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ABSTRACT 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most popular assay to identify genomic              
regions, called ChIP-seq peaks, that are bound in vivo by transcription factors (TFs). These regions are derived                 
from direct TF-DNA interactions, indirect binding of the TF to the DNA (through a co-binding partner), nonspecific                 
binding to the DNA, and noise/bias/artifacts. Delineating the bona fide direct TF-DNA interactions within the               
ChIP-seq peaks remains challenging. We developed a dedicated software, ChIP-eat, that combines            
computational TF binding models and ChIP-seq peaks to automatically predict direct TF-DNA interactions. Our              
work culminated with predicted interactions covering >4% of the human genome, obtained by uniformly              
processing 1,983 ChIP-seq peak data sets from the ReMap database for 232 unique TFs. The predictions were                 
a posteriori assessed using protein binding microarray and ChIP-exo data, and were predominantly found in high                
quality ChIP-seq peaks. The set of predicted direct TF-DNA interactions suggested that high-occupancy target              
regions are likely not derived from direct binding of the TFs to the DNA. Our predictions derived co-binding TFs                   
supported by protein-protein interaction data and defined ​cis​-regulatory modules enriched for disease- and             
trait-associated SNPs. Finally, we provide this collection of direct TF-DNA interactions and ​cis​-regulatory             
modules in the human genome through the UniBind web-interface (​http://unibind.uio.no ​). 

INTRODUCTION 

The transcription of DNA into RNA is mainly regulated through a complex interplay between proteins and the                 
chromatin at ​cis-​regulatory regions such as promoters and enhancers. Transcription factors (TFs) are key              
proteins specifically binding short DNA sequences, known as TF binding sites (TFBSs), to ensure transcription at                
appropriate rates in the correct cell types ​(1)​. Therefore, genome-wide identification of TFBSs is a critical step to                  
decipher transcriptional regulation, and how this process is altered in diseases ​(2)​. 

Classically, genome-wide ​in vivo TF binding regions are identified through the chromatin immunoprecipitation             
followed by sequencing (ChIP-seq) assay ​(3)​. The genomic regions obtained with ChIP-seq, the so-called              
ChIP-seq peaks, are usually a few hundred base pairs (bp)-long and should encompass the TFBSs (~10                
bp-long), where direct TF-DNA interactions occur. However, ChIP-seq peaks derive from either direct TF-DNA              
interactions, protein-protein interactions with other regulators such as co-factors, or unspecific binding.            
Moreover, ChIP-seq experiments are prone to artifacts and delineating bona fide TF-bound regions is still an                
ongoing challenge ​(4–7)​. 

As TFs specifically recognize DNA sequence motifs, computational tools have been instrumental in the              
prediction and characterization of direct TF-DNA interactions ​(8)​. TFBSs are commonly modelled with position              
weight matrices (PWMs), which represent the probability of each nucleotide to be present at each position within                 
bona fide TFBSs ​(8)​. While PWMs work well ​(9)​, more sophisticated approaches have recently been designed to                 
model complex features of TF-DNA interactions captured by next-generation sequencing data ​(10)​. However,             
the best performing model varies for different TFs or TF families ​(9, 11, 12)​. 

While multiple resources collecting TF binding regions derived from ChIP-seq exist ​(13–16)​, a limited number               
store genome-wide identification of TFBSs ​(14, 17, 18)​. The TFBS Conserved Track of the UCSC Genome                
Browser combined phylogenetic sequence conservation and PWMs to identify TFBSs ​(19) while the MANTA              
resource ​(20) integrated ChIP-seq peaks from ReMap ​(13) with PWMs from JASPAR ​(21) for TFBS predictions.                
A strong limitation of these approaches is that they use the same pre-defined score thresholds for all PWMs and                   
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all data sets. The ORegAnno database provides TFBSs obtained through literature curation ​(18, 22)​, but the                
number of TFBSs available for human is limited to only ~8,000. 

A previous study showed that ChIP-seq data sets fall within one of three categories: (i) data sets enriched for the                    
TF canonical binding motif close to the ChIP-seq peak summit (where the highest number of ChIP-seq reads                 
map), (ii) data sets lacking enrichment for the canonical binding motif close to the peak summit, and (iii) data                   
sets having a combination of peaks with and without the TF canonical binding motif proximal to the peak-summit                  
(23)​. Most ChIP-seq data sets were observed in category (iii). As direct TF-DNA interactions are expected to be                  
enriched at ChIP-seq peak summits ​(23–28)​, Worsley Hunt ​et al. developed a heuristic approach specifically               
based on PWMs to automatically identify, in each ChIP-seq data set, this enrichment zone. The method                
determines the thresholds on the PWM scores and distances to the peak summits delimiting the enrichment                
zone that contains direct TF-DNA interactions. However, this method does not work with the more recent TFBS                 
computational models ​(12, 29, 30)​. 

In this study, we mapped direct TF-DNA interactions in the human genome in a refined manner by capitalizing                  
on uniformly processed TF ChIP-seq data sets and computational tools modelling TFBSs. We provide (i) a new                 
software to predict direct TF-DNA interactions within ChIP-seq peaks along with (ii) genome-wide predictions of               
such interactions in the human genome. Using an entropy-based algorithm, we have developed ChIP-eat, a tool                
that automatically identifies direct TF-DNA interactions using both ChIP-seq peaks and any computational model              
for TFBSs. We applied ChIP-eat to 1,983 human ChIP-seq peak data sets from the ReMap database ​(13)​,                 
accounting for 232 distinct TFs. The set of predicted direct TF-DNA interactions derived from PWMs covers >4%                 
of the human genome. To make this resource available to the community, we have created UniBind                
(​http://unibind.uio.no/​), a web-interface providing public access to the predictions. We validated ​a posteriori these              
TFBS predictions using protein binding microarray ​(31) and ChIP-exo ​(32) data, and multiple ChIP-seq              
peak-callers. We used these TFBSs to (i) confirm that hotspots of ChIP-seq peaks (also known as high                 
occupancy target regions ​(33)​) are likely not derived from direct TF-DNA interactions, (ii) predict co-binding TFs,                
and (iii) define ​cis​-regulatory modules, which are enriched for disease- and trait-associated SNPs. 

MATERIALS AND METHODS 

ChIP-seq data 

The ChIP-seq data sets considered were retrieved, processed, and classified as part of the last update (2018) of                  
the ReMap database ​(13)​ (Supplementary Figure S1). 

TF binding profiles 

For 1,983 ChIP-seq data sets used in the last ReMap update, we were able to manually assign TF binding                   
profiles corresponding to the ChIP’ed TFs as position frequency matrices (PFMs) from the JASPAR (2018)               
database ​(21)​. 

Training data sets 

To train the TFBS computational models (see below), we considered 101 bp sequences centered around the 
peak summits as positive training sets. When required for training, negative training sets were obtained by 
shuffling the positive sequences using the ​g​ subcommand of the BiasAway (version 0.96) tool to match the %GC 
composition ​(23)​. 

TFBS computational models 

Position weight matrices. JASPAR PFMs were converted to PWMs as previously described in ​(34)​. For each                
ChIP-seq data set, PWMs were optimized using DiMO (version 1.6; default parameters with a maximum of 150                 
optimization steps) using the corresponding training sets ​(35)​. 
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Binding energy models. JASPAR PFMs were converted to binding energy models (BEMs; ​(30)​) using the               
implementation from the MARS Tools (​https://github.com/kipkurui/MARSTools​; ​(36)​). We modified the          
implementation to return a BEM score corresponding to 1 - (original score) to consider the best site of the DNA                    
sequence as the one with the highest BEM score (instead of the lowest one). 

Transcription factor flexible models. First-order transcription factor flexible models (TFFMs) (version 2.0)            
were initialized with the DiMO-optimized PFMs and trained with default parameters           
(​https://github.com/wassermanlab/TFFM​; ​(29)​) on the positive training sets. 

DNAshapedTFBS models. ​The DNA shape-based models were trained on the training sets using the              
DNAshapedTFBS tool (version 1.0; ​https://github.com/amathelier/DNAshapedTFBS/​; ​(12)​). We trained three         
types of DNAshapedTFBS models with the following features: (i) DiMO-optimized PWM + DNA shape, (ii)               
first-order TFFM + DNA shape, and (iii) 4-bits encoding + DNA shape following ​(12)​. We considered the first and                   
second order DNA shape features helix twist, propeller twist, minor groove width, and roll with values extracted                 
from GBShape ​(37)​. 

Landscape plots 

Each TFBS computational model was applied to each ChIP-seq data set independently. Following the strategy               
described in ​(23)​, we considered 1,001 bp sequences centered around the peak summits, obtained using the                
bedtools (version 2.25) ​slop subcommand ​(38)​. The trained computational models were used to extract the best                
(maximal score) site per 1,001 bp ChIP-seq peak region. For each ChIP-seq data set, landscape plots were                 
constructed from the corresponding sites following the TFBS_Visualization tool ​(23)​. These scatter plots were              
also converted into heat maps using the ​kde2d​ function from the MASS R package ​(39)​. 

Automated identification of the enrichment zone 

To define the enrichment zone for each landscape plot, we automatically identified the thresholds for the TFBS                 
computational model scores and distances to peak summits using the entropy-based algorithm from ​(40)​. The               
algorithm aims at identifying two classes of elements. Given a histogram, the algorithm selects the threshold that                 
maximizes the within-class sum of the Shannon entropies for the elements in two classes ​(41)​. The two classes                  
of elements identified are defined by the elements with values i) above and ii) below the threshold, respectively.                  
This procedure optimally separates the input elements in two classes. Given a ChIP-seq data set, we applied the                  
algorithm to the histograms of the TFBS computational model scores and distances to peak summits,               
independently. The maximum entropy implementation of the algorithm available in ImageJ ​(42) was used with               
default parameters.  

The source code of the ChIP-eat software used to process ChIP-seq peak data sets to predict direct TF-DNA                  
binding events is freely available at ​https://bitbucket.org/CBGR/chip-eat​. Specifically, ChIP-eat trains a TFBS            
computational model and automatically defines the enrichment zone in the landscape plots to predict the               
underlying direct TF-DNA interactions. The identification of the enrichment zone has been applied to each TF                
ChIP-seq peak data set independently, allowing for the automatic detection of the thresholds that are specific to                 
each data set with each TFBS computational model. 

Assessing the robustness of the enrichment zone identification 

For each ChIP-seq data set, we sampled the set of peaks using the seqtk (version 1.0)                
(​https://github.com/lh3/seqtk​) ​sample ​subcommand. The sequences of the sampled peaks were shuffled using            
the ​fasta-shuffle-letters ​subcommand of the MEME suite (version 4.11.4) ​(43) and added to the original set of                 
ChIP-seq peaks. The automatic thresholding was applied to this new set. We tested the addition of shuffled                 
peaks representing 10%, 25%, and 50% of the original set peaks. 

Comparison with the heuristic approach to predict the enrichment zone 

ChIP-eat was compared to the heuristic approach described in ​(23) and implemented in the TFBS_Visualization               
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tool ​https://github.com/wassermanlab/TFBS_Visualization using the default parameters. The centrality of the          
TFBSs predicted in the enrichment zones predicted by ChIP-eat and TFBS_Visualization was assessed using              
centrality p-value computations as described in the CentriMo tool ​(25)​. 

