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Abstract 12 

In our daily lives, we are bombarded with a stream of rapidly changing visual input. Humans have the 13 

remarkable capacity to detect and identify objects in fast-changing scenes. Yet, when studying brain 14 

representations, stimuli are generally presented in isolation. Here, we studied the dynamics of human 15 

vision using a combination of fast stimulus presentation rates, electroencephalography and multivariate 16 

decoding analyses. Using a presentation rate of 5 images per second, we obtained the representational 17 

structure of a large number of stimuli, and showed the emerging abstract categorical organisation of 18 

this structure. Furthermore, we could separate the temporal dynamics of perceptual processing from 19 

higher-level target selection effects. In a second experiment, we used the same paradigm at 20Hz to 20 

show that shorter image presentation limits the categorical abstraction of object representations. Our 21 

results show that applying multivariate pattern analysis to every image in rapid serial visual processing 22 

streams has unprecedented potential for studying the temporal dynamics of the structure of 23 

representations in the human visual system.  24 
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Introduction 25 

The human brain can effortlessly extract abstract meaning, such as categorical object information, from 26 

a visual image, and can do so in less than 200 milliseconds (Carlson, Tovar, Alink, & Kriegeskorte, 2013; 27 

Cichy, Pantazis, & Oliva, 2014; Contini, Wardle, & Carlson, 2017; Keysers, Xiao, Földiák, & Perrett, 2001; 28 

Mack, Gauthier, Sadr, & Palmeri, 2008; Mack & Palmeri, 2011; Potter, 1975, 1976; Potter, Wyble, 29 

Hagmann, & McCourt, 2014; VanRullen & Thorpe, 2001). The temporal dynamics of the emerging 30 

representation of visual objects has been studied extensively using multivariate decoding methods and 31 

neuroimaging methods with high temporal resolution, such as EEG and MEG. In these experiments, 32 

stimuli are generally presented with a large inter-stimulus interval (ISI) to avoid contamination from 33 

temporally adjacent stimuli, typically around one second (Carlson et al., 2013; Cichy et al., 2014; 34 

Grootswagers, Ritchie, Wardle, Heathcote, & Carlson, 2017; Isik, Meyers, Leibo, & Poggio, 2014; 35 

Kaneshiro, Guimaraes, Kim, Norcia, & Suppes, 2015). This design allows the brain to process each 36 

stimulus and avoids temporally overlapping stimulus representations. While such designs have yielded 37 

important insights into the representational dynamics of object processing, in the natural world, we are 38 

bombarded with a constant stream of changing visual input. The standard paradigm, in which stimuli are 39 

presented in isolation with a large ISI, thus may not yield the most accurate description the temporal 40 

dynamics of emerging object representations in the real world. One major advantage of multivariate 41 

decoding methods (Grootswagers, Wardle, & Carlson, 2017; Haynes, 2015) is that they allow testing for 42 

statistical dependencies in data without a resting baseline. Exploring representational dynamics using 43 

decoding and fast visual presentation rates therefore offers unique potential for investigating visual 44 

processing.  45 

 46 

Here, we diverge from the traditional approach and propose a new method for studying the 47 

representational dynamics of human vision. It has been shown previously that stimuli presented at high 48 

presentation rates are all processed to some degree by the visual system and that their neural 49 
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representations can co-exist in the visual system (Marti & Dehaene, 2017; Mohsenzadeh, Qin, Cichy, & 50 

Pantazis, 2018; Rossion, Torfs, Jacques, & Liu-Shuang, 2015; Rousselet, Fabre-Thorpe, & Thorpe, 2002). 51 

Behavioural work has additionally shown that the human visual system can extract abstract information 52 

from a visual stimulus at very fast presentation rates (Crouzet, Kirchner, & Thorpe, 2010; Keysers et al., 53 

2001; Macé, Thorpe, & Fabre-Thorpe, 2005; Mack et al., 2008; Mack & Palmeri, 2015; Marti & Dehaene, 54 

2017; Potter, 1975, 1976; Potter et al., 2014; Rossion et al., 2015; Thorpe, Fize, & Marlot, 1996). In the 55 

current study, we draw on this human capacity and study visual object recognition using fast stimulus 56 

presentation rates and multivariate decoding analyses of EEG evoked responses (Grootswagers, Wardle, 57 

et al., 2017). We used a rapid serial visual presentation (RSVP) paradigm to study the representations of 58 

a large set of 200 visual objects presented at a speed of 5 images per second (5Hz; 200ms per image). 59 

The objects were carefully selected to allow categorisation at three different levels of abstraction. The 60 

high presentation rate enabled us to obtain 40 repetitions of 200 different stimuli in a short EEG session. 61 

