the 99 

classification of benign and malignant thyroid tumors on FNA samples with the 100 

specificity of 84% (Chudova et al., 2010) on the test dataset of 48 patients. In literature, 101 

it has been shown that methylation status of markers like RASSF1, DAPK1 and ESR1 102 

has been significantly associated with thyroid cancer subtypes and early detection of 103 

thyroid cancer (Stephen et al., 2015). It has also been revealed that high expression of 104 

vitamin D receptor gene (VDR) is associated with classic and tall cell subtype, stage 105 

IV and low recurrence-free survival of thyroid cancer (Morris et al., 2010). It has been 106 

shown previously that transforming growth factor, cadherin 1, collagen α1, catenin α1, 107 

integrin α3, and fibronectin 1 were differentially expressed between benign and 108 

malignant nodules of thyroid cancer (Borrelli et al., 2016). 109 

In the present study, we have scrutinized the important transcripts that play an important 110 

role in development of cancer from early to late stage using various types of 111 

bioinformatics analysis. First, we ranked RNA transcripts based on their discriminatory 112 

power to classify early and late stage samples on the basis of an expression threshold. 113 

Their gene ontology and pathway analysis is done to ascertain the role of important 114 

transcripts in transitioning from early to late stage. Next, multiple transcripts were used 115 

to develop models which can segregate early and late stage samples. Further, we have 116 

developed a multiclass model to distinguish the normal, early and late stage samples. 117 

Moreover, we also performed the correlation analysis to understand the changes in 118 

correlation between different transcripts in early and late stage. Next, we have tried to 119 

deduce the signature with the minimum number of transcripts that distinguish cancer 120 

and normal samples with high accuracy. Additionally, we provide a public domain 121 

webserver (CancerTSP) for discriminating the early and late stage along with cancerous 122 

or non-cancerous state of the sample using machine learning models. 123 
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Methods 124 

Datasets 125 

The RNA-Seq data (HTSeq-FPKM, 500 cancer samples and 58 normal) was retrieved 126 

from GDC data portal (https://portal.gdc.cancer.gov/). In addition, manifest, metadata, 127 

clinical data, biospecimen files were also downloaded from GDC data portal to obtain 128 

clinical information using Biospecimen Core Resource (BCR) IDs of patients. For 129 

every patient, mRNA expression of 60,483 RNA transcripts were reported in terms of 130 

FPKM values. To ascertain the importance of different type of transcripts, we 131 

segregated transcripts into subtypes using annotation from genecode version 22; like 132 

Protein Coding, LincRNA, snoRNA, snRNA and miRNA etc. transcripts 133 

(Supplementary Table S1). 134 

Datasets for classification of early vs late stage  135 

Of total 500 cancer samples, there were 281 - stage 1, 52 - stage 2, 112 - stage 3 and 55 136 

- stage 4 samples. In order to develop stage classification method, we divided the 137 

samples in early and late stage. Stage 1 and stage 2 samples were designated as early 138 

stage samples and stage 3 and stage 4 samples were labelled as late stage samples. Thus, 139 

our stage classification dataset contain 333 early and 167 late stage samples. We 140 

divided this dataset into training and independent validation dataset where 80% samples 141 

were used for training the model and 20% samples for independent validation. Clinical 142 

features of the patients are shown in Supplementary Figure S1. 143 

For external validation on the best set of features obtained, we used data from the Gene 144 

Expression Omnibus GEO database (Clough and Barrett, 2016) with GEO accession 145 

GSE48953. GSE48953 consists of expression profiling of 20 PTC patients using high 146 

throughput sequencing (RNAseq) (Smallridge et al., 2014). This dataset consists of 17 147 

early stage patients (stage 1) and 3 late stage patients (stage 3). 148 
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Other datasets 149 

In addition to stage classification, we also developed model for discriminating cancer 150 

patients and normal tissues. This dataset comprises of 500 cancer samples and 58 151 

normal samples. Similarly, we also developed models for predicting normal, early and 152 

late stage. The dataset for multiclass classification comprises of 58 normal, 333 early 153 

stage and 167 late stage samples. These datasets were further subdivided into training 154 

and independent validation dataset, where training dataset contained 80% samples and 155 

independent validation dataset contained 20% samples.  156 

Data processing 157 

The FPKM values were log2 transformed after addition of 1.0 as a constant number to 158 

each of the value. After that, we removed features with low variance (less than 0.25) by 159 

employing caret package in R, followed by z-score normalization of data. The equations 160 

(1) and (2) were used for log transformation and normalization of data, respectively. 161 

 𝑥 = 𝑙𝑜𝑔2 (𝐹𝑃𝐾𝑀 + 1) (1) 162 

 𝑍𝑠𝑐𝑜𝑟𝑒 =
𝑥−�̅�

𝑠
   (2) 163 

In equation (2), Zscore is the normalized scaled and centered score, x is the log-164 

transformed transcript expression, �̅� is the mean of transcript’s expression in the 165 

training dataset, and s is the standard deviation of a transcript in the training dataset. 166 

The log2 transformed independent validation data is z normalized by taking mean and 167 

standard deviation of training features. 168 

Features filtering using threshold-based models 169 

In this study, we employed a simple expression threshold based approach similar to our 170 

previous study (Bhalla et al., 2017) to develop threshold-based models. This method is 171 

based on the fact that few transcripts are differentially expressed in early stage as 172 

compared to the late stage. In this approach, for every transcript, we designated a 173 
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threshold, which determines whether a sample is in the early or late stage of the cancer. 174 

The threshold is selected by iterating from the minimum to maximum expression of that 175 

transcript across all the patients. The threshold which gives maximum AUROC of 176 

classification between early and late stage sample is reported. If the mean expression of 177 

transcript is greater in early stage than late stage and for a given sample, its log2 FPKM 178 

value is higher than the given threshold, then we assign that sample as early otherwise as 179 

the late stage sample. Whereas, if the transcript’s average log2 FPKM value is greater in 180 

late stage as compared to the early stage and for a given sample, if its log2 FPKM is 181 

greater than the threshold, then we assign that sample as the late otherwise as the early 182 

stage sample. Using similar method AUROC is calculated for cancer vs. normal samples. 183 