TF-DNA binding affinity assessment with protein binding microarray data 

Protein binding microarray (PBM) ​(44) data were retrieved from UniProbe          
(​http://the_brain.bwh.harvard.edu/uniprobe/​; ​(45)​) for 40 TFs with available ChIP-seq data. For each ChIP-seq            
data set landscape plot, we extracted the DNA sequences at the sites within and outside of the predicted                  
enrichment zone. The binding affinity of a TF to each site was computed as the median PBM intensity value of                    
all the de Bruijn sequences containing the site sequence. The statistical difference between the distribution of                
PBM binding affinities from sites within and outside the enrichment zone was assessed using a two samples                 
Mann-Whitney U test ​(46) implemented in the R package ​stats ​. A Bonferroni correction was applied to the                 
computed p-values. 

ChIP-exo data 

ChIP-eat was applied with DiMO-optimized PFMs to the ChIP-exo data sets from ​(47)​, which were lifted over to                  
hg38 using the liftOver tool ​(17)​. As for ChIP-seq peaks, we considered 1,001 ​ bp regions centered around the                  
peak summits. 

ChIP-seq peaks from HOMER and BCP peak-callers 

We successfully applied the HOMER (version 4.7.2) ​(48) and BCP (version 1.1) ​(49) peak-callers to 670                
ENCODE ChIP-seq data sets (Supplementary Table S1). ChIP-eat was applied to the corresponding ChIP-seq              
peak regions with DiMO-optimized PFMs as described above. ChIP-seq peaks predicted to contain a direct               
TF-DNA interaction or not (using the enrichment zones) from the three peak-callers (MACS2 ​(50)​, HOMER, and                
BCP) were overlapped using the bedtools ​intersect subcommand. Hypergeometric tests were performed to             
assess the significance of the intersections using the R ​phyper ​function for every combination of two peak-callers                 
with the following contingency matrix:  

number of overlapping peaks ​with ​TFBSs 
from two peak-callers - 1 

number of peaks ​without ​TFBSs from 
the two peak-callers 

number of peaks ​with ​TFBSs from the two 
peak-callers 

number of overlapping peaks from the 
two peak-callers 

HOT/XOT regions 

The high occupancy target (HOT) and extreme occupancy target (XOT) regions in all contexts were downloaded                
through the ENCODE data portal at      
http://encode-ftp.s3.amazonaws.com/modENCODE_VS_ENCODE/Regulation/Human/hotRegions/maphot_hs_s
election_reg_cx_simP05_all.bed and  
http://encode-ftp.s3.amazonaws.com/modENCODE_VS_ENCODE/Regulation/Human/hotRegions/maphot_hs_s
election_reg_cx_simP01_all.bed ​(51) ​). ChIP-seq peaks were overlapped with the HOT/XOT regions using the            
bedtools ​intersect subcommand. The enrichment for overlap was assessed with a hypergeometric test using the               
R ​phyper​ function with the following contingency matrix:  

number of peaks ​without ​TFBSs 
overlapping HOT/XOT regions - 1 

number of peaks ​with ​TFBSs 

number of peaks ​without ​TFBSs total number of peaks 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394205doi: bioRxiv preprint 

https://github.com/wassermanlab/TFBS_Visualization
https://paperpile.com/c/81FSIW/EbB1
https://paperpile.com/c/81FSIW/pxTj
http://the_brain.bwh.harvard.edu/uniprobe/
https://paperpile.com/c/81FSIW/mUZI
https://paperpile.com/c/81FSIW/dyZP
https://paperpile.com/c/81FSIW/2SG8
https://paperpile.com/c/81FSIW/4oBr
https://paperpile.com/c/81FSIW/gXy9
https://paperpile.com/c/81FSIW/h8D1
https://paperpile.com/c/81FSIW/DTLe
http://encode-ftp.s3.amazonaws.com/modENCODE_VS_ENCODE/Regulation/Human/hotRegions/maphot_hs_selection_reg_cx_simP05_all.bed
http://encode-ftp.s3.amazonaws.com/modENCODE_VS_ENCODE/Regulation/Human/hotRegions/maphot_hs_selection_reg_cx_simP05_all.bed
http://encode-ftp.s3.amazonaws.com/modENCODE_VS_ENCODE/Regulation/Human/hotRegions/maphot_hs_selection_reg_cx_simP05_all.bed
http://encode-ftp.s3.amazonaws.com/modENCODE_VS_ENCODE/Regulation/Human/hotRegions/maphot_hs_selection_reg_cx_simP01_all.bed
http://encode-ftp.s3.amazonaws.com/modENCODE_VS_ENCODE/Regulation/Human/hotRegions/maphot_hs_selection_reg_cx_simP01_all.bed
http://encode-ftp.s3.amazonaws.com/modENCODE_VS_ENCODE/Regulation/Human/hotRegions/maphot_hs_selection_reg_cx_simP01_all.bed
https://paperpile.com/c/81FSIW/JCZt
https://doi.org/10.1101/394205
http://creativecommons.org/licenses/by-nc/4.0/


Identification of TFs with co-localized TFBSs 

For each pair of distinct TFs (TF​A, ​, TF​B​), we extracted the closest TFBS associated with TF​B for each TFBS                   
associated with TF​A and computed the geometric mean distance between midpoints of the paired TFBSs. With                
this approach, the geometric mean ​m​AB ​for the pair (TF​A​, TF​B​) is different from the geometric mean of the pair                    
(TF​B​, TF​A​). With 232 TFs available in our analyses, we computed geometric means for 53,592 ordered pairs of                  
TFs. 

The colocalization of TFBSs for each TF pair was assessed using a Monte Carlo-based approach as follows.                 
The number of TFBSs per TF ranged from 1 to 404,566, with 455 as the fifth percentile. We uniformly discretized                    
the range [455, 414,172] to consider 50 TFBS set sizes (​S​i for ​i in [1, 50]). We chose 414,172 as the maximum                      
value to be able to compute a p-value for the set of 404,566 TFBSs. For each set size ​S​i​, we created 500 sets of                        
TFBS by randomly selecting TFBSs from the total pool. Using these random sets, we computed null distributions                 
for 500 Monte Carlo samples of geometric mean distances for each of the 2,601 set size combinations.                 
Specifically, this computation led to 2,601 distributions of 500 geometric means. For the TF pair (TF​A​, TF​B​) with                  
N​A and ​N​B TFBSs, respectively, we extracted the Monte Carlo sample of geometric mean distances ​M obtained                 
from the random sets with ​S​A and ​S​B TFBSs, where ​S​A = min(​S​i​) with ​S​i > ​N​A and ​S​B = min(​S​i ​) with ​S​i > ​N​B​. The                          
empirical p-value associated with the pair (TF​A​, TF​B​) was computed as the number of times we observed a                  
geometric mean smaller than ​m​AB from ​M ​over the 500 pre-computed geometric means; if no smaller geometric                 
mean was observed, the empirical p-value is defined as < 0.002 (that is 1 / 500). 

Since the expected geometric mean distance increases with a decreasing number of TFBSs, this p-value               
computation is conservative (under-estimated significance). The obtained p-values were corrected for multiple            
testing using the Benjamini-Hochberg method ​(52)​, only the TF pairs with a FDR < 5% were considered                 
significant. 

The detailed null distribution values can be downloaded and reproduced at           
https://hyperbrowser.uio.no/geirksa_sandbox/u/gsandve/h/null-distributions-for-manuscript-a-map-of-direct-tf-dna
-interactions-in-the-human-genome ​. These computations are based on running the static methods          
"ConcatenateNullDistributionsTool.execute" and  
"ComputeNullDistributionForEachCombinationFromSuiteVsSuiteTool.execute" (with argument values    
corresponding to parameter settings annotated in the Galaxy ​(53) history above) in the code provided at                
https://hyperbrowser.uio.no/geirksa_sandbox/static/hyperbrowser/files/div/hb.zip ​. The source code for the      
comparison with null distributions is available at​ ​https://bitbucket.org/CBGR/co-binding/​. 

GeneMANIA 

We used the GeneMANIA software ​(54) to extract known protein-protein interactions from the list of TFs with                 
significant co-localized TFBSs and plot the corresponding network. 

Prediction of ​cis- ​regulatory modules 

The TFBSs predicted by ChIP-eat were sorted and merged using the bedtools ​sort and ​merge subcommands.                
The CREAM tool ​(55) was applied to the merged TFBSs to define ​cis​-regulatory modules (CRMs) as genomic                 
regions enriched for clusters of TFBSs. 

GWAS trait- and disease-associated single nucleotide polymorphism enrichment analysis 

We assessed the enrichment for GWAS trait- and disease-associated single nucleotide variants (SNPs) at              
CRMs using the ​traseR ​R package (version 1.10.0; ​(56)​). CRM genomic positions were lifted over to the hg19                  
version of the human genome to perform the analyses. The set of SNPs (as of April 30, 2018) considered by                    
traseR combined data from dbGaP ​(57) and NHGRI ​(58) as described in the corresponding bioconductor               
package vignette (​https://bioconductor.org/packages/release/bioc/vignettes/traseR/inst/doc/traseR.pdf​). 
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Conservation analysis 

The hg38 phastCons ​(59) scores for multiple alignments of 99 vertebrate genomes to the human genome were                 
retrieved as a bigWig file at      
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/hg38.phastCons100way.bw ​. The TFBSs   
predicted by ChIP-eat were sorted and merged using the bedtools ​sort and ​merge subcommands. The locations                
overlapping CRMs were obtained using the bedtools ​intersect subcommand. The corresponding genomic            
locations (for all TFBSs and TFBSs in CRMs) in BED format were decomposed into 1 bp intervals using bedops                   
v.2.4.14 ​(60) with the --chop 1 option. The phastCons scores at every bp were extracted with the ​ex                  
subcommand of the bwtool ​(61)​ using the corresponding BED and phastCons bigWig files. 

The UniBind web interface 

All the TFBS predictions, corresponding ReMap ChIP-seq peaks, trained TFBS computational models, and             
CRMs are available through the UniBind database at ​http://unibind.uio.no/​. The UniBind web interface was              
developed in Python using the model-view-controller framework Django. It uses MySQL to store TFBS metadata               
and Bootstrap as the frontend template engine. The source code is available at             
https://bitbucket.org/CBGR/unibind ​. 

Statistical analyses 

All statistical analyses were performed in the R environment (version 3.4.4). 

RESULTS 

Predicting direct TF-DNA interactions in the human genome from ChIP-seq data 

Given a set of ChIP-seq peaks and a TFBS computational model such as a PWM, one can extract the best site                     
per peak, which corresponds to the DNA subsequence of the peak with the highest score for the model. The                   
higher the score, the stronger the computational evidence that the site is similar to TFBSs known to be bound by                    
the TF ​(34)​. Moreover, it has been shown that the closer the site to the peak summit, the more likely it is to                       
represent a direct TF-DNA interaction with experimental evidence from the ChIP-seq assay ​(23, 25, 28)​. Hence,                
direct TF-DNA interactions captured by ChIP-seq are enriched for high scores and small distances to the peak                 
summits (Figure ​ 1A,B). These characteristics have previously been used to automatically predict direct TF-DNA             
interactions by selecting score and distance thresholds defining these enrichment zones using a heuristic              
approach ​(23)​. This approach used pre-defined parameter values and was specifically designed for PWMs, but               
is not applicable to more recent TFBS computational models such as binding energy models (BEMs) ​(30)​,                
transcription factor flexible models (TFFMs) ​(29)​, and DNA shape-based models (DNAshapedTFBS) ​(12)​. 

We aimed to predict direct TF-DNA interactions (TFBSs) within ChIP-seq peaks and developed the ChIP-eat               
software that automatically identifies the enrichment zone for any TFBS computational model. It uses a               
non-parametric, entropy-based algorithm originally designed to separate background/noise from         
foreground/signal in image processing ​(40) (Supplementary Figure S2). We applied this algorithm to the              
distributions of site scores and distance to peak summits independently to separate direct TF-DNA interaction               
events from other binding subtypes and ChIP-seq artifacts (Figure 1C,D; Materials and Methods). The two               
thresholds define the enrichment zone, which delimits the sites that are predicted as TFBSs with both                
experimental and computational evidence of direct TF-DNA interactions. With this approach, we automatically             
adjust the enrichment zone discovery specifically for each TF ChIP-seq peak data set and for each                
computational model. The identified enrichment zone defines the thresholds on the TFBS computational model              
scores and distances to the peak summits in a data set-specific manner. 
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Figure 1 ​: ​Automatic detection of the TFBSs enrichment zone. Landscape plots ​(23) obtained with SRF ChIP-seq peaks                 
using the DiMO-optimized PWM MA0083.3 from JASPAR are presented as scatter ( ​A ​) and heatmap ( ​B ​) plots. The                 
enrichment zone (defined within the red and green dashed line boundaries, A-B) is automatically obtained by ChIP-eat with                  
thresholds on PWM scores (red dashed lines; ​C ​) and distances to peak summits (green dashed lines; ​D ​). The enrichment                   
zone provides TFBSs in ChIP-seq peaks (points in A) with supporting evidence for direct TF-DNA binding from the ChIP-seq                   
assay (close distance to peak-summits, A-B, x-axis) and the computational model (PWM score, A-B, y-axis). Distances to                 
peak summits in A, B, and D are provided using a base pair unit. 

We retrieved 1,983 ChIP-seq peak data sets from ReMap ​(13)​, accounting for 232 TFs with a PFM available in                   
the JASPAR database ​(21)​. Using DiMO-optimized PWMs, we compared the enrichment zones predicted by              
ChIP-eat with the ones obtained with the heuristic approach developed in ​(23)​. The enrichment zones predicted                
with ChIP-eat were more stringent than with the heuristic algorithm (Supplementary Figure S3A,B,D,E). The              
corresponding TFBSs predicted in the enrichment zones were more central to the peak summits with ChIP-eat                
than with the heuristic method as evaluated with CentriMo ​(25) (Supplementary Figure S3C,F). Moreover,              

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394205doi: bioRxiv preprint 

https://paperpile.com/c/81FSIW/6Rrd
https://paperpile.com/c/81FSIW/38dM
https://paperpile.com/c/81FSIW/2w34
https://paperpile.com/c/81FSIW/6Rrd
https://paperpile.com/c/81FSIW/EbB1
https://doi.org/10.1101/394205
http://creativecommons.org/licenses/by-nc/4.0/


ChIP-eat does not require any fixed values such as a predefined bin size ​(23) to predict the enrichment zones.                   
Finally, ChIP-eat is not restricted to work with PWMs only and can be used with any TFBS computational model. 

We applied ChIP-eat to the 1,983 human ChIP-seq data sets with four types of computational TFBS models:                 
DiMO-optimized PWMs, BEMs, TFFMs, and DNAshapedTFBS. These models were optimized for each            
ChIP-seq data set, independently (see Materials and Methods). In the following analyses, we focused on the                
predictions obtained with the DiMO-optimized PWMs (see Materials and Methods). This set of direct TF-DNA               
interactions (TFBSs) extracted from the enrichment zones covers about 4% of the human genome,              
encompassing 8,304,135 distinct TFBS locations. 

 

 

Figure 2 ​: ​Assessment of the thresholds predicted by ChIP-eat across data sets. Boxplots of the pairwise differences for                  
DiMO-optimized PWM score thresholds and distances to peak summits thresholds between ChIP-seq data sets for the same                 
TF are provided in panels ( ​A ​) and ( ​B ​), respectively. Absolute variations of DiMO-optimized PWM score thresholds and                 
distances to the peak summits within all data sets for the same TF are provided in panels ( ​C ​) and ( ​D ​), respectively. The ten                       
TFs with the highest number of data sets were selected; the number of data sets for each TF is provided between brackets. 
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Figure 3: ​Binding affinity assessment of the predicted direct TF-DNA interactions. ( ​A ​) Distribution of the median PBM                 
intensity scores for the ENCSR000BMX GATA3 ChIP-seq data set between sequences at TFBSs (i.e. sites within the                 
enrichment zone; in red) and sites outside the enrichment zone (in blue). ( ​B ​) Distribution of Mann-Whitney U test p-values                   
across the 249 data sets, showing distinct distributions of PBM intensity scores between sites within and outside the                  
enrichment zones. 

Predicted direct TF-DNA interactions are likely bona fide TFBSs 

Robustness of the enrichment zone identification. ​Considering the ChIP-seq data sets for the 10 most               
frequently ChIP’ed TFs, we observed that the thresholds on the PWM scores and distances to peak summits,                 
defining the enrichment zones, were consistent between data sets for the same TF (Figure 2A,B). Namely, the                 
median pairwise difference between PWM score thresholds for the same TF ranged from 1.7 to 3.7 and the                  
median distance thresholds from 12 bp to 35 bp. As expected, the thresholds identified for distinct TFs are                  
different (Figure 2C,D). Taken together, these results highlight that the entropy-based algorithm allows for the              
identification of enrichment zones specific to each TF and ChIP-seq data set, with consistent predictions               
between data sets for the same TF. Results were consistent with BEM, TFFM, and DNAshapedTFBS models                
(Supplementary Figures S4-S6). 

Further, we evaluated the robustness of the method to noise by adding 10%, 25%, and 50% of shuffled                  
sequences to the initial set of ChIP-seq peaks for all ChIP-seq peak data sets (see Materials and Methods). The                   
median threshold on the distances to peak summits shifted from 64 bp in the initial set of ChIP-seq peaks to 62                     
bp with 10% noise, 59 bp with 25% noise, and to 55 bp when adding 50% noise. The median PWM score                     
threshold was 79 for the initial set of ChIP-seq peaks and shifted to 78.6 when adding 10% of noise, to 78.3                     
when adding 25% of noise, and to 78 when adding 50% of noise. A visual representation for the 10 most                    
frequently ChIP’ed TFs is available in Supplementary Figure S7. The variability of the thresholds defining the                
enrichment zones when adding noise is limited, within the range of variability between ChIP-seq peak data sets                 
for the same TF (Figure 2). Taken together, these results show that the entropy-based thresholding algorithm                
delimiting the enrichment zones, as implemented in ChIP-eat, is robust to random noise. 

Validation using in vitro DNA binding affinities. ​To confirm ​a posteriori ​the high quality of our set of TFBS                   
predictions, we assessed the TF binding affinity to DNA sequences derived experimentally from protein binding               
microarrays (PBM) ​(62)​. The PBM assay quantifies the binding affinity of a protein to all possible combinations of                  
8-mer DNA sequences. We retrieved PBM data from the UniPROBE database ​(45) for 40 different TFs present                 
in our collection, corresponding to 249 ChIP-seq data sets (Supplementary Table S2). Note that the JASPAR                
PFMs for the ATF1, ATF3, and FOXJ2 TFs were originally derived from PBM data. For each ChIP-seq data set,                   
we tested if the sites located in the enrichment zone presented higher binding affinity than sites outside (see                  
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Materials and Methods). The distributions of the binding affinity scores for sites within and outside the                
enrichment zones were compared using a Mann-Whitney signed-rank test (Figure 3A; Materials and Methods).              
Predicted direct TF-DNA interactions (sites within the enrichment zone) had significantly higher binding affinity              
than the other sites for 75% of the data sets with p-value < 0.01 and 81% with p-value < 0.05 (Figure 3B). This                      
analysis emphasizes that the sites predicted in the defined enrichment zones are likely to correspond to direct                 
TF-DNA interactions. 

Predicted direct TF-DNA interactions are found in high confidence ChIP-seq peaks. ​We hypothesized that              
the ChIP-seq signal at ChIP-seq peaks containing a predicted direct TF-DNA interaction were more likely to be                 
higher than at the other peaks. To test this hypothesis, we looked at (i) the quality of the peaks based on                     
p-values assigned to the peaks by the MACS2 peak-caller and (ii) the reproducibility of calling these peaks with                  
multiple peak-callers (MACS2, HOMER, and BCP; see Materials and Methods). 

We observed that the distribution of p-values assigned by MACS2 to the peaks containing a predicted TFBS                 
were significantly (p-value < 0.01; Mann-Whitney signed-rank test) lower than for the rest of the peaks for 1862                  
(96%) data sets (Figure 4). The other 77 data sets contained a reduced number of peaks (median of 837                   
compared to 18,968 for the complete set of ChIP-seq data sets), which can explain the lack of statistical                  
significance. These results confirm that the predictions of direct TF-DNA interactions were found in ChIP-seq               
peaks of higher quality as assessed by MACS2. 

To test ChIP-seq peak-calling reproducibility, we used two other peak-callers (HOMER and BCP) on 670               
ChIP-seq data sets from ENCODE. Our choice of peak-callers was motivated by their distinct statistical               
approaches for peak prediction. While MACS2 and HOMER are based on an empirical model supported by a                 
Poisson distribution, BCP uses a Bayesian approach implementing infinite-state hidden Markov models. We             
applied ChIP-eat to the ChIP-seq peaks to predict TFBSs. For each pair of peak-callers, we assessed whether                 
the peaks predicted to contain a direct TF-DNA interaction were more prevalent (p-value < 0.01, hypergeometric                
test) in the set of peaks called by both peak-callers. This was observed for 63% of the data sets for MACS2 and                      
BCP, 70% for MACS2 and HOMER, and 66% for HOMER and BCP. The data sets without significant                 
enrichment had a median number of peaks predicted to be derived from direct TF-DNA interactions that was ~7                  
fold smaller (e.g. 3358 compared to 22,499 between MACS2 and BCP) than for the data sets with significant                  
enrichment, and a median number of peaks without TFBS ~2 fold larger (e.g. 40,050 compared to 21,256                 
between MACS2 and BCP) (Supplementary Table S3). Moreover, the median quality scores assigned by the               
peak-callers to the peaks from the enriched data sets were significantly (p-value < 0.01, Mann-Whitney U test)                 
higher than for the peaks in the other data sets (Supplementary Figure S8). It suggests that the data sets                   
enriched for reproducible peaks containing predicted direct TF-DNA interactions are of better quality than the               
rest of the data sets. 

Taken together, these results highlight that the ChIP-seq peaks in which ChIP-eat predicts direct TF-DNA               
interactions are of higher quality than the other peaks. Note that the ChIP-eat tool does not consider the peak                   
quality when predicting direct TF-DNA interactions. These observations reinforce the confidence in the predicted              
TFBSs by ChIP-eat. 

Predictions of direct TF-DNA interactions in ChIP-exo data 

The ChIP-exo assay has been developed to provide a higher resolution than ChIP-seq to identify TFBSs ​in vivo                  
(32)​. We aimed at assessing the performance of ChIP-eat on predicting direct TF-DNA interactions using               
ChIP-exo data. The ChExMix tool has recently been introduced to characterize protein-DNA binding event              
subtypes from ChIP-exo peaks ​(47)​. ChExMix predicted different binding event subtypes for ChIP-exo data              
obtained for the TFs ESR1 and FOXA1, one of these subtypes corresponding to direct TF-DNA interactions ​(47)​.                 
We applied ChIP-eat on the same ESR1 and FOXA1 ChIP-exo data sets. We compared the set of peaks                  
identified to contain direct TF-DNA interactions predicted by ChExMix and ChIP-eat in these two data sets. We                 
found that 93.6% (for ESR1) and 91.3% (for FOXA1) of the peaks predicted to contain TFBSs by ChIP-eat were                   
also predicted as direct binding events by ChExMix (Supplementary Table S4). The high overlaps between the                
predictions from ChExMix and ChIP-eat were confirmed by Jaccard similarity indexes of 63.7% and 68.7% for                
ESR1 and FOXA1, respectively. The similar results obtained with the two tools suggest that ChIP-eat, designed                
for the more noisy and less precise ChIP-seq data, is able to capture direct binding events from ChIP-exo data. 
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Figure 4:​ Quality assessment of the ChIP-seq peaks derived from direct TF-DNA interactions.​ Distribution of the 
median MACS2 p-values (y-axis) of the across all data sets. Values for peaks containing a predicted TFBSs are provided in 
blue and values for the other peaks in grey. 1,939 ChIP-seq data sets were predicted to contain direct TF-DNA interactions. 

High-occupancy target regions are likely not derived from direct TF-DNA interactions 

High-occupancy target (HOT) and extreme-occupancy target (XOT) regions are genomic regions where            
ChIP-seq peaks were observed for a large number of distinct ChIP’ed TFs ​(33, 63, 64)​. These regions are                  
observed across species ​(64) and contain an unusually high frequency of ChIP-seq peaks ​(33, 63, 64)​. We used                  
our set of high quality TFBS predictions to confirm that HOT/XOT regions were depleted of direct TF-DNA                 
interactions. Indeed, we found that ChIP-seq peaks that do not contain a predicted TFBS were significantly                
enriched at HOT/XOT regions (odds ratio = 1.43 for HOT and 1.44 for XOT, p-value < 2.2e-16, hypergeometric                  
test, Supplementary Table S5). This observation, combined with a previous study describing that HOT/XOT              
regions are likely to be derived from ChIP-seq artifacts ​(6)​, suggests that HOT/XOT regions are not derived from                  
the direct binding of TFs. 

Predicted direct TF-DNA interactions reveal co-binding TFs and cis-regulatory modules enriched for 
disease- and trait-associated SNPs 

TFs are known to collaborate through specific co-binding at ​cis​-regulatory modules (CRMs) to achieve their               
function ​(1, 34)​. Hence, identifying co-binding TFs is critical to decipher transcriptional regulation of gene               
expression. We aimed at using our predicted direct TF-DNA interactions to reveal co-binding TFs and CRMs.                
We hypothesized that the distances between TFBSs of cooperating TFs are smaller than expected by chance.                
We tested this hypothesis for all pairs of TFs for which we predicted TFBSs (232 TFs, 53,592 pairs tested; see                    
Materials and Methods). For each TF pair, we used a conservative Monte Carlo-based approach to compare the                 
geometric mean of the distances between their TFBSs to the geometric mean distance expected by chance for a                  
similar number of TFBSs randomly selected from the complete pool of TFBSs (see Materials and Methods). This                 
approach predicted 150 pairs of TFs (accounting for 112 distinct TFs) with TFBSs closer in the genome than                  
expected by chance (FDR < 5%; Supplementary Table S6). For 82% of the predicted TF pairs, we confirmed                  
that the corresponding TFs physically interact using the protein-protein interaction networks from the             
GeneMANIA tool ​(54) (Supplementary Figure S9). This analysis further supports the biological relevance of the               
TFBSs predicted by ChIP-eat. 

Next, we aimed to automatically identify CRMs, which correspond to clusters of direct TF-DNA interactions,               
using the clustering of genomic regions analysis method (CREAM; ​(55)​). When considering our complete set of                
TFBSs, CREAM detected 61,934 CRMs in the human genome, encompassing 2,474,587 distinct TFBS             
locations. We found that the predicted CRMs were significantly enriched (FDR-corrected p-value = 2.9e ​-150 ​) for               
disease- and trait-associated SNPs using traseR ​(56)​. Further, we observed that the TFBSs lying within the                
CRMs were more conserved that TFBSs predicted outside (Supplementary Figure S10). Taken together, these              
results indicate a potentially functional role of the CRMs identified as clusters of direct TF-DNA interactions. 
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Figure 5 ​: Overview of the UniBind user interface with interactive searching activity. ​( ​A ​) A quick and detailed search                  
feature on the homepage. (​B ​) A responsive table lists the searched data set(s), which can be clicked to view the details. ( ​C ​)                      
A detailed page shows the analysis for the JUND TF in cell-line A549, which is divided into sub-panels including the TF                     
summary, external links, summary plots, and download options for each computational TFBS model. ( ​D ​) Statistical details of                 
the results. 