The increased power elicited by the faster image presentation rates allowed us to use a much larger 62 

stimulus set than previous studies, and to analyse neural responses to all distractors, rather than a 63 

single target, in the stream. We additionally examined the effect of higher level cognitive processes on 64 

the emerging representations by having participants detect targets that were identifiable based on low-65 

level visual features or abstract categories in separate trials. In doing so, we could disentangle the 66 

temporal dynamics of visual processing and categorical abstraction of non-target stimuli from target 67 

selection processes. We successfully decoded different categorical contrasts for the 200 objects, 68 

suggesting that individual stimuli were processed up to abstract categorical representations. Strikingly, 69 

we found similar results in a follow-up experimental session, where we used a much higher presentation 70 

rate of 20 images per second (20Hz; 50ms per image). The unprecedented ability to test such large 71 

numbers of different stimuli in relatively short EEG scanning sessions shows great potential for studying 72 

the dynamics of the structure of information in the human visual system. 73 

 74 
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 75 

Figure 1. Stimuli and design. A) Experimental stimuli. There were 200 images of objects (obtained from 76 
www.pngimg.com), organised in categories at three different levels: Animacy (animate, inanimate), 77 
category (10 categories e.g., mammal, tool, flower) and object (50 categories e.g., cow, dog, giraffe). In 78 
the experiment, participants were asked to count the number of target objects from two categories: 79 
boats and geometric star shapes, each with eight images. B) Experimental design. Trials consisted of all 80 
200 images presented in random order, with 1-4 targets interspersed throughout. Images were 81 
presented in 5Hz sequences (200ms each) in session 1, and 20Hz sequences (50ms each) in session 2. 82 
C,D) Subject-averaged event-related potentials (ERPs) at channel Oz for target and non-target images in 83 
the 5Hz (C) and 20Hz (D) sequences (shaded areas show the standard-error across subjects). 84 
 85 

 86 

 87 

 88 
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Methods 89 

All stimuli and data can be found at https://doi.org/10.17605/OSF.IO/A7KNV. 90 

Stimuli 91 

We collected a stimulus set of 200 visual objects from different categories. Stimuli were obtained from 92 

the free image hosting website www.pngimg.com. The categories were manually selected, guided by 93 

categorical hierarchies described in the literature (Caramazza & Mahon, 2003; Caramazza & Shelton, 94 

1998; Carlson et al., 2013; Connolly et al., 2012; Grill-Spector & Weiner, 2014; Kiani, Esteky, Mirpour, & 95 

Tanaka, 2007; Kriegeskorte, Mur, Ruff, et al., 2008; Mahon & Caramazza, 2011; Peelen & Caramazza, 96 

2012; E. H. Rosch, 1973). There were two high level categories (animate, inanimate) consisting of 10 97 

categories (5 animate, and 5 inanimate categories). Each of these 10 categories (e.g., mammal, tool, 98 

flower) was further separated into 5 object categories (e.g., cow, dog, giraffe, etc.), which consisted of 4 99 

images each (Figure 1a). During the experiment, participants were instructed to count target stimuli 100 

(Figure 1b). To examine how attending to different features of the stimuli affected the emerging 101 

representations, we used two different sets of target stimuli. The target stimuli were either boats, or 102 

geometric star shapes, and there were eight exemplars of each target type (Figure 1 – inset). We 103 

hypothesized that detecting the star shapes among the other objects was possible using low level visual 104 

cues, while for recognising boat targets, it was necessary to process stimuli to a more abstract 105 

categorical level. 106 

 107 

Participants and experimental procedure 108 

Participants were 16 adults recruited from the University of Sydney (5 females; age range 18-38 years) 109 

in return for payment or course credit. The study was approved by the University of Sydney ethics 110 

committee and informed consent was obtained from all participants. Participants viewed 40 sequences 111 

of objects, each lasting between 40.2 - 40.8 seconds (depending on the number of targets in the 112 

sequence). In each sequence, the 200 stimuli were presented in random order, for a duration of 200ms 113 
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each with no gap between successive images (5Hz). In addition to the 200 stimuli, target stimuli were 114 

inserted throughout the sequence (Figure 1b). In half of the sequences, the target stimuli were boats, 115 

and in the other sequences, the target stimuli were geometric stars (Figure 1). A random number 116 

between 1 and 4 targets were presented in the sequence, with the condition that targets could not 117 

appear within the first 10 or last 10 images, and ensuring there were at least 12 non-target stimuli 118 

between subsequent targets. At the start of each sequence, participants were prompted to count the 119 

number of targets in the sequence (“Count the boats in the trial” or “Count the stars in the trial” in 120 

random order) and the 8 potential targets were shown. They were instructed to respond at the end of 121 

the sequence using a 4-way button box. After each sequence, participants received feedback. They 122 

started the next sequence with a button press. This session lasted approximately 40 minutes in total. 123 

After a short break, the second experimental session started, and participants performed another 40 124 

sequences using the same procedure as session one, except that the images were presented for only 125 

50ms (a presentation speed of 20Hz). The second session lasted about 10 minutes. 126 

 127 

EEG recordings and preprocessing 128 

Continuous EEG data were recorded using a BrainVision ActiChamp system, digitized at a 1000-Hz 129 

sample rate. The 64 electrodes were arranged according to the international standard 10–10 system for 130 

electrode placement (Oostenveld & Praamstra, 2001). During recording, all scalp electrodes were 131 

referenced to Cz. Preprocessing was performed offline using EEGlab (Delorme & Makeig, 2004). Data 132 

were filtered using a Hamming windowed FIR filter with 0.1 Hz highpass and 100Hz lowpass filters, and 133 

were downsampled to 250Hz. No further preprocessing steps were applied, and the channel voltages at 134 

each time point were used for the remainder of the analysis. Epochs were created for each stimulus 135 

presentation (except targets) ranging from [-100 to 1000ms] relative to stimulus onset. We initially had 136 

used the same range for target-distractor decoding but found that this window did not capture the full 137 

process. Therefore, for comparing targets versus distractors, we created larger epochs ranging from [-138 
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100 to 2000ms] relative to the onset of a target. For each target t, we selected at random another 139 

distractor in the same sequence and created a matching epoch relative to the onset of that distractor. 140 

Choosing distractors in this way meant that the number of targets and distractors were balanced and 141 

matched per sequence (and chance level accuracy is 50%) and that the neural representations of targets 142 

and distractors were unlikely to overlap in a consistent manner. Event-related potentials (Figure 1C&D) 143 

for both the targets and non-targets exhibited clear signal at the presentation frequencies (see Figure S1 144 

for the associated scalp maps and amplitude spectra). 145 

 146 

Decoding analysis 147 

We applied an MVPA decoding pipeline (Grootswagers, Wardle, et al., 2017; Oosterhof, Connolly, & 148 

Haxby, 2016) to the EEG channel voltages, consisting of a regularised linear discriminant analysis (LDA) 149 

classifier applied in an exemplar-by-sequence-cross-validation approach. Decoding was performed 150 

within subject, and the results were analysed at the group level. This pipeline was applied to each 151 

stimulus presentation epoch in the sequence to investigate object representations in fast sequences. To 152 

investigate the temporal dynamics of target selection, we compared neural responses to targets with 153 

those to non-target distractor stimuli. Classifiers were then trained to distinguish targets from non-154 

targets separately for the 5Hz and 20Hz sequences, and for boat and star target sequences.  155 

 156 

We investigated object representations for the 200 non-target images using multiple categorical 157 

distinctions. First, we decoded three contrasts that impose different amounts of categorical abstraction. 158 

At the highest level, we decoded animacy (i.e., animate versus inanimate objects). The next contrast was 159 

the category tier (10 classes, e.g., mammal, insect, furniture, tool, etc.) where we decoded all 45 160 

possible pairwise combinations. The lowest categorical level was the object level (50 classes, e.g., cow, 161 

butterfly, table, hammer, etc.). Here, we decoded all 1225 possible pairwise object combinations (i.e., 162 

cow versus butterfly, cow versus table, etc.). Finally, at the lowest level, we investigated image-level 163 
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representations by decoding all 19900 possible pairwise combinations of the 200 stimuli. We report the 164 

mean pairwise classification accuracies, so that chance-level accuracy for all comparisons is at 50%, 165 

which aids comparing accuracies across contrasts. 166 

 167 

To investigate similarities in underlying object representation signals between the 5Hz and 20Hz 168 

presentations, we used a temporal generalisation approach (Carlson, Hogendoorn, Kanai, Mesik, & 169 

Turret, 2011; King & Dehaene, 2014; Meyers, Freedman, Kreiman, Miller, & Poggio, 2008). To test 170 

generalisation between the conditions, we trained classifiers on all time points in the data from the 5Hz 171 

sequences and tested them on all time points in the data from the 20Hz sequences. We repeated this 172 

for the inverse (training on 20Hz and testing on 5Hz), and averaged the resulting time-generalisation 173 

matrices (Kaiser, Azzalini, & Peelen, 2016).  174 

 175 

All steps in the decoding analysis were implemented in CoSMoMVPA (Oosterhof et al., 2016). For the 176 

categorical contrasts that grouped more than one image, we used an image-by-sequence-cross-177 

validation scheme so that identical images were not part of both training and test set (Carlson et al., 178 

2013; Grootswagers, Wardle, et al., 2017). This was implemented by first splitting the data into four 179 

sets, where the first set consisted of the first images from each of the 50 object categories (i.e., cow-1, 180 

table-1 etc.), the second set of the second images (i.e., cow-2, table-2 etc.), etc. One of these sets was 181 

used as test data, and the other three as training data for the leave-one-sequence out cross-validation, 182 

where all data from one sequence was used as test data, and data from the remaining sequences as 183 

training data. For each decoding contrast, this resulted in 160 (4 images by 40 sequences) cross-184 

validation partitions. Where image-by-sequence cross-validation was not possible (i.e., image-level and 185 

target-distractor decoding), we used a leave-one-sequence-out cross-validation scheme, where all 186 

epochs from one sequence were used as test set, resulting in 40 cross-validation partitions. We used a 187 
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linear discriminant analysis (LDA) classifier (implemented in CoSMoMVPA) and report the mean cross-188 

validated decoding accuracy.  189 

 190 

Representational Similarity Analysis 191 

To study the emerging representational structure of our 200 stimuli, we analysed our data using the 192 

Representational Similarity Analysis (RSA) framework (Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, & 193 

Bandettini, 2008; Kriegeskorte, Mur, Ruff, et al., 2008), which allows comparing models of object 194 

representations. The decoding results at the image level were organised into a 200 by 200 neural 195 

representational dissimilarity matrix (RDM), which for each pair of images, contained the mean cross-196 

validated decoding accuracy (images that evoke more dissimilar neural responses are better decodable). 197 

One neural RDM was created for each subject, and each time point (group mean RDM at 100-400ms 198 

shown in Figure 2, top row). We compared the neural RDMs to six candidate models; first, we created 199 

one model for each of the three categorical levels, grouping images from the same category (Figure 2, 200 

second row). We also used three low-level image feature control models (Figure 2, third row), which 201 

were created by correlating the vectorized experimental images. The models consisted of an image 202 

silhouette similarity model, which is based on the binary alpha layer of the stimuli and is a good 203 

predictor of differences in brain responses (Carlson et al., 2011; Teichmann, Grootswagers, Carlson, & 204 

Rich, 2018; Wardle, Kriegeskorte, Grootswagers, Khaligh-Razavi, & Carlson, 2016)), a model based on 205 

the CIELAB-colour values of the stimuli, and a model based on the difference in luminance of the stimuli. 206 

Figure 2 shows the candidate models and the correlation distance between each of the candidate 207 

models (bottom row). The small correlations between the categorical models and the low-level feature 208 

models suggests that there was little overlap between the low-level features and categorical 209 

organisations in the stimulus set. To quantify the unique contributions of all models to the neural 210 

dissimilarities, we modelled the time-varying neural RDMs of each subject as a linear combination of the 211 

candidate models using a GLM (Oosterhof et al., 2016; Proklova, Kaiser, & Peelen, 2017); for each time 212 
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point, the lower triangles of the neural RDM and candidate models were vectorised, and regression 213 

coefficients were obtained for all candidate models. This resulted in one beta estimate for each model, 214 

subject, and time point. We then analysed at the group level the mean beta estimates across subjects. 215 

To visualise the dynamic representational structure, at each point in time, we created a two-216 

dimensional embedding of all 200 images. To compute the two-dimensional embedding, we applied t-217 

SNE (Maaten & Hinton, 2008) to the mean neural RDMs. This approach finds an embedding of the multi-218 

dimensional space in a two-dimensional representation so that the distances between points reflect 219 

their multidimensional pattern dissimilarities as best as possible. 220 
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 221 

Figure 2. Candidate models used in the RSA. Top row: time-averaged neural RDMs for the 5Hz and 20Hz 222 
conditions. Each point in the 200 by 200 matrix represents the dissimilarity (here: decoding accuracy) 223 
between a pair of images. Second row: categorical models predict that responses to stimuli from the 224 
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same category are more similar than responses to stimuli for different categories. Third row: image 225 
properties entered the regression as control models to quantify the contribution of low-level visual 226 
differences to the neural dissimilarities. Bottom row left: dissimilarities (1-correlation) between all 227 
candidate models. The order of the images in the 200 x 200 RDMs are the same as in Figure 1. Bottom 228 
row right: model dissimilarities projected in a 2-dimensional space using classical multi-dimensional 229 
scaling, which returns a configuration so that the distance between points approximates their 230 
dissimilarities. Annotated are the dissimilarities (1-correlation) between category-animacy and category-231 
object, and between the silhouette model and all three categorical models.  232 
 233 

Statistical inference 234 

In this study, we used Bayes factors (Dienes, 2011; Jeffreys, 1998; Rouder, Speckman, Sun, Morey, & 235 

Iverson, 2009; Wagenmakers, 2007) to determine the evidence for the null and alternative hypotheses. 236 

For the alternative hypothesis of above-chance decoding or correlation, a uniform prior was used 237 

ranging from the maximum value observed during the baseline (before stimulus onset) up to 1 (e.g., 238 

100% decoding). For testing a non-zero difference between decoding accuracies, a uniform prior was 239 

used ranging from the maximum absolute difference observed during the baseline up to 50% (0.5). We 240 

then calculated the Bayes factor (BF) which is the probability of the data under the alternative 241 

hypothesis relative to the null hypothesis. We thresholded BF>3 and BF>10 as substantial and strong 242 

evidence for the alternative hypothesis, and BF<1/3 and BF<1/10 for substantial/strong evidence in 243 

favour of the null hypothesis (Jeffreys, 1998; Wetzels et al., 2011). BF that lie between 1/3 and 3 244 

indicate insufficient evidence for either hypothesis. 245 

 246 

Results 247 

We examined the representational dynamics of 200 different visual objects (Figure 1A), presented in 248 

5Hz and 20Hz sequences (Figure 1B) using EEG. During the sequences, participants detected targets 249 

(boats or stars).  250 

 251 

The effect of target type and target selection 252 
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Participants were generally above chance (25%) at detecting targets (boats or stars) in the 5Hz and 20Hz 253 

sequences (Figure 3A-B). There was no difference in performance between the boat and star conditions 254 

(all BF < 1/3). On incorrect trials, responses often differed no more than one from the correct answer 255 

(Figure 3, right columns). This indicates that in general, participants missed at most one target when 256 

they responded incorrectly. 257 

 258 

Figure 3: Behavioural results of target detection performance. (A) 5Hz sequences. (B) 20Hz sequences. 259 
Left columns show the mean proportion of correct responses for each participant separately for boat 260 
target sequences and star target sequences. Right columns show the mean approximately-correct (i.e., 261 
response differed by at most 1 from the correct answer) accuracy for each participant. Bayes Factors 262 
(BF) comparing mean accuracies between the boat and star sequences are listed above the x-axis. 263 
 264 

 265 
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 266 

Figure 4. Decoding target versus distractor. For each target, a distractor was randomly selected from the 267 
same sequence, and classifiers were trained on target versus distractor. A-B) Plots show the mean leave-268 
one-sequence-out cross-validated accuracy for the 5Hz condition (A), and the 20Hz condition (B). 269 
Shaded areas show the standard error of the mean across participants. Results are shown separately for 270 
boat target sequences and star target sequences. Dots below plots indicate thresholded Bayes Factors 271 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 17, 2018. ; https://doi.org/10.1101/394148doi: bioRxiv preprint 

https://doi.org/10.1101/394148


 15 

(BF, see inset) for the boat (top row) and star (middle row) sequences compared to chance and for the 272 
difference between boat and star sequences (bottom row). Annotated below the x-axis are the time 273 
points where the BF first exceeded 3 (for at least 2 consecutive time points). C-D) temporal 274 
generalisation results. The left columns show classifier generalisation performance for the boat (C) and 275 
star (D) between the different presentation durations. The right columns show corresponding 276 
thresholded Bayes Factors (yellow indicating above chance, and blue indicating below chance decoding). 277 
Higher than chance generalisation (yellow) on the diagonal indicates similar temporal dynamics of 278 
processing in the 5Hz condition as the  20Hz condition.  279 
 280 

The temporal dynamics of target selection were revealed by decoding targets from non-targets. The 281 

time-varying mean target-distractor decoding accuracy was computed separately for boat sequences 282 

and star sequences (Figure 4). Target-distractor decoding performance peaked around 67% in the 5Hz 283 

condition (Figure 4A), and around 60% in the 20Hz condition (Figure 4B). For both presentation rates, 284 

peak decoding performance was around 500ms. In both conditions, decoding for star targets was above 285 

chance earlier than for boats, which suggests that stars targets were easier to distinguish overall. 286 

Decoding performance remained above chance for over 1000 ms in the 5Hz sequences, and for 287 

approximately 800 ms in the 20Hz sequences. 288 

 289 

The temporal generalisation approach revealed target selection was very similar between the 5Hz and 290 

20Hz sequences. For both boat and star target sequences, the onset of target decoding occurred around 291 

the same time, and cross-decoding was most evident along the diagonal, suggesting that target 292 

selection processes occurred at the same latencies regardless of the sequence speed and image 293 

duration (Figure 4c-d). 294 

 295 

Decoding categorical contrasts of 200 stimuli 296 

In the 5Hz condition, we observed above chance decoding for all categorical levels (Figure 5, blue lines), 297 

starting at 100ms after stimulus onset for the categorical levels, and earlier (80ms) at the image level. 298 

This difference may be caused by decodable low-level visual features at the image level, which are 299 
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controlled for by the exemplar-cross-validation approach at the categorical levels (Carlson et al., 2013; 300 

Grootswagers, Wardle, et al., 2017). These decoding onsets correspond well to the existing decoding 301 

literature, which has reported onsets for various categories between 80ms and 100ms (Carlson et al., 302 

2013; Cichy et al., 2014; Kaneshiro et al., 2015). For the animacy level, the results showed three distinct 303 

peaks in decoding performance (150, 200ms and 400ms). In contrast, peak decoding happened around 304 

200ms for category and object decoding and 130ms for image decoding. For all categorical levels, 305 

above-chance decoding was sustained until around 500ms. Note that at 500ms, there were already two 306 

new stimuli presented. 307 

 308 

In the 20Hz condition (Figure 5, green lines), we again observed above-chance decoding for all levels. 309 

Notably, the onset of decoding was around the same time point as in the 5Hz condition and subsequent 310 

decoding followed the same trajectory but diverged later in the time series (indicated by the bottom 311 

row of Bayes factors). The overall peak decoding performance was lower, and the peak decoding time 312 

points appeared earlier in the time series. Decoding for all comparisons except object decoding 313 

remained above chance until around 300ms, which included five subsequent stimulus presentations. 314 

There was no difference between distractor processing on boat target and star target trials (BF < 1/10) 315 

for all categorical contrasts. 316 

 317 

Temporal generalisation analyses were performed to compare categorical decoding between the 5Hz 318 

and 20Hz conditions. For all three categorical levels, we observed similar onsets between presentation 319 

durations, but longer subsequent processing for the 5Hz condition relative to the 20Hz condition (Figure 320 

6). Notably, for the animacy distinction there was no evidence of generalisation between the 5Hz 321 

sequence around 500-600ms and the 20Hz sequence at any time point, despite a difference between 322 

decoding accuracies during this time period (as was seen in Figure 5). This suggests that a high-level 323 

animacy-related process was present in the 5Hz condition but absent in the 20Hz condition. The 324 
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temporal generalisation analyses also showed consistent below chance generalisation between the 325 

early and late responses. This phenomenon is consistent with previous decoding studies on visual object 326 

categorisation (Carlson et al., 2013; Cichy et al., 2014), and has been suggested to be caused by the 327 

stimulus offset, or by an adaptation or inhibition signal (Carlson et al., 2011, 2013; Contini et al., 2017). 328 

 329 
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Figure 5. Mean decoding accuracy for 5Hz and 20Hz conditions. A) Decoding animacy (animate versus 331 
inanimate). B) Mean pairwise decoding for the 10 categories (e.g., mammal, tools). C) Mean pairwise 332 
decoding for 50 object categories (e.g., dog, giraffe). D) Mean pairwise decoding for all 200 images. 333 
Shaded areas depict standard error of the mean across subjects. Dots below plots indicate thresholded 334 
Bayes Factors (BF, see inset) for the 5Hz condition compared to chance (top rows), 20Hz condition 335 
compared to chance (middle rows) and for the difference between the 5Hz and 20Hz results (bottom 336 
rows). The time points where the BF first exceeded 3 are annotated below the x-axis. 337 
 338 

 339 

 340 
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Figure 6. Temporal generalisation results. A) Decoding animacy (animate versus inanimate; chance = 341 
50%). B) Decoding 10-way category (e.g., mammal, tools; chance = 10%). C) Decoding 50-way object 342 
categories (e.g., dog, giraffe; chance = 2%). The left columns show classifier generalisation performance 343 
for the three categorical levels between the different presentation durations. The right columns show 344 
corresponding thresholded Bayes Factors (Yellow indicating above chance, and blue indicating below 345 
chance decoding). Higher than chance generalisation (yellow) above the diagonal indicates slower 346 
processing in the 5Hz condition relative to the 20Hz condition. 347 
 348 

Representational dynamics of 200 stimuli 349 

Emerging representational structures of the 200 stimuli were studied in the Representational Similarity 350 

Analysis (RSA) framework (Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008; 351 

Kriegeskorte, Mur, Ruff, et al., 2008). A neural representational dissimilarity matrix (neural RDM) was 352 

created for each subject, and each time point containing the dissimilarities between all 200 stimuli. 353 

Neural RDMs were modelled as a linear combination of six candidate models; low-level image 354 

silhouette, colour and luminance models, and one model for each of the three categorical levels. We 355 

then analysed the mean beta estimates of the candidate models (Figure 7). For both presentation rates, 356 

the silhouette model captured the early response in the data, followed by the colour, object, and 357 

category models. These results quantify the contribution of low-level visual features to neural 358 

dissimilarities. While low-level features were represented early in the signal, the categorical models also 359 

explained unique variance in the data. In the 5Hz condition, the animacy model emerged last, while in 360 

the 20Hz sequences the animacy model did not explain variance in the neural RDM at any time point. To 361 

visualise and qualitatively explore the dynamic representational structure, we created RDMs and a two-362 

dimensional embedding of all 200 images from 5Hz and 20Hz sequences. Figure 8 shows these 363 

embeddings for 5Hz at two time points, 200 and 400ms, which are the time points where the category 364 

and animacy models were represented strongest in the signal (as observed in Figure 7). In these 365 

embeddings, the distance between images reflects their mean dissimilarity across subjects (Figure 8; see 366 

supplementary material for neural RDMs and two-dimensional embedding for 5Hz and 20Hz at all time 367 

points). 368 
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 369 

 370 

Figure 7. RSA model tests. A) 5Hz categorical models. B) 20Hz categorical models. C) 5Hz image feature 371 
control models. D) 20Hz image feature control models. The neural RDMs of each subject were modelled 372 
as linear combination of six candidate models: three categorical models and three image feature 373 
models. Lines show estimated betas for the models. Shaded areas reflect the standard error across 374 
subjects. Dots below plots indicate the thresholded Bayes Factors (BF, see inset) for each beta estimate. 375 
Annotated below the x-axis are the time points where the BF first exceeded 3 (for at least 2 consecutive 376 
time points). 377 
 378 
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 379 

Figure 8. Representational structure of images in 5Hz sequences at two time points. A) Neural 380 
dissimilarity matrix at 200ms. B) Neural RDM at 400ms. The RSA model testing (Figure 7) showed that 381 
the structure at 200ms best resembles the category model and structure at 400ms best resembles the 382 
animacy model. C) Embedding of stimuli in a two-dimensional space reflects their pairwise distances at 383 
200ms. D) Embedding at 400ms. Stimuli that are shown further apart in this representation evoked 384 
more dissimilar neural responses. In the bottom left corner of each plot, the same arrangement is 385 
shown, with images represented by dots coloured according to the 10 categories (see inset). 386 
  387 
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Discussion 388 

In the current study, we characterised the representational dynamics of a large number of images in fast 389 

presentation sequences. Previous work has used MEG and EEG decoding to investigate representations 390 

of much smaller image sets using slow image presentation paradigms (Carlson et al., 2013; Cichy et al., 391 

2014; Contini et al., 2017; Grootswagers, Ritchie, et al., 2017; Kaiser et al., 2016; Kaneshiro et al., 2015; 392 

Proklova et al., 2017; Ritchie, Tovar, & Carlson, 2015; Simanova, van Gerven, Oostenveld, & Hagoort, 393 

2010); here we extend this work by looking at the representations of 200 objects during RSVP using 394 

standard 64-channel EEG. For 5Hz and 20Hz sequences, all 200 images could be decoded at four 395 

different categorical levels. Furthermore, neural responses to targets were distinct from those to 396 

distractor stimuli. Above-chance decoding outlasted subsequent image presentations, supporting the 397 

idea that multiple object representations can co-exist in the visual system at different stages of 398 

processing (Marti & Dehaene, 2017). In keeping with the known hierarchical nature of the visual system, 399 

RSA model testing suggested neural responses relied on low-level visual features early in the time series, 400 

and subsequent processing was associated with increasing category abstraction (Carlson et al., 2013; 401 

Cichy et al., 2014). Overall, we show the unprecedented ability of the human brain to process images 402 

when pushing the limits of temporal perception. 403 

  404 

Target decoding results revealed that neural responses to distractors diverged from star target 405 

responses much earlier than boat targets. This supports our initial hypothesis that star targets would be 406 

distinct from other images based on low-level visual features, unlike boat targets. The behavioural 407 

results, however, revealed target detection did not differ across boat and star trials, indicating that 408 

there was no “pop-out” effect of stars. This is despite anecdotal reports that participants found the star 409 

targets easier. Target versus distractor decoding for boats and stars peaked at 500ms, supporting 410 

previous evidence that high level cognitive processes mediate temporal selection (Marti & Dehaene, 411 

2017; Sergent, Baillet, & Dehaene, 2005). These results suggest that distinguishable low-level features 412 
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do not help with target detection in RSVP sequences, at least in the current design with such high 413 

variation in distractor images. 414 

  415 

Target processing did not differ markedly across the different experimental durations. In both the 5Hz 416 

and 20Hz sequences, targets could be distinguished from distractors for a long period of time, but this 417 

was exaggerated for the 5Hz condition, where decoding was above chance for over 1000ms, compared 418 

to 800ms in the 20Hz condition. Decoding was also higher in the 5Hz condition relative to the 20Hz 419 

condition, but the dynamics of temporal selection processes were largely the same. The time of peak 420 

decoding (500ms) was the same for both conditions, and time generalisation analyses revealed neural 421 

processes occurred at the same latency in both conditions. This suggests that processes of target 422 

selection are largely the same regardless of image presentation duration and frequency. Notably, target 423 

processing was much more prolonged than categorical decoding for distractors, again indicative of 424 

higher level cognitive processes at play for target detection. Note that the current experimental design 425 

did not allow us to see which targets in the stream were missed, but effects are likely to be amplified for 426 

correctly detected targets. Indeed, Marti & Dehaene (2017) found that late responses were sustained 427 

for reported stimuli. Taken together, our results show that late target-related responses do not differ 428 

dramatically in faster sequences relative to slower sequences. 429 

  430 

Neural responses to the 200 non-task-relevant (distractor) objects are indicative of fairly automatic early 431 

visual processing and divergence at later processing stages according to image duration. For all 432 

contrasts, image presentation duration and cognitive task set did not influence the earliest processing 433 

stages. When looking at decoding for the durations separately, onsets seemed to be earlier for the 5Hz 434 

than 20Hz conditions, in accordance with recent work showing earlier onsets for longer image durations 435 

(Mohsenzadeh et al., 2018). It is important to note, however, that higher signal strengths can also lead 436 

to earlier decoding onsets (Grootswagers, Wardle, et al., 2017), thus differences between onsets must 437 
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be interpreted with caution in the context of larger peak decoding. Crucially, here Bayes factors 438 

revealed evidence for no difference in decoding at these early time points between the 5Hz and 20Hz 439 

image sequences (<150ms from image onset). Results from the temporal generalisation approach 440 

supported this view, by showing that initial processing stages occurred at the same time for the 5Hz and 441 

20Hz sequences, as seen by the above-chance decoding on the diagonal in Figure 5. Finally, for the three 442 

categorical levels (animacy, category and object), Bayesian analyses revealed distractor processing did 443 

not differ between boat and star trials. These results suggest that initial neural responses to all visual 444 

stimuli were similar regardless of their presentation duration. 445 

 446 

Previous work has shown that, using MEG, it is possible to use decoding to investigate target-related 447 

processes in RSVP streams (Marti & Dehaene, 2017; Mohsenzadeh et al., 2018a). For example, 448 

Mohsenzadeh et al. used 306-channel MEG to decode 12 target faces from 12 non-target objects in 449 

RSVP streams, analysing only the middle image in the stream to study feedforward versus feedback 450 

processes. As part of a study investigating temporal selection mechanisms, Marti & Dehaene showed 451 

that a classifier trained on 5 categories using a separate localiser could generalise to distractor items 452 

around the target. In contrast to these studies, here we decoded object representations using a 64-453 

channel EEG, a much larger set of images (200) in a sequence, and no separate localiser. The results 454 

from our approach also corroborated previous work decoding the representations of objects presented 455 

in isolation (Carlson et al., 2013; Cichy et al., 2014; Kaneshiro et al., 2015). Our results showed that 456 

decoding objects in RSVP streams have similar decoding onsets as previously reported (Carlson et al., 457 

2013; Cichy et al., 2014; Kaneshiro et al., 2015). This validates the RSVP approach as a method to study 458 

representational dynamics. We further found that the 20Hz condition limited visual processing 459 

compared to 5Hz, which shows that this paradigm can be utilised to bias the extent of visual processing 460 

at different image presentation rates. In sum, our results confirm that long ISIs are not necessary for 461 

multivariate analyses. This thus allows analysing all presentations in an RSVP sequence, rather than 462 
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limiting the scope to selected presentations (e.g., targets) in the streams. Here we have demonstrated 463 

the potential by studying the representational dynamics of 200 objects in one short EEG session. Future 464 

work can adopt similar approaches to investigate for example prediction, priming, masking, or 465 

attentional effects on the processing of distractors in RSVP sequences. 466 

 467 

Despite similar early processing stages, later processing diverged according to image presentation 468 

duration. Representations during 5Hz sequences were stronger and lasted longer than those during 469 

20Hz sequences, and temporal generalisation analyses showed that processes were prolonged for the 470 

5Hz relative to the 20Hz condition. It could be that longer image durations allow more consolidation, 471 

potentially due to recurrent processing. It is also possible that longer durations allow time to reach 472 

some kind of threshold, which triggers further processing. Note that image duration and ISI are 473 

conflated in this design, so we cannot conclude whether or if stronger and longer processing occurs due 474 

to longer image presentation or due to delayed masking from the next stimulus. Future work can build 475 

on this approach to investigate the temporal limits of visual perception.  476 

 477 

The RSA regression analyses provided insight into the differences in processing between the 5Hz and 478 

20Hz sequences. The category decoding analyses were performed using a leave-one-exemplar out cross-479 

validation approach, which means that the classifier always had to generalise to new images, reducing 480 

the likelihood that low-level features would drive the results. However, there can still be consistent low-481 

level features between the categories that can contribute to classification. The regression RSA technique 482 

aimed to dissociate the unique contributions of each of the categorical and low-level featural models. In 483 

accordance with the decoding results, processes early in the time series (~100-150ms) were mostly 484 

explained by the low-level silhouette model and then the colour model for the 5Hz and 20Hz conditions 485 

(Carlson et al., 2011). Subsequent processing, however, elucidated the differential contributions of the 486 

different categorical contrasts, and how this varied for the different image durations. For the 5Hz 487 
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condition, the category model appeared to have the largest unique contribution around 200ms, and the 488 

animacy model accounted for the most variance at about 400ms, indicating that increasing category 489 

abstraction occurred at higher levels of visual processing (Carlson et al., 2013; Cichy et al., 2014; Contini 490 

et al., 2017; Kriegeskorte, Mur, Ruff, et al., 2008). In contrast, the animacy model had no unique 491 

contribution to the signal for the in 20Hz sequences. The time course of the animacy model regression 492 

for the 5Hz condition (>350ms) suggests that the animate-inanimate difference might exclusively 493 

account for the prolonged decoding in the 5Hz condition relative to the 20Hz condition. This could imply 494 

that a high-level animacy effect requires sufficient evidence accumulation to proceed, which does not 495 

happen at 20Hz presentation rates. The finding that longer image presentations allow higher level 496 

processing is supported by steady-state visual evoked potential (SSVEP) work showing that images 497 

presented at faster frequencies are biased towards earlier visual processes in contrast to slower 498 

frequencies which allow higher level processing (Collins, Robinson, & Behrmann, 2018).  499 

  500 

When qualitatively inspecting the visualisation of the representational structure (Figure 8), we noticed a 501 

clear categorical organisation in the 5Hz presentation condition. At 200ms in the response, the structure 502 

reflected mostly natural versus artificial, with plants, fruits and animals all clustering on one side (Figure 503 

8C). In line with the decoding and RSA results, the structure at 400ms showed a clear animate – 504 

inanimate distinction (Figure 8D) (Caramazza & Shelton, 1998), which is commonly observed in neural 505 

responses in the ventral temporal cortex (Cichy et al., 2014; Konkle & Caramazza, 2013; Kriegeskorte, 506 

Mur, Ruff, et al., 2008; Proklova, Kaiser, & Peelen, 2016) and has been shown to match human 507 

categorisation behaviour well (Bracci & Op de Beeck, 2016; Carlson, Ritchie, Kriegeskorte, Durvasula, & 508 

Ma, 2014; Grootswagers, Cichy, & Carlson, 2018; Mur et al., 2013; Ritchie, Tovar, & Carlson, 2015). In 509 

the animate – inanimate organisation primates were located at the far end of the animate side, which 510 

may reflect a continuum of biological classes in the brain (Connolly et al., 2012; Sha et al., 2015) or 511 

typicality (Grootswagers, Ritchie, et al., 2017; Iordan, Greene, Beck, & Fei-Fei, 2016; Posner & Keele, 512 
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1968; E. H. Rosch, 1973; E. Rosch & Mervis, 1975). No animacy structure was apparent for the 20Hz 513 

condition (as evidenced by the RSA results), but rather individual categorical clusters seem to have 514 

emerged (in line with the RSA results), such as human faces, and, later, humans and primates as a 515 

category (see Supplementary Material). Interestingly, in these visualisations gloves were grouped with 516 

humans and primates, which could mean they were perceived as body parts, rather than inanimate 517 

objects. While these visualisations allow for such qualitative speculation, the quantitive RSA modelling 518 

results highlight the level of detail in the representation structure that can be obtained using EEG 519 

decoding and fast presentation rates. Here, we used a common 64-channel EEG, but future work can 520 

use this approach in combination with high-density EEG or other neuroimaging methods that are 521 

sensitive to finer spatial patterns, such as MEG. 522 

 523 

One remaining question is the role that low-level image statistics play in our results. The RSA approach 524 

showed that low-level control models explained early neural responses to the stimuli. The current 525 

stimulus set consisted of segmented coloured objects, which were not matched on low-level features 526 

such as colour, orientation, shape, and size. Future work can build on the current paradigm using a 527 

stimulus set that for example contains orthogonal shape and category dimensions (Bracci, Kalfas, & Op 528 

de Beeck, 2017; Bracci & Op de Beeck, 2016; Proklova et al., 2017, 2016), or test the decodability of 529 

these features using for example texture stimuli with similar features (Long, Konkle, Cohen, & Alvarez, 530 

2016; Long, Yu, & Konkle, 2017). Such extensions can help unravel the relationship between object 531 

features and categories, and increase our understanding of how this inherent relationship guides 532 

categorical abstraction in the visual system. 533 

 534 

In conclusion, our results show that we can study the representational dynamics of more than 200 535 

objects in one short EEG session. We were able to characterise the time courses of multiple categorical 536 

contrasts from the same images, indicating that all objects reached abstract categorical stages of 537 
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perception despite being presented for short durations. Here, we took advantage of the high temporal 538 

resolution of both the human visual system and common neuroimaging techniques such as EEG and 539 

MEG. These results confirm that long ISIs are not necessary for multivariate analyses, as they do not 540 

require a resting baseline as in ERP analyses. Thus, future MVPA studies on visual perception should 541 

consider using fast presentation rates as this allows for a substantial increase of the number of 542 

presentations, stimuli, or experimental conditions. This offers unprecedented potential for studying the 543 

temporal dynamics of visual perception and attention. 544 
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