Feature selection 184 

To further improve the classification accuracy and develop a multiple gene 185 

classification models, we used state-of-the-art techniques to select relevant features. 186 

First, we performed feature selection by employing attribute evaluator named, 187 

‘SymmetricalUncertAttributeSetEval’ with search method of ‘FCBFSearch’ of 188 

WEKA. The FCBF (Fast Correlation-Based Feature) algorithm employs mainly 189 

correlation to identify important discriminating features in high-dimensional datasets 190 

in reduced feature space (Yu L, 2003). Secondly, we employed 191 

sklearn.feature_selection.F_ANOVA method of feature selection using Scikit-learn 192 

package (Pedregosa et al., 2011). This method selects the features by computing F-193 

statistics.  194 

Thirdly, for the model which performed best in comparison to other models, we applied 195 

two more feature selection methods. One is wrapper approach for feature selection and 196 

other is SVC with L1 penalty (Baraniuk, 2007). In wrapper based approach, human 197 

opinion dynamics optimizer (Bhondekar et al., 2011;Kaur et al., 2012;Kaur et al., 198 
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2013;Matson et al., 2017) has been used as a search algorithm to search through the 199 

space of possible feature subsets with the objective of maximizing MCC on the training 200 

set. This is an iterative algorithm in which each candidate solution represents a feature 201 

subset. The solution is encoded using 100-bit binary vector where 1 and 0 indicate the 202 

presence and absence of a feature in a subset, respectively. The quality of features 203 

selected is evaluated using SVM and 10-fold cross validation. The details of algorithm 204 

can be found in (Bhondekar et al., 2011;Kaur et al., 2012). The algorithm has been 205 

implemented in MATLAB® using LIBSVM and CODO (an open source library hosted 206 

on https://github.com/rishemjit/CODO). 207 

Implementation of machine learning techniques 208 

We have developed machine learning based models using two software; Scikit-learn 209 

package and WEKA (Frank et al., 2004). We employed SVM using Scikit-learn and used 210 

RBF kernel of SVM at different parameters; g ∈ [10-3 - 10], c ∈ [1-10] using grid search 211 

for optimizing the SVM performance. In addition, random forests, SMO, Naïve Bayes 212 

and J48 were employed using WEKA software.  213 

Cross-validation technique 214 

The validation is an indispensable part to evaluate the performance of a prediction 215 

method. Ten-fold cross validation technique is exploited to calculate the performance 216 

of early vs late stage and cancer vs normal classification models; where, dataset is 217 

randomly divided into ten sets, from which nine sets are used as training sets and the 218 

left over tenth set as testing dataset. This process is repeated ten times in such a manner 219 

that each set is used once as testing dataset. 220 

Independent validation 221 
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The models developed using 80% data on the best parameters obtained using grid 222 

search were used to evaluate independent 20% dataset which was not used for feature 223 

selection and training.  224 

External validation 225 

Further to validate the models on the external validation dataset, first the TCGA data 226 

was log2 normalized. Then, the GSE48953 expression data was quantile normalized 227 

with reference to TCGA training dataset (target set) using FSQN package (Franks et 228 

al., 2018). 229 

Performance measures 230 

In present study, performance of different models was measured by employing 231 

threshold-dependent and threshold-independent parameters. In case of threshold-232 

dependent parameters, sensitivity (Sen), specificity (Spc), overall accuracy (Acc (%)) 233 

and Matthews correlation coefficient (MCC) was calculated by using equations (3), (4), 234 

(5), and (6) respectively: 235 

 236 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100 (3) 237 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝𝑐) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
∗ 100 (4) 238 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
∗ 100 (5) 239 

𝑀𝐶𝐶 =
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

√𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (6) 240 

 241 

where FP, FN, TP and TN are false positive, false negative predictions, true positive and 242 

true negative, respectively. 243 
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We also calculated a threshold-independent parameter called AUROC, which is 244 

computed from receiver operating characteristic (ROC) plot in this study. The ROC curve 245 

is produced by plotting true positive rate against the false positive rate at different 246 

thresholds. Lastly, we calculated the area under ROC curve to compute a single parameter 247 

from this curve called AUROC in the current study. We used this AUROC value for 248 

optimizing and measuring the performance of our models.  249 

In addition, to ascertain the reliability of prediction, we calculated PPV (Positive 250 

Predictive Value) and NPV (Negative Predictive Value) at various thresholds using 251 

probability score obtained by employing SVM. 252 

 253 

Multiclass classification  254 

Multiclass classification is implemented using WEKA algorithm using 255 

WEKA.classifiers.meta.MultiClassClassifier with random forest as classifier. This 256 

method is capable for handling multi-class datasets with 2-class classifiers. This classifier 257 

also applies error adjusting output codes for improved accuracy.  258 

Functional Enrichment of genes 259 

Enrichment of genes was done using Enrichr tool (Chen et al., 2013;Kuleshov et al., 260 

2016). Only those terms were selected for which adjusted p-value is less than 0.05. 261 

Enrichr applies fisher’s exact test along with the adjustment using Bonferroni correction 262 

to give adjusted p-values.  263 

Results 264 

This work has been executed on RNASeq data derived transcript expression from 265 

TCGA which consists of 500 PTC and 58 normal tissue samples. Further 500 PTC 266 

samples are labelled as stage 1, stage 2, stage 3 and stage 4 samples using clinical 267 

information. The stage 1 (281 samples) and stage 2 (52) samples are combined to 268 
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represent early stage samples and stage 3 (112 samples) and stage 4 (55 samples) 269 

samples are pooled to signify late stage samples. The transcript expression is provided 270 

in the form of FPKM scores for 60,483 transcripts for all the 500 patients. These 271 

transcripts belong to various categories such as protein coding transcripts, long non-272 

coding RNAs, pseudogenes etc. The main objective of this study is to discriminate 273 

between early and late stage samples using genome expression data. The overall 274 

workflow used in this study is presented in Figure 1 and results are explained in 275 

following sections. 276 

 277 

Single RNA transcript based stage classification 278 

In order to identify classification potential of each RNA transcript, we developed stage 279 

classification method using the expression threshold of each RNA transcripts (See 280 

Methods). This is a simple threshold based method, where a stage is assigned to a 281 

sample if expression of a RNA transcript is more than a given value called threshold; 282 

in case the RNA transcript is over expressed in samples of that stage. In order to rank 283 

RNA transcripts, we computed the performance of single RNA transcript based models 284 

in term of AUROC score. There are 179 transcripts (THCA-EL-AUROC) which have 285 

AUROC score greater than equal to 0.60. The THCA-EL-AUROC panel contains key 286 

transcripts which can help to discriminate early stage samples from late stage samples 287 

and thus can be elucidated as potential biomarkers (Supplementary Figure S2). The 288 

DCN protein (overexpressed in late stage) coding transcript shows highest AUROC of 289 

0.66 with accuracy of 68.5%. It is a proteoglycan and its role is well established in 290 

discriminating benign and metastasis thyroid and other tumors (Arnaldi et al., 291 

2005;Salomaki et al., 2008). Out of 179 transcripts, 166 are protein coding and 6 are 292 
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lincRNA and other 7 belong to other classes of non-coding transcripts (Supplementary 293 

Table S2).  294 

The 166 protein coding transcripts are significantly represented in 9 oncogenic 295 

signatures from MSigDB Database (Liberzon et al., 2015) (Supplementary Table S3) 296 

which points out these genes have also been previously implicated in many cancers. 297 

The 166 protein coding transcripts are enriched in many pathways of KEGG database 298 

such as Focal adhesion pathway (5% genes, adjusted p-value= 4.0e-5), PI3K-Akt 299 

signaling pathway (3.5% genes, adjusted p-value=0.001), Proteoglycans in cancer (3% 300 

genes, adjusted p-value=0.007). Focal adhesion kinase has been already shown to be 301 

overexpressed in thyroid cancers (Kim et al., 2004). There is plethora of literature that 302 

shows, PI3K-Akt signaling pathway components are dysregulated in cancers (Fresno 303 

Vara et al., 2004;Liu et al., 2009;Matson et al., 2017) . In cancer, there is an extensive 304 

remodeling of tumor stroma which is related with noticeable variations 305 

in proteoglycans expression and structural variability. Proteoglycans mainly contribute 306 

to the formation of a matrix for tumor growth affecting tissue organization (Theocharis 307 

and Karamanos, 2017). The enriched terms of gene ontology for 166 protein coding 308 

transcripts are mainly related to matrix organization and collagen binding 309 

(Supplementary Figure S3). Six long non-coding RNAs are found whose AUROC score 310 

is greater than equal to 0.6. Thus, literature and enrichment analysis shows that these 311 

prioritized genes are involved in various cancer progression related processes and thus 312 

can be potential biomarkers of stage classification. 313 

Stage classification model using multiple RNA transcripts 314 

As shown in above section and in Supplementary Table S2, individual 179 RNA 315 

transcripts (THCA-EL-AUROC) have limited ability to classify early and late stage 316 

samples with AUROC more than 0.66. Therefore, to develop a model, that can classify 317 
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stage of samples with high accuracy, we used expression of multiple RNA transcripts. 318 

The models based on different machine learning techniques were developed for stage 319 

classification using THCA-EL-AUROC (179 RNA transcripts) as features. As shown 320 

in Supplementary Table S4, we achieved accuracy of 69.35% with AUROC of 0.72 on 321 

training data and accuracy of 67.65% on independent validation data with AUROC of 322 

0.70. The models developed using THCA-EL-AUROC only improved performance 323 

marginally from AUROC from 0.66 to 0.70. This means rank-based features are still 324 

not sufficient for developing prediction models. 325 

Protein coding transcripts 326 

As from the previous results, it is evident that protein coding transcripts were major 327 

type of transcripts in THCA-EL-AUROC signature, therefore in this analysis we 328 

selected 19,814 protein coding transcripts from 60,483 transcripts and applied different 329 

feature selection techniques on protein coding transcripts. The FCBF-WEKA (Fast 330 

correlation based feature selection method present in WEKA) (Eibe Frank, 2016) based 331 

and F_ANOVA (Pedregosa et al., 2011) based feature selection was used to develop 332 

models. The SVM model based on 37 features (selected by FCBF-WEKA) is top 333 

performer with accuracy of 75.38% and 0.79 AUROC on training data and 69.61% 334 

accuracy with AUROC of 0.66 on independent validation (THCA-EL-PC, Table 1) 335 

using 37 features obtained using SVM. There was marginal increase in the performance 336 

accuracy but the number of features was reduced to reasonable extent as compared to 337 

THCA-EL-AUROC. The performance using other algorithms like random forest, 338 

Naïve Bayes, SMO and J48 is also shown in Table 1.  339 

We performed interaction analysis in STRING database (Szklarczyk et al., 2015) 340 

(Supplementary Figure S4) with THCA-EL-PC transcripts. On adding not more than 341 

10 indirect nodes, we observed three important clusters enriched in different pathways. 342 
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HIST1H2BJ, the transcript present in our signature forms a cluster and this cluster is 343 

enriched in nucleosome cellular component. This cluster has also shown to be related 344 

with progression of prostate cancer (Xu et al., 2017) in literature. Another cluster of 345 

three genes is enriched in dihydrolipoyl dehydrogenase complex FDR <0.01), out 346 

which DBT is present in our original signature. In addition, one more cluster of three 347 

genes is a part of checkpoint clamp complex out of which RAD1 is present in original 348 

signature and is involved in DNA damage response (Hwang et al., 2015). 349 

In addition, the top 100 features (Supplementary Table S5) were selected using F-350 

ANOVA feature selection method. The accuracy of 71.11% with AUROC of 0.78 is 351 

obtained on training data and 69.61% accuracy is obtained using SVM on independent 352 

validation data with AUROC of 0.75 (THCA-EL-F-PC, Supplementary Table S6).  353 

Cancer Hallmark Based Transcripts 354 

Hanahan and Weinberg uncovered the importance of eight biological processes that 355 

play vital role in tumor growth and metastatic propagation and called them as cancer 356 

hallmark processes (Hanahan and Weinberg, 2011). Thus, genes involved in these 357 

processes could also act as key signature markers. Here we have made an effort to 358 

ascertain important transcripts from the subset of cancer hallmark genes. 359 

To develop prediction models based on the cancer hallmark genes, we segregated 4,814 360 

cancer hallmark specific genes from 60,483 transcripts and applied feature selection 361 

and machine learning algorithms on them. The 15 transcripts selected by FCBF-WEKA 362 

(THCA-EL-H) from cancer hallmark genes were used to develop models. The accuracy 363 

of 67.84% with AUROC of 0.71 is attained on training data, while the accuracy of 364 

68.63% with AUROC score of 0.73 is obtained on independent validation dataset 365 

(Supplementary Table S7). Out of 15 transcripts, two transcripts PROC and NLK 366 

(adjusted p-value =0.002) are involved in developmental pathway of Wnt signaling, are 367 
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shown to be dysregulated in cancer (Ishitani et al., 2003). Other two genes CYSLTR1 368 

and ADRB1 are enriched terms for GPCRs (adjusted p-value=0.04). CYSLTR1 has 369 

been shown to be upregulated in colon cancer patients and associated with poor 370 

prognosis (Savari et al., 2013). Similar performance is obtained on 50 genes selected 371 

using F-ANOVA method (THCA-EL-FH, Supplementary Table S8).  372 

Protein coding and noncoding transcripts 373 

To ascertain the importance of other non-coding transcripts along with protein coding 374 

transcripts, all the 60,483 transcripts were used to select features and develop model on 375 

selected features. These 78 transcripts (THCA-EL-All-WEKA) were selected using 376 

FCBF-WEKA based feature selection algorithm. The best performance on THCA-EL-377 

All-WEKA panel is obtained using SVM with 78.89% accuracy with 0.86 AUROC on 378 

training data and 74.51% accuracy and 0.73 AUROC on independent validation dataset 379 

(Supplementary Table S9). Out of 78 selected features, 28 are protein coding 380 

transcripts, 12 are long noncoding RNA, 12 are antisense transcripts, 11 are processed 381 

pseudogenes and other are different non-coding RNAs (Supplementary Table S10).  382 

The feature selection through F_ANOVA based method with top 100 features 383 

(Supplementary Table S11) attained accuracy of 71.86% with AUROC score of 0.72 384 

on training data and accuracy of independent validation data of 61.76% with AUROC 385 

score of 0.68 (THCA-EL-All-F, Supplementary Table S12).  386 

Additionally, the top 100 features selected using F_ANOVA were further subjected to 387 

the second stage of feature selection. In this stage, a wrapper based approach combining 388 

human opinion dynamics optimizer and SVM has been employed (see Methods for 389 

details). The number of features were reduced to 27 (Supplementary Table S13, THCA-390 

EL-CODO) and achieved accuracy of 72.25% and AUROC of 0.72 on training set and 391 
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accuracy of 72% and AUROC of 0.73 on independent validation set (Supplementary 392 

Table S14).  393 

As the above three feature selection methods and prediction models gave maximum 394 

performance using both protein coding and non-coding transcripts, as compared to 395 

protein coding and cancer hallmark protein coding transcripts, we employed another 396 

feature selection method which selected features using SVC with L1 penalty (see 397 

Methods) which resulted in 36 transcripts. This method gave almost similar accuracy 398 

but increased the AUROC from 0.73 to 0.75 (THCA-EL-SVC-L1, Table 2) on 399 

independent validation data. This model performed best out of all the models developed 400 

to discriminate early and late stage samples in terms of number of features and AUROC 401 

on independent validation dataset. 402 

 Further, to ascertain its capabilities, we calculated PPV and NPV on various thresholds 403 

of SVM probability score (Table 3). On training data, at the SVM score, greater than 404 

0.9, 161 early stage samples are correctly predicted out of total 170 samples predicted 405 

as early stage samples (PPV=94.71%). In case of late stage samples, 60 out of 64 late 406 

stage predicted samples are correct (NPV=93.75%). In case of independent validation 407 

data, the PPV is 85.71% and the NPV is 66.67% (Table 3). This shows that at SVM 408 

score of 0.9, there is high probability of correct positive (early stage) and negative (late 409 

stage) prediction. At threshold of 0.7, at which we presented other performance 410 

measures in Table 2, the PPV for training data is 93.03% and NPV is 94.51% whereas 411 

in case of independent validation the PPV is 83.87% and NPV is 63.64% (Table 3). 412 

We also applied various other state-of-the-art machine learning methods on THCA-EL-413 

SVC-L1, but SVM performed best out of all (Supplementary Table S15). One of the 414 

advantage of this method is that it resulted a more balanced sensitivity and specificity 415 

along with higher AUROC on less number of features (36 features, THCA-EL-SVC-416 
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L1) as compared to 78 features (THCA-EL-All-WEKA) selected by WEKA. These 36 417 

transcripts consists of 17 protein coding genes, 6 long non-coding RNAs and rest other 418 

types of non-coding RNA transcripts (Supplementary Table S16). The TERT gene in 419 

this signature has been an important oncogene in case of PTC (Liu and Xing, 2016). 420 

Overexpression of TERT induced by MAP pathway has shown to aggravate tumor 421 

development (Liu et al., 2018).  422 

This model is so far the paramount model in our analysis for binary classification for 423 

early and late stage samples. This also points out that both protein coding and non-424 

coding transcripts play an important role in tumor development. 425 

In order to validate these feature on external dataset, we used RNA-Seq data, 426 

GSE48953 from GEO database of 20 patients. This dataset contained only 18 features 427 

out of 36 features from signature. So, we developed model on quantile normalized 18 428 

features and tested on external validation dataset after applying quantile normalization 429 

to it in reference to training data. This model predicted 70.6% (12 samples out of 17 430 

samples) early samples and 100% (3 samples) late samples correctly. This further 431 

strengthens and validate our signature on dataset addition to TCGA.  432 

Multiclass Classification 433 

One of the limitation of binary classification is that it would force even normal samples 434 

into either early or late stage samples. Therefore we implemented multiclass 435 

classification by taking into account the normal samples available in TCGA for thyroid 436 

cancer. We used FCBF-WEKA to select 211 transcripts (THCA-NEL-M, 437 

Supplementary Table S17) from 60,483 transcripts and tried to classify normal, early 438 

and late stage samples. This model is able to classify 77.02% samples correctly with 439 

weighted AUROC of 0.84 in training data and achieved 75.43% accuracy in 440 

independent validation data with AUROC of 0.80.  441 
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At 0.6 threshold, where coverage is maximum, 44 normal samples out of 45 predicted 442 

normal samples are correct. At same threshold, 227 early stage samples are correctly 443 

predicted out of 285 total predicted early stage predicted samples. At the same 444 

threshold, all the 17 late stage predicted samples are correct (Table 4).  445 

An interesting observation was seen when these 211 transcripts were analyzed in 446 

STRING. As we added 5 indirect iterations to the network, many of the protein coding 447 

transcripts in our signature were interacting with PCNA (Supplementary Figure S5). 448 

PCNA has been associated with fatal outcomes (Basolo et al., 1993). The genes in our 449 

signature directly interacting with PCNA points out to their importance in acting as 450 

stage specific biomarkers. 451 

Correlation Disturbance in Early and late stages of cancer 452 

To further elucidate the expression of various transcripts in early versus late stage, the 453 

Pearson correlation coefficient of each transcript was calculated with other 60,483 454 

transcripts in early and late samples separately. The correlations were compared and 455 

only significant correlations were taken into consideration for further analysis. The 456 

pairs which had statistical significant correlation difference of 0.70 (adjusted p-value < 457 

0.05) (Supplementary Table S18) were segregated for subsequent analysis based on the 458 

assumption that this large change or disturbance in correlation is due to diseased 459 

condition. These were the gene pairs whose correlation has been disturbed drastically 460 

in early stage as compared to late stage and vice versa. From this analysis, we obtained 461 

two types of transcripts i.e. one which had low correlation in early stage patients but 462 

high correlation in late stage patients (L_pairs) and others had high correlation in early 463 

stage patients and low in late stage patients (E_pairs).  464 

Furthermore, second filter of correlation is also applied on E_pairs and L_pairs. Here, 465 

only those E_pairs are taken for further analysis which have correlation value greater 466 
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than 0.6. There were total 453 pairs which had correlation of 0.60 or higher in early 467 

samples and their correlation difference between early and late samples is at least 0.7. 468 

Further, gene enrichment analysis indicates that these transcripts are mostly enriched 469 

in neuroactive ligand receptor interaction (adjusted p-value=0.01) and folate synthesis 470 

pathway (adjusted p-value=0.01).  471 

In addition, there are 778 L_pairs which had correlation greater than 0.60 in late stage 472 

and had a shift of correlation at least 0.70 in comparison to early stage. Surprisingly the 473 

transcripts present in L_pairs were also enriched in neuroactive ligand receptor 474 

interaction (adjusted p-value=0.00002) like E_pairs. Moreover, these genes were also 475 

enriched in cellular components like acetylcholine-gated channel complex (adjusted p-476 

value=0.002), ionotropic glutamate receptor complex and G-protein coupled receptor 477 

complex. Genome-wide association study has revealed that nicotine acetylcholine 478 

receptor (nAChR) cluster was related with lung cancer risk (Niu and Lu, 2014). 479 

Glutamate receptors were found to be differentially expressed in case of many cancers 480 

like brain tumors (de Groot et al., 2008) and pancreatic cancer (Herner et al., 2011). 481 

Subsequently, the genes of both the categories were combined and network analysis 482 

was performed using Cytoscape (Shannon et al., 2003) to understand and elucidate 483 

important genes by converting these gene pairs as network. The nodes are the 484 

transcripts and their correlation in early stage is taken as edges. As the network is quite 485 

complex and has many unconnected components, thus we created subnetworks for 486 

better understanding of this network. Accordingly, we analyzed the top subnetwork 487 

with 261 nodes of this network on the basis of two main important properties i.e. degree 488 

and Betweenness centrality. The Betweenness centrality measures the extent to which 489 

a vertex lies on paths between other vertices. Vertices with high betweenness may have 490 

extensive effect within a network as such vertices control information passing between 491 
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others. Their disruption can result in disruption of communication among the network 492 

(Pavlopoulos et al., 2011).  493 

In the most populated subnetwork of 261 transcripts, the top five genes having high 494 

degree are PRKCG, MNX1, PRSS33, PLK5 and TRH (Figure 2). The importance of 495 

these genes was also indicated by the results that shown that these were the genes which 496 

have disturbed correlation with maximum number of other genes. The protein kinase C 497 

(PKC), a receptor for the tumor-promoting phorbol esters has been hugely studied in 498 

the perspective of cancer (Antal et al., 2015). The PRKCG kinase has been described 499 

to be involved in cancer cell proliferation and invasion (Korc, 2010). It has also been 500 

shown that PRKCG gene involved in tumorogenesis in many cancers (Mazzoni et al., 501 

2003;Parsons and Adams, 2008). The role of PGR has been shown to have role in 502 

development of breast cancer (Mohammed et al., 2015). MNX1 as a novel oncogene 503 

has shown to be upregulated to a relatively greater degree in prostate cancer (Zhang et 504 

al., 2016), acute myeloid leukemia (von Bergh et al., 2006) and hepatocellular 505 

carcinoma (Wilkens et al., 2011). This gene also has high Betweenness centrality which 506 

points out to be important component of this network. The other genes with high 507 

Betweenness centrality are FAM135B and FOXN4. Latter is a member of 508 

transcriptional regulators and has been shown to regulate various important processes 509 

and has already been shown to promote tumorigenesis (Myatt and Lam, 2007). 510 

FAM135B has been implicated in promoting malignancy of ESCC (Eoesophageal 511 

squamous cell carcinoma) cells (Song et al., 2014). Thus, this analysis highlights some 512 

important genes which are not reflected in expression analysis. 513 

Discrimination of cancer vs normal samples 514 

Single gene based models 515 
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After identification of genes/RNA transcripts that can classify early and late stage of 516 

PTC, our next goal is identify important RNA transcripts that can distinguish PTC 517 

samples from normal tissue samples. Hence, threshold based analysis is done to 518 

ascertain features which can discriminate cancer samples from normal. Out of 60,483 519 

features, those features were removed which have variance of less than 0.02, thus 520 

number of transcripts reduced to 24,334. Among 24,334 transcripts, there are 8,180 521 

genes which have AUROC of 0.6 or greater. To understand most important genes, we 522 

selected only those transcripts which have AUROC of 0.85 or greater (426 transcripts, 523 

Supplementary Table S19). The overlapping sense transcript RP11-363E7.4 and 524 

protein coding transcript FAM84A shows AUROC of differentiation of 0.96 and 0.95 525 

respectively for classifying cancer samples as compared to normal samples. For 386 526 

protein coding transcripts out of 426 transcripts, pathway, Gene Ontology analysis 527 

summary is shown in Supplementary Figure S6. These 386 transcripts contain 11 genes 528 

which are involved in axon guidance pathway from KEGG. These genes have been 529 

shown to play important role in tumorigenesis (Chedotal, 2007). Enrichment analysis 530 

shows that eight genes from 386 signatures have been found in lung-cancer specific 86 531 

genes defined in KEGG. The genes are enriched in biological processes which are 532 

regulating expression of non-coding RNAs. The enriched cellular components terms 533 

are mostly related to interleukin receptor complexes, T-cell receptor complexes and 534 

plasma membrane components. Serum IL-2 has been shown to discriminate patients 535 

with active thyroid cancer from the healthy with a sensitivity of 98% and specificity of 536 

58%, (adjusted p-value = 0.0007) (Martins et al., 2018). Other than protein coding 537 

genes there are 17 long noncoding RNAs which have AUROC greater than 0.85. 538 

Among 17 lincRNAs, PTCSC3, has been shown to be highly thyroid-specific and is 539 

downregulated in thyroid tumor tissues and thyroid cell lines (Fan et al., 2013). 540 
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LINC00936 and RP11-774O3.3 have been shown to be downregulate in lung cancer 541 

(Yu et al., 2015). LINC00205 has been shown to be associated with reoccurrence of 542 

hepatocellular carcinoma (Cui et al., 2017). It points out the literature validation of the 543 

important signatures found out during this analysis.  544 

Protein coding RNA transcript based signatures 545 

Our next goal is to develop prediction model based on the least number of protein 546 

coding RNA features to classify cancer and normal samples. We selected top five 547 

features RELN, RASSF9, PLA2R1, MMRN1 and RPS6KA5 using F-ANOVA 548 

(THCA-CN-F). We have developed prediction models for 5 transcripts set using 549 

various machine-learning algorithms and they performed reasonably well with SVM 550 

with accuracy 98.21%, MCC 0.90 and AUROC 0.97 on training dataset and accuracy 551 

97.32%, MCC 0.88 and AUROC 0.99 on independent validation dataset (Table 5).  552 

Towards their biological significance, gene enrichment analysis revealed that RELN 553 

and RPS6KA5 have been associated with activation of cyclic AMP (cAMP) response 554 

element binding protein (CREB) transcription factor (adjusted p-value < 0.01), which 555 

is responsible for tumor initiation, progression and metastasis (Cui et al., 2017). RELN 556 

is an extracellular glycoprotein that plays a vital role in neuronal migration and has 557 

been shown to down regulated in many cancers (Dohi et al., 2010;Okamura et al., 558 

2011). We also selected features using WEKA and achieved similar performance as of 559 

5 features based models (Data not shown). 560 

Web Server Implementation 561 

We established a web server, CancerTSP (Thyroid cancer stage prediction), that 562 

implements models established in the present study for investigation and estimation of 563 

cancer stage from the transcripts’ expression data. CancerTSP consists of three key 564 

modules; first for prediction whether sample is cancerous or normal, second is for 565 
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predicting whether it is in early or late stage cancer, and third is for the analysis of 566 

transcripts’ expression data. 567 

Prediction module allows the users to predict whether the sample is cancerous or not 568 

and also predicts the stage of the cancer using FPKM values. The user needs to provide 569 

transcript expression (FPKM values) of potential biomarker genes for every patient. 570 

The number of patients corresponds to the number of columns in a file. The output 571 

includes a list for patient and corresponding predicting stage of cancer (early or late 572 

stage) along with the prediction score (Probability value). The user can use THCA-CN-573 

F for predicting cancer vs normal, THCA-NEL-M for normal vs early vs late, and 574 

THCA-All-SVC-L1, THCA-EL-All-WEKA and THCA-EL-PC for predicting early vs 575 

late stage. 576 

Another module consists of analysis module which is helpful in evaluating the role of 577 

each transcript in discrimination of early stage from the late stage. This module gives 578 

p-value (calculated using Wilcoxon rank test) for each transcript that signifies whether 579 

the transcript’s expression varies in the early and late stage significantly. It also gives 580 

expression threshold and classifying AUROC of each transcript along with average 581 

expression of that gene in the early and late stage of cancer. This web server is available 582 

from URL “http://webs.iiitd.edu.in/raghava/cancertsp/” for public use. 583 

Discussion and conclusion 584 

The current study is an attempt to explore the reliable expression-based markers capable 585 

of segregating early stage patients from late stage patients. The FNA allows the 586 

diagnosis of nature of thyroid nodules in the majority of cases. However, despite the 587 

benefits of FNA for diagnosing papillary, medullary, and anaplastic thyroid cancer, it 588 

is not helpful in determining whether the thyroid tumors are benign or malignant. In 589 

addition, some FNA results suggest, but do not definitively diagnose, papillary thyroid 590 
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cancer (Grogan et al., 2010). With the advent of genomics technology, publicly 591 

available cancer patient’s expression data from resources like TCGA has expedited the 592 

search for expression-based molecular markers, capable of reliable diagnosis in clinical 593 

settings.  594 

 In this work, we made an attempt to understand how well (prediction power in terms 595 

of AUROC) the gene expression predicts the stage of the THCA tumor samples. First, 596 

we ranked all the transcripts on the basis of AUROC, calculated based on simple 597 

expression based threshold. The expression of single gene DCN, at the threshold of 598 

3.01 (log2 FPKM) showed maximum AUROC of 0.66 with mean log2 FPKM of 2.18 599 

in early stage patients and log2 FPKM of 3.03 in late stage patients. This indicates that 600 

generally the expression of DCN is less than log2 FPKM of 3.01 in early stage patient. 601 

The DCN gene is member of the extracellular small leucine-rich proteoglycan family 602 

present in connective tissues. Arnalde et al. showed that DCN can be potential 603 

diagnostic marker and therapeutic target for PTC (Arnaldi et al., 2005). It also has been 604 

shown that increased expression of DCN leads to decreased adhesion and increased 605 

migration of glioma cells by downregulation of TGF-β signaling (Yao et al., 2016).  606 

Next, various combinations are tested to elucidate potential biomarkers segregating 607 

early and late stage. From 60,483 transcripts we explored various feature spaces like 608 

protein coding transcripts, cancer hallmark transcripts and all types of transcripts 609 

(protein coding and non-coding transcripts). The SVM model based on THCA-EL-All-610 

WEKA (78 features), selected using WEKA (from coding and non-coding transcripts) 611 

resulted in 74.51% accuracy and 0.73 AUROC on validation data. The various types of 612 

features in this signature reveal the role of various non-coding transcripts along with 613 

protein coding transcripts in progression of cancer. Out of 28 protein coding, five genes; 614 

TERT (Liu and Xing, 2016), FLT4 (Tiedje et al., 2016), DUSP6 (Buffet et al., 2017), 615 
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USP10 (Cui et al., 2014) and POMC (Sheikh-Ali et al., 2007) have already been 616 

implicated in thyroid cancer. miR-3196 has also been found to downregulated in PTC 617 

non-metastasized patients (Qiu et al., 2015). This shows that many components out of 618 

78 signatures have already been implicated in PTC and other cancers. These genes can 619 

be further investigated to reveal their role as biomarkers for early stage PTC. Another 620 

model selected using SVC-L1 feature selection resulted in nearly the half the features 621 

as compared to 78 features and comparable performance to discriminate early and late 622 

stage features. These 36 features lead to similar accuracy and high specificity of 70 % 623 

as compared 58.2% using 78 features. One of the most studied TERT gene is part of 624 

this signature whose promoter mutations are closely associated with aggressive 625 

clinicopathological characteristics and poor prognosis in PTC (Liu et al., 2016). We 626 

also validated this signature using external validation data where we were able to 627 

predict 70.6% early stage samples and 100% late stage samples using 18 available 628 

features from 36 features after applying cross platform normalization. Next, we also 629 

applied multiclass machine learning to distinguish normal, early and late samples and 630 

could obtain 75.43 % accuracy with 0.80 AUROC on validation data using THCA-631 

NEL-M signature of 211 transcripts. This classification pointed out that mostly late 632 

stage samples were misclassified as early stage samples where as normal and early stage 633 

sample were classified correctly.  634 

Subsequently, correlation based analysis is performed to identify genes that have 635 

disturbed correlation in early stage in comparison to the late stage of cancer. The genes 636 

which show disturbed correlation in one stage as compared to other stage mainly 637 

belongs to neuroactive ligand receptor interaction pathway.  638 

Next, transcripts having high prediction capability in terms of AUROC to segregate 639 

cancer and normal samples also have been derived. Interestingly overlapping sense 640 
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transcript RP11-363E7.4 showed highest AUROC of 0.96 in classifying cancer samples 641 

from normal samples. It has been already shown in literature that sense to antisense 642 

transcript ratio increases in Cancer (Maruyama et al., 2012). Other protein coding 643 

transcript FAM84A, shows 0.95 AUROC and has already been reported to play role in 644 

metastasis of liver and colon cancer (Kobayashi et al., 2006;Kamino et al., 2011). In 645 

this study, AUROC of most of the signatures to segregate cancer and normal samples 646 

have similar range as reported by earlier studies, which further validates our findings 647 

with literature (Cong et al., 2015). Further using five protein coding transcripts (THCA-648 

CL-PC), we were able to classify cancer samples from normal samples with 97.32% 649 

accuracy and 0.99 AUROC. 650 

Eventually, a web server CancerTSP is developed where the user can provide 651 

transcript’s expression (FPKM values) and can predict whether the cancer is in the early 652 

or late stage. This type of application where expression of transcripts is used to 653 

demarcate the early and late stage of cancer using machine learning can provide better 654 

understandings about the role of diverse transcripts responsible for development of 655 

cancer from early to late stage of cancer. Hence, this resource will help the scientific 656 

community in making preliminary hypotheses regarding cancer progression. 657 
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Tables 995 

Table 1: Performance measures of 37-protein coding mRNA feature set (THCA-EL-996 

PC) selected by FCBF-WEKA feature selection method on training and independent 997 

validation dataset by using various machine-learning algorithms. 998 

 
Training Independent validation 

Technique Sens 

(%) 

Spec 

(%) 

Acc 

(%) 

MCC AUROC Sens 

(%) 

Spec 

(%) 

Acc 

(%) 

MCC AUROC 

SVM 82.64 60.9 75.38 0.44 0.79 83.82 41.18 69.61 0.27 0.66 

Random 

Forest 71.70 70.68 71.36 0.40 0.77 69.12 55.88 64.71 0.24 0.63 

Naïve 

bayes 71.32 76.69 73.12 0.46 0.80 73.53 52.94 66.67 0.26 0.65 

SMO 92.08 48.87 77.64 0.47 0.70 88.24 29.41 68.63 0.22 0.59 

j48 67.92 64.66 66.83 0.31 0.66 75.00 47.06 65.69 0.22 0.64 

Sens=Sensitivity; Spec=Specificity; Acc=Accuracy; MCC=Matthews Correlation 999 

Coefficient; AUROC=Area under Receiver operating characteristic curve 1000 
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 1010 

 1011 

 1012 

Table 2: Performance measures of 36-full feature set (THA-EL-All-SVC) selected by 1013 

SVC-L1 on training and independent validation dataset by implementing various 1014 

machine-learning algorithms. 1015 

Technique Training Independent validation 

Sens 

(%) 

Spec 

(%) 

Acc 

(%) 

MCC AUROC Sens 

(%) 

Spec 

(%) 

Acc 

(%) 

MCC AUROC 

SVM 85.66 87.22 86.18 0.71 0.93 76.47 70.59 74.51 0.45 0.75 

Random 

Forest 

77.36 72.93 75.88 0.49 0.8 69.12 58.82 65.69 0.27 0.7 

Naïve 

bayes 

76.23 86.47 79.65 0.59 0.87 67.65 67.65 67.65 0.34 0.73 

SMO 95.09 77.44 89.2 0.75 0.86 86.76 52.94 75.49 0.42 0.7 

j48 67.17 60.9 65.08 0.27 0.66 75 50 66.67 0.25 0.62 

Sens=Sensitivity; Spec=Specificity; Acc=Accuracy; MCC=Matthews Correlation 1016 

Coefficient; AUROC=Area under Receiver operating characteristic curve 1017 
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Table 3: The performance of SVM based model at different threshold in term of 1025 

probability of correct prediction, developed using 36-full feature set (THA-EL-All-1026 

SVC) on training and independent validation dataset.  1027 

Threshold/ 

Cut-offs 

Prediction of Early Stage Prediction of Late Stage 

Total 

Predictions 

Correct 

Prediction 

PPV Total 

Predictions 

Correct 

Prediction 

NPV 

Performance of Training Dataset 

1.00  16  16 100.00  6  6 100.00 

0.95 136 131  96.32  42  40  95.24 

0.90 170 161  94.71  64  60  93.75 

0.85 199 188  94.47  71  67  94.37 

0.80 219 207  94.52  80  76  95.00 

0.75 233 221  94.85  86  81  94.19 

0.70 244 227  93.03  91  86  94.51 

0.65 254 235  92.52  98  90  91.84 

0.60 261 240  91.95 106  97  91.51 

Performance of Independent validation Dataset 

1.00  0  0  0.00  0  0  0.00 

0.95  28  25  89.29  9  7  77.78 

0.90  42  36  85.71  12  8  66.67 

0.85  47  39  82.98  15  9  60.00 

0.80  54  45  83.33  16  10  62.50 

0.75  58  48  82.76  19  12  63.16 

0.70  62  52  83.87  22  14  63.64 

0.65  65  53  81.54  22  14  63.64 

0.60  70  56  80.00  25  16  64.00 

PPV=positive predictive value; NPV=Negative predictive value  1028 

 1029 
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Table 4: Confusion matrix for multiclass classification at different thresholds, for each threshold we predict samples of each class, identify correctly 1030 

predicted in same class and wrongly predicted samples of other classes.  1031 

Threshold / 

Cut-offs 

Prediction for Normal samples Prediction for Early stage Prediction for Late stage  

Total 

Predicted 

Correctly 

Predicted 

Early Late Total 

Predicted 

Correctly 

Predicted 

Normal Late Total 

Predicted 

Correctly 

Predicted 

Normal Late 

Training dataset 

0.90  4  4  0  0  0  0  0  0  0  0  0.00  0 

0.85  9  9  0  0  3  3  0  0  0  0  0.00  0 

0.80  19  19  0  0  20  18  0  2  0  0  0.00  0 

0.75  29  29  0  0  78  65  0  13  1  1  0.00  0 

0.70  37  37  0  0  154  132  0  22  2  2  0.00  0 

0.65  42  42  0  0  242  198  1  43  7  7  0.00  0 

0.60  45  44  1  0  285  227  1  57  17  17  0.00  0 

Independent validation dataset 

0.90  0  0  0  0  0  0  0  0  0  0  0.00  0 

0.85  1  1  0  0  0  0  0  0  0  0  0.00  0 

0.80  5  5  0  0  4  3  0  1  0  0  0.00  0 

0.75  5  5  0  0  18  15  0  3  0  0  0.00  0 

0.70  6  6  0  0  43  35  1  7  0  0  0.00  0 

0.65  6  6  0  0  58  46  1  11  0  0  0.00  0 

0.60  9  9  0  0  74  58  1  15  4  3  0.00  1 
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Table 5: Performance measures of 5-protein coding transcripts (THCA-CN-F) feature 1037 
set selected by F-ANOVA feature selection method for discriminating cancer and 1038 
normal patients on training and independent validation dataset. 1039 
 1040 
 Training Independent validation 

Method Sen Spec 

(%) 

Acc 

(%) 

MCC AUROC Sen Spec 

(%) 

Acc 

(%) 

MCC AUROC 

SVM 99 91.3 98.21 0.9 0.97 97 100 97.32 0.88 0.99 

Random 

Forest 

98.01 93.62 97.56 0.88 0.98 95.05 91.67 94.69 0.77 0.93 

Naïve 

bayes 

98.01 95.74 97.78 0.89 0.98 93.07 100 93.81 0.77 0.97 

SMO 98.76 91.49 98 0.89 0.95 96.04 91.67 95.58 0.8 0.94 

j48 98.01 89.36 97.11 0.85 0.9 94.06 83.33 92.92 0.68 0.9 

Sens=Sensitivity; Spec=Specificity; Acc=Accuracy; MCC=Matthews Correlation 1041 

Coefficient; AUROC=Area under Receiver operating characteristic curve 1042 
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 1054 

 1055 

Figure Legends 1056 

 1057 

Figure1: Flowchart representing the overall flow of study, including the types of feature 1058 

spaces explored for development of machine learning models. 1059 
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 1060 

Figure 2: Sub Network of genes which have high shift in correlation (>0.7). Here circle 1061 

represents nodes and connecting edges represents expression correlation in early stage 1062 

patients. Dark green color indicates high degree and bigger size of node indicates high 1063 

betweenness centrality. The blue colored edge indicate correlation less than 0.6 in early 1064 

stage patients but correlation between these genes is at least shifted by 0.7 in late stage 1065 

and red colored edges indicate correlation greater than 0.6 in early stage and a shift of 1066 

at least 0.7 in late stage.  1067 
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