The UniBind web interface to access our collection of direct TF-DNA interactions 

We catalogued the complete set of TFBS predictions from each prediction model, trained models, original               
ChIP-seq peaks from ReMap, and computed CRMs, and made them publicly available through UniBind at               
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http://unibind.uio.no/​. UniBind provides an interactive web interface with easy browsing, searching, and            
downloading for all our predictions (Figure 5). For instance, users can search for predictions for specific TFs, cell                  
lines, and conditions. 

The data can be searched by using the case insensitive search option available on the homepage. The database                  
can be searched for each of the four TF binding models, cell/tissue type, and TF name using the ‘Advanced                   
Options’, available on the homepage (Figure 5A). Search results are presented in a responsive and paginated                
table along with metadata information (Figure 5B), which can be clicked to view the detail information and                 
download TFBSs, summary plots, and ReMap ChIP-seq peaks (Figure 5C-D). All the metadata in the responsive                
tables can be downloaded as CSV files. UniBind displays by default the results obtained with the                
DiMO-optimized PWMs but results obtained from all TFBS computational models along with the trained models               
are available for browsing and/or download. 

DISCUSSION 

To summarize, we have uniformly processed 1,983 ChIP-seq peak data sets to predict high quality direct                
TF-DNA binding interactions in the human genome. The predictions were obtained using a non-parametric,              
entropy-based algorithm that automatically detects thresholds for TFBS computational model scores and            
distances to peak summits for each ChIP-seq data set. This new approach identified TFBSs supported by strong                 
experimental and computational evidences for direct TF-DNA interactions. The accuracy of the predictions was ​a               
posteriori validated using the PBM ​in vitro assay, ChIP-exo data, and multiple ChIP-seq peak-calling algorithms.               
Our set of direct TF-DNA interactions confirmed that HOT genomic regions are likely not derived from direct                 
binding of the TFs to the DNA. We used our TFBSs to predict TFs with proximal binding events in the human                     
genome, which could cooperate to achieve specific functions. Further, we defined ​cis​-regulatory modules, which              
are clusters of TFBSs, that were enriched for disease- and trait-associated SNPs from GWAS. The complete set                 
of predictions is publicly and freely available through the UniBind web-interface (​http://unibind.uio.no/​), in an              
effort to provide the community with an unprecedented collection of high quality direct TF-DNA interaction events                
in the human genome. 

The output of ChIP-seq assays is generally composed of direct protein-DNA interactions, indirect binding of the                
protein to the DNA (through a co-binding partner), nonspecific protein binding to the DNA, and               
noise/bias/artifacts ​(4, 5, 7)​. Here, we specifically aimed at identifying direct TF-DNA interaction events by using                
an entropy-based algorithm ​(40)​. This algorithm was originally developed to discriminate between foreground             
and background in image processing. Hence, it assumes the presence of background (or noise) in the data. As a                   
consequence, our approach is limited by the assumption that there is background/noise in the ChIP-seq data                
sets analyzed. We assume that this noise represents indirect binding of TFs, nonspecific binding, or ChIP-seq                
experimental artifacts. Moreover, our approach considered the best site per ChIP-seq peak (defined using TFBS               
computational models), which represents the best candidate. We recognize that other sites with lower scores               
could represent direct TF-DNA interactions. These limitations denote that our approach is stringent for the               
prediction of direct TF-DNA interactions, favoring specificity over sensitivity. The ChIP-seq peaks that our              
method did not predict to contain direct TF-DNA binding events could be further analyzed to discriminate other                 
mechanisms for protein-DNA interactions from background noise, as proposed in the ChExMix tool established              
for ChIP-exo data ​(47)​. 

The ChIP-eat pipeline developed for this study used four TFBS computational models to predict TF-DNA binding                
events. These models were specifically trained for each ChIP-seq data set to improve the quality of the                 
predictions, as the best-performing computational model varies for different TFs or TF families ​(9, 11, 12)​. As a                  
consequence, we advocate that a ‘one-fits-all’ TFBS prediction model is not optimal and that one should                
compare results from multiple models. With the predictions available through UniBind, users can assess which               
model would perform better for each data set. Of course, it requires to use a specific metric to compare                   
performance. As our methods aimed at identifying enrichment zones centered around ChIP-seq peak summits,              
we suggest to rely on a centrality measure as implemented in the CentriMo method ​(25)​. In UniBind, we provide                   
centrality p-values computed following ​(25) for the predictions from each model in each ChIP-seq data set.                
Moreover, the ChIP-eat pipeline is generalizable and users can incorporate other TFBS computational models to               
predict direct TF-DNA interactions and compare them to the ones already stored in UniBind. 
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While studies alike focus on determining where TFs directly interact with DNA, our understanding of how these                 
TF-DNA interactions influence expression is limited. Surely, it is critical to decipher the relationship between               
TF-DNA interactions and transcriptional regulation ​(65)​. It is expected that a large portion of the TFBSs identified                 
in our study are not functional, as suggested by the futility theorem ​(34)​. Nevertheless, functional TF binding                 
events are likely to be clustered ​(66–69) and associated with stronger ChIP-seq peak signals ​(10, 70)​. We                 
expect that the direct TF-DNA interactions predicted in ​cis​-regulatory modules and stored in UniBind are more                
likely to be enriched for functional events. Determining the specific set of functional TF-DNA interactions would                
require dedicated computational models and experiments. 

AVAILABILITY 

Source code of the ChIP-eat software is available at ​https://bitbucket.org/CBGR/chip-eat_public and of UniBind             
at ​https://bitbucket.org/CBGR/unibind ​. The source code used for the identification of co-localized TFs is available              
at ​https://bitbucket.org/CBGR/co-binding ​. Users can browse and/or download the data through the UniBind web             
interface at​ ​http://unibind.uio.no/​. 
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