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Abstract

Accumulation and selection of somatic mutations in a Darwinian framework result in intra-tumor

heterogeneity (ITH) that poses significant challenges to the diagnosis and clinical therapy of can-

cer. Identification of the tumor cell populations (clones) and reconstruction of their evolution-

ary relationship can elucidate this heterogeneity. Recently developed single-cell DNA sequencing

(SCS) technologies promise to resolve ITH to a single-cell level. However, technical errors in SCS

datasets, including false-positives (FP), false-negatives (FN) due to allelic dropout and cell dou-

blets, significantly complicate these tasks. Here, we propose a non-parametric Bayesian method

that reconstructs the clonal populations as clusters of single cells, genotypes of each clone and

the evolutionary relationships between the clones. It employs a tree-structured Chinese restaurant

process as the prior on the number and composition of clonal populations. The evolution of the

clonal populations is modeled by a clonal phylogeny and a finite-site model of evolution to account

for potential mutation recurrence and losses. We probabilistically account for FP and FN errors,

and cell doublets are modeled by employing a Beta-binomial distribution. We develop a Gibbs

sampling algorithm comprising of partial reversible-jump and partial Metropolis-Hastings updates

to explore the joint posterior space of all parameters. The performance of our method on synthetic

and experimental datasets suggests that joint reconstruction of tumor clones and clonal phylogeny

under a finite-site model of evolution leads to more accurate inferences. Our method is the first to

enable this joint reconstruction in a fully Bayesian framework, thus providing measures of support

of the inferences it makes.

Introduction

Acquisition of somatic mutations that confer selective growth advantage to the carrier cells drives

initiation and progression of cancer (Vogelstein et al., 2013). From an evolutionary viewpoint,

tumor progression is a somatic evolutionary process that gives rise to a composite mixture of

genetically distinct subpopulations (clones) of cells through rounds of accumulation of somatic
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alterations, proliferation and Darwinian selection in the tumor microenvironment (Nowell, 1976;

Merlo et al., 2006; Pepper et al., 2009; Yates and Campbell, 2012). The genomic heterogeneity

within a tumor, also known as intra-tumor heterogeneity (ITH) not only propels disease progression

and metastasis (Turke et al., 2010; Wu et al., 2012), but can also lead to therapeutic relapse and

drug resistance (Gillies, Verduzco, and Gatenby, 2012; Burrell et al., 2013). High-throughput next-

generation sequencing (NGS) technologies have provided large-scale quantitative genomic datasets

(Nik-Zainal et al., 2012; Kandoth et al., 2013) for investigating ITH. Most studies typically perform

deep sequencing of bulk DNA retrieved from a single sample of the cancer tissue (Shah et al., 2012;

Landau et al., 2015). Such datasets provide variant allele frequencies (VAFs) of somatic mutations,

an aggregate signal averaged over the existing distinct tumor subclones as well as contaminating

normal cells (Navin, 2014), and VAFs are modeled as mixtures of subclones for their computa-

tional inference (Roth et al., 2014; Deshwar et al., 2015; El-Kebir et al., 2016; Jiang et al., 2016).

However, noisy aggregate signal of VAFs has limited resolution and thus restricts a comprehen-

sive exploration of ITH (Navin, 2014; Baslan and Hicks, 2017). Sequencing multiple samples from

different geographical regions of a tumor can improve upon single-sample bulk sequencing (Ger-

linger et al., 2012; Gerlinger et al., 2014; Yates et al., 2015) but cannot resolve spatially intermixed

subpopulations (Navin, 2015).

Ultimately, a single cell is the fundamental substrate of tumor evolution and single-cell DNA

sequencing (SCS) has emerged as a powerful technique for resolving tumor evolution and ITH to a

single-cell level (Hou et al., 2012; Wang et al., 2014; Gawad, Koh, and Quake, 2014; Leung et al.,

2017). Such technologies provide sequencing data pertaining to single cells, thus allowing for direct

measurement of genotypes and prevalences of tumor subclones without requiring deconvolution of

aggregate signals (Zafar et al., 2018). At the same time, they offer the possibility of reconstructing

the clonal lineage tree. However, these tasks are challenged by high level of experimental noise

introduced in SCS data (Zafar et al., 2018) during the sample preparation and whole genome

amplification (WGA) steps. WGA errors include: false-positive (FP) and false-negative (FN) errors

due to allelic dropout (ADO) (Navin, 2014). FP errors are caused by deamination of cytosine bases

and infidelity of polymerase enzymes. ADO affects the heterozygous loci as one of the alleles is
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preferentially amplified. Unintended isolation and processing of two cells together can result in cell

doublets (characterized by merged genotype) (Zafar et al., 2018). Another problem with SCS data

is missing entries due to coverage non-uniformity (Zafar et al., 2018).

Single-cell somatic point mutation profiles have been used to infer clonal subpopulations. Early

studies (Wang et al., 2014; Li et al., 2012) used multidimensional scaling and hierarchical cluster-

ing for reconstructing the tumor subclones but such approaches fail to account for errors. Gawad

et al.(Gawad, Koh, and Quake, 2014) used a Bernoulli mixture model (BMM) to infer clusters

of cells and predict cluster genotypes and performed model selection via a Bayesian information

criterion (BIC) score. This approach was extended in the SCG method (Roth et al., 2016) to

accommodate errors due to ADO and doublets. However, such approaches neither utilize the evo-

lutionary relationship between the clonal clusters nor infer any phylogeny that can convey the

evolutionary history of the tumor cells. Another direction with SCS data has been the reconstruc-

tion of cell lineages to study tumor evolution. SCITE (Jahn, Kuipers, and Beerenwinkel, 2016) and

OncoNEM (Ross and Markowetz, 2016) probabilistically model WGA-specific errors for inferring

tumor lineages from SCS data. However, both SCITE and OncoNEM operate under the infinite

sites assumption (ISA), which posits that no genomic site mutates more than once and mutations

are never lost. This assumption could get violated in tumor evolution due to events including:

convergent evolution, chromosomal deletions and loss of heterozygosity (LOH) (Davis and Navin,

2016; Kuipers et al., 2017). SiFit (Zafar et al., 2017) employs a finite-site model of evolution to

allow for mutation recurrence and losses and employs a maximum-likelihood based approach for

reconstructing tumor phylogeny. However, these phylogeny approaches (other than OncoNEM)

do not provide straight-forward reconstruction of the tumor subclones. At the same time, none

of these phylogeny-based methods account for cell doublets as the merged genotypes can not be

represented by a cell lineage tree model.

Here, we propose SiCloneFit, a unified statistical framework and computational method that simul-

taneously addresses the problems of subclonal reconstruction and phylogeny inference from single-

cell sequencing data. Our unified model simultaneously (i) estimates the number of tumor clones,

(ii) identifies the tumor clones as clusters of single cells, (iii) predicts the mutations associated with
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each tumor clone (clonal genotype), and (iv) under a finite-site model of evolution places the tumor

clones at the leaves of a phylogenetic tree (clonal tree) that models their genealogical relationships.

In doing so, the SiCloneFit model integrates non-parametric Bayesian mixture modeling based on

a Chinese restaurant process with the finite-sites-based phylogenetic approach introduced in SiFit

(Zafar et al., 2017). Using single-cell somatic point mutation profiles as input, SiCloneFit introduces

a non-parametric Bayesian mixture model based on a phylogeny-based Chinese restaurant process

(clusters reside at the leaves of a phylogeny) to identify clusters (clone) of cells that share mutations

and resolves the clonal genotypes (mutations associated with a clonal cluster). The evolution of the

clonal genotypes is modeled using a clonal phylogeny and a finite-site model of evolution that ac-

counts for the effects of deletion, LOH and point mutations at the genomic sites. SiCloneFit adopts

the probabilistic error model of SiFit to account for FP and FN errors in SCS. The doublet-aware

model of SiCloneFit employs a Beta-binomial distribution to accommodate for the presence of cell

doublets and augments the non-parametric Bayesian mixture model with another finite mixture

model to allow for the placement of a potential doublet in two clonal clusters. We develop a Gibbs

sampling algorithm comprised of partial reversible-jump and partial Metropolis-Hastings updates

to explore the joint posterior space of all parameters. Through simulations, we show the superiority

of our method compared to existing subclonal reconstruction methods under a wide variety of pa-

rameter settings. We finally applied SiCloneFit on experimental SCS datasets and simultaneously

reconstructed clonal populations, clonal genotypes and clonal phylogeny. Joint inference of clonal

populations and their genealogical relationships by SiCloneFit led to an improvement in resolving

ITH for the experimental SCS datasets compared to the existing methods that treat the problems

separately. To the best of our knowledge, SiCloneFit is the first Bayesian framework that jointly

reconstructs clonal populations and their evolutionary history from SCS datasets under a finite-site

model of evolution while accounting for cell doublets along with other WGA artifacts. The method

is publicly available at https://bitbucket.org/hamimzafar/siclonefit.
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Results

Overview of SiCloneFit Model

We start with a brief description of the formulation of the joint inference problem and the SiCloneFit

model. Overview of the SiCloneFit model is given in Fig. 1a.

A tumor population (clone) refers to a set of cells that share a common genotype as they descend

from a common ancestor (Merlo et al., 2006). In the context of single-cell sequencing, a clonal pop-

ulation refers to a maximal set of cells with identical genotype (with respect to the set of mutations

under analysis) (Roth et al., 2016). We model the lineage of the clonal populations using a clonal

phylogeny, a rooted directed binary tree, the root of which represents normal (unmutated) geno-

type and somatic mutations are accumulated along the branches of the phylogeny. The sampling

of single cells from the tumor at any point in time is analogous to horizontally slicing the clonal

phylogeny to obtain samples from the leaves. The leaves of the clonal phylogeny represents the

clonal populations and the sampled cells are individuals sampled from each leaf. The DNA from

each sampled cell goes through the process of single-cell DNA sequencing and mutation calling,

which provides the observed genotype matrix D = Dn×m for m single cells and n somatic mutation

sites.

In SiCloneFit, we model this generative process using the probabilistic graphical model shown in

Fig. 1b (also Supplemental Fig. S1). Here, we briefly describe the singlet model (all sampled cells

are assumed to be singlets) of SiCloneFit. The probabilistic graphical model for the doublet-aware

model is shown in Supplemental Fig. S2. The model variables, hyper-parameters and associated

indices are introduced in Supplemental tables S1-S3. For a detailed description of the singlet and

doublet-aware model of SiCloneFit, see Supplemental Methods.

We consider somatic single nucleotide variant (SNV) sites, where the input data is represented by a

matrix that records the observed genotype for each cell for each mutations sites. The input matrix

can be binary, when the presence or absence of a mutation is noted. For a ternary matrix, the three

possible genotype states correspond to homozygous reference, heterozygous and homozygous non-
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5.1 Model overview

We derive the SiCloneFit model in the following section. The probabilistic graphical

model is presented in Fig. 5.1. A list of model variables is provided in Table 5.2, hyper-

parameters are described in Table 5.3 and associated indices have been described in

Table 5.1.
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The log-likelihood for the observed genotype matrix given a phylogenetic tree T

error rates, ✓ and model parameters, M� becomes a summation over n sites as in

Eq. (3.10)

log L(T ,✓, M�) =
nX

i=1

log Lr
i (0) (3.10)

This likelihood computation uses Felsenstein’s pruning algorithm [26] for calcu-

lating the likelihood of a phylogenetic tree with the transition probabilities given by

Eq. (3.4). For the calculation of the partial likelihoods for leaves, we use the SCS

error model instead of values suggested in [26].

3.6 Search algorithm to infer phylogeny

Our model has three main components, the phylogenetic tree T , the error rates of

single-cell data ✓ and the parameters of the model of evolution (M�). The tree search

space has (2m�3)!
2m�2(m�2)!

discrete bifurcating tree topologies for m cells, and each topology

has a continuous component for branch lengths. The overall search space also has

a continuous component for error rates and model parameters along with the tree

space.

We developed a heuristic search algorithm to stochastically explore the joint space

of phylogenetic trees, error rates and evolution model parameters. In the joint

(T ,✓, M�) space, we need to consider three di↵erent types of moves to propose a

new configuration. In tree changing moves, a new phylogenetic tree, T 0 is proposed

from current state T . In error rate changing moves, a new error rate, ✓0 is pro-

posed from current error rate ✓. In parameter changing modes, a new value of the

parameter, M�0 is proposed from the current parameter value M�. If the proposed

configuration results in a higher likelihood, it is accepted, otherwise rejected.

With a small probability, the proposed configuration is accepted or rejected based
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Figure 5.1 : Probabilistic graphical model representing the SiCloneFit
model. The indices and variables of the model are described in Table 5.1 and Ta-
ble 5.2 respectively. Shaded nodes represent observed values or fixed values, while
the un-shaded nodes represent hidden variables and their values are estimated.
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3. draw T ⇠ Tprior(|c|).

4. For � 2 M�, draw � ⇠ Beta(aM�
, bM�

)

5. For k 2 {1, 2, . . . , |c|}, draw Gk ⇠ F (Gk|T , M�).

6. For j 2 [1, m] and i 2 {1, 2, . . . , n}, draw Dij ⇠ E(Dij|Gcji, ↵, �).

↵0 is the concentration parameter for a chinese restaurant process (CRP), ↵ is the

FP rate, � is the FN rate, cj denotes the index of the clone where cell j belongs to.

c denotes the clonal assignments of all cells. T is a phylogenetic tree on a leafset of

|c| leaves. Tprior is the prior distribution on phylogenetic trees for a fixed number of

leaves. M denotes the set of parameters in the finite-sites model of evolution. Here,

we use the same model of evolution as described in Chapter 3. F is Felsenstein’s

distribution for the genotypes at the leaves of a phylogenetic tree, and E is the error

model distribution that relates the observed genotype Dij to clonal genotype Gcji.

a, b, a↵, b↵, a�, b�, aM , bM denote di↵erent hyperparameters used in this model. The

model is defined as

↵|a↵, b↵ ⇠ Beta(a↵, b↵)

�|a�, b� ⇠ Beta(a�, b�)

↵0 ⇠ Gamma(a, b)

cj|↵0 ⇠ CRP (↵0)

T ⇠ Tprior(|c|)

M�|aM , bM ⇠ Beta(aM , bM)

Gki|T , M� ⇠ F (Gki|T , M�)

Dij ⇠ E(Dij|Gcji, ↵, �)

a 

b c 

K

Figure 1: Overview of SiCloneFit Model. (a) From an observed noisy genotype matrix of single
cells, SiCloneFit infers the clonal clusters, clonal phylogeny and clonal genotypes of single cells.
(b) A probabilistic graphical model representing the singlet model of SiCloneFit. Shaded nodes
represent the observed values or fixed parameters; unshaded nodes are the latent variables that are
of interest; a posterior distribution over the values of the unshaded nodes is approximated using
samples from the proposed Gibbs sampler. The variables and indices are described in Supplemental
Methods. (c) Distributional assumptions for the different variables in the SiCloneFit singlet model.

reference genotypes. We assume that there is a set of K clonal populations from which a total of m

single cells are sampled and the clonal populations can be placed at the leaves of a clonal phylogeny,

T . Each clonal population contains a set of cells that have identical genotype and share a common

ancestor. It is important to note that K is unknown. To infer the number of clones and assign
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the cells to clones, we introduce a tree-structured infinite mixture model. In our model, we extend

the tree-structured Chinese restaurant process (CRP) prior from (Meeds et al., 2008) to define a

nonparametric Bayesian prior over binary trees, leaves of which represent the mixture components

(clonal clusters). The clonal phylogeny represents the genealogical relationship between the clonal

populations. The genotype vector associated with a clone is called clonal genotype and it records

the genotype values for all mutation sites for the corresponding clone. To model the evolution of

the clonal genotypes along the branches of T , we employ a finite-site model of evolution,Mλ, that

accounts for the effects of point mutations, deletion and LOH on the clonal genotypes. The model

of evolution assigns transition probabilities to different genotype transitions along the branches

of the clonal phylogeny. The true genotype of each cell is identical to the clonal genotype of the

clonal cluster where it is assigned. However, observed genotypes of single cells can differ from

their true genotype due to amplification errors introduced during the SCS work flow. The effect of

amplification errors is modeled using an error model distribution parameterized by FP error rate α

and FN error rate β. The generative process is described in detail in Methods and the distributional

assumptions of the model are shown in Fig. 1c.

SiCloneFit attempts to jointly reconstruct the tumor clones as clusters of single cells, clonal geno-

types and the clonal phylogeny. In doing so, it employs a likelihood function and a compound prior

to define the posterior distribution over these latent variables. SiCloneFit employs a Markov chain

Monte Carlo (MCMC) sampling procedure based on the Gibbs sampling algorithm comprised of

partial reversible-jump and partial Metropolis-Hastings updates to estimate the latent variables.

The posterior distribution and the inference algorithm are described in Methods and Supplemental

Methods.

Benchmarking on Simulated Datasets

We performed comprehensive simulations to evaluate the performance of SiCloneFit in (i) clustering

the cells into different clones, (ii) inferring the genotypes of the cells via clonal genotyping and (iii)

reconstructing the clonal lineage. To generate benchmarking datasets, we first sampled observed
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clonal prevalences for a fixed number of clones from a Dirichlet distribution and the cells were

assigned to different clones using a multinomial distribution. Then we constructed linear and

branching topologies for clonal phylogeny using the Beta-splitting model (Sainudiin and Veber,

2016). The clonal genotypes at the leaves of the phylogeny were simulated in a similar fashion

as described in (Zafar et al., 2017). Different SCS artifacts were then introduced on the cellular

genotypes to produce the noisy observed genotypes which were used as the input data for inference.

The simulation process is described in detail in Supplemental Results.

To compare the results of SiCloneFit against the ground truth, we summarized the posterior samples

from the Gibbs sampler of SiCloneFit. The clustering samples were summarized by the maximum

posterior expected adjusted rand (MPEAR) method (Fritsch and Ickstadt, 2009). To summarize

the clonal phylogeny samples, we constructed a maximum clade credibility topology (MCCT) from

the posterior samples using DendroPy (Sukumaran and Holder, 2010). From the posterior samples,

we computed the posterior probability of the genotype of each cell at each site and the genotype

with the highest posterior probability was assigned as the inferred genotype. When using the

doublet-aware model of SiCloneFit, the doublets were inferred based on the posterior probability

and were filtered out for subsequent analysis. The summarization methods are described in detail

in Supplemental Results.

We compared SiCloneFit’s performance against SCG (Roth et al., 2016) and OncoNEM (Ross

and Markowetz, 2016). SCG was used to infer clonal genotypes and clonal structures from single

cell somatic SNV profiles. The clonal phylogeny was obtained by running maximum parsimony

algorithm (Schliep, 2011) on the clonal genotypes as suggested in (Roth et al., 2016). OncoNEM was

used to infer a clonal tree from single cell somatic SNV profiles. Clonal genotypes were obtained by

inferring the occurrence of the mutation on the branches of the clonal tree. The clustering accuracy

of each method was measured using adjusted rand index and B-cubed F-score (Amigó et al., 2009)

for datasets without and with doublets respectively. The genotyping performance was measured

using Hamming distance (number of entries differing) between the true and inferred genotypes.

For phylogeny inference, we used pairwise cell shortest-path distance (Ross and Markowetz, 2016)

as the tree reconstruction error. The performance metrics are described in detail in Supplemental
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SiCloneFit SCG OncoNEM

Figure 2: Performance comparison on simulated datasets containing 100 cells. SiClone-
Fit’s performance is compared against that of SCG and OncoNEM on simulated datasets containing
100 cells for varying numbers of sites. On the x-axis, we have results corresponding to n = 50 and
n = 100. The cells were sampled from K = 10 clonal populations. Each box plot summarizes
results for 10 simulated datasets with varying clonal phylogeny and varying size of clonal clusters.
(a) Comparison of clustering accuracy measured in terms of adjusted rand index that compares the
inferred clustering from the ground truth. (b) Comparison based on the genotyping error measured
in terms of hamming distance between the true genotype matrix and inferred genotype matrix. (c)
Comparison based on the tree reconstruction error measured in terms of pairwise cell shortest-path
distance between the true clonal phylogeny and inferred clonal phylogeny.

Results.

To evaluate SiCloneFit’s singlet model, we first ran simulations excluding doublets. For a fixed

number of clones, we simulated datasets with varying numbers of cells and varying numbers of

sites. For smaller sized (m = 100) datasets, we compared against SCG and OncoNEM, whereas,
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for larger sized datasets (m = 500), only SCG was compared as OncoNEM failed to run. Clustering

accuracy (Fig. 2a, Supplemental Fig. S3) and phylogeny inference accuracy (Fig. 2c, Supplemental

Fig. S5) of each method improved as the number of sites increased. Total genotyping error (Fig. 2b,

Supplemental Fig. S4) increased with an increase in the number of sites. For each experimental

setting, SiCloneFit performed the best in terms of all performance metrics. For larger sized datasets,

it achieved perfect clustering for almost all datasets. In the presence of higher numbers of clonal

populations, sampling the same number of cells leads to a more difficult inference problem. Even for

such situations, SiCloneFit performed the best based on all three metrics and it was more robust

against the increase in number of clones as evidenced by lower rate of reduction in clustering

accuracy compared to SCG and OncoNEM (Supplemental Fig. S6). For larger datasets, we also

tested the effect of missing data on inference accuracy. Even in the presence of high amount of

missing data, SiCloneFit performed well in clustering the cells into clones and inferring the clonal

phylogeny. It consistently performed better than SCG (Supplemental Fig. S7-S9) in terms of all

metrics. Only in one setting (n = 100, 30% missing data) did SCG achieve lower genotyping error

than SiCloneFit. SiCloneFit’s performance was also more robust against increasing error rate.

With an increase in the FN rate, performance of each method degraded, but SiCloneFit had the

lowest amount of reduction in performance and it also outperformed all the other methods for all

values of false negative rate (Supplemental Fig. S10). Same trend was observed when FP rate was

increased (Supplemental Fig. S11). In this setting, for some datasets, SCG’s genotyping failed to

converge and resulted in a large number of false predictions.

Next, we performed simulations including 10% doublets to evaluate SiCloneFit’s doublet model. For

a fixed number of clones, we simulated datasets with varying number of cells and varying number

of sites. SiCloneFit achieved higher clustering accuracy (Supplemental Fig. S12) and genotyping

accuracy (Supplemental Fig. S13) compared to SCG. It also achieved lower tree reconstruction

error (Supplemental Fig. S14) in all settings except for m = 500 and n = 100. For some datasets,

SCG failed to converge and resulted in low clustering accuracy and high genotyping error. In

the presence of higher number of clonal populations, SiCloneFit significantly outperformed SCG

(Supplemental Fig. S15). Finally, we tested how inference is affected when missing data and
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doublets are simultaneously present. Even in the presence of high amount of missing data (15%,

30%), both methods performed well in clustering (Supplemental Fig. S16) the cells to clones, with

SiCloneFit performing better than SCG in all settings. For all settings, SiCloneFit’s genotyping

(Supplemental Fig. S17) was better than SCG’s. For some datasets, SCG failed to converge and

resulted in low clustering accuracy and high genotyping error. SiCloneFit’s tree reconstruction

error (Supplemental Fig. S18) was also lower in all but one setting (n = 100 and 15% missing

data).

Inference of Clonal Clusters, Genotypes and Phylogeny from Experimental SCS

Data

We applied SiCloneFit to two experimental single-cell DNA sequencing datasets from two metastatic

colon cancer patients, obtained from the study of Leung et al. (Leung et al., 2017). These datasets

were generated using a highly-multiplexed single-cell DNA sequencing method (Leung et al., 2016)

and a 1000 cancer gene panel was used as the target region for sequencing. These are two of the

most recent SCS datasets and contain large numbers of cells and small numbers of mutation sites

making the inference difficult.

The first dataset consisted of 178 cells (Leung et al., 2017) obtained from both primary colon

tumor and liver metastasis. The original study reported 16 somatic SNVs after variant calling.

The reported genotypes were binary values, representing the presence or absence of a mutation at

the SNV sites. In the original study, SCITE (Jahn, Kuipers, and Beerenwinkel, 2016) was used for

performing phylogenetic analysis of this tumor. However, SCITE operates under the infinite sites

assumption and only infers the mutation tree. We ran the four-gamete test on this dataset, which

identified 104 (out of 120) pairs of SNV sites violating the four-gamete test indicating potential

violation of the infinite sites assumption. After running SiCloneFit on this dataset, we collected

the samples from the posterior and computed a maximum clade credibility tree based on the

posterior samples as shown in Fig. 3a. Five different clusters were identified from the SiCloneFit

posterior samples. The largest cluster (N) consisted of normal cells without any somatic mutation.
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The primary tumor cells were clustered into two subclones (P1 and P2). Metastatic aneuploid

tumor cells were clustered into one subclone (M). There was another cluster (D) consisting of

diploid cells (mostly metastatic). The clonal genotype of each cluster was inferred based on the

posterior samples. The inferred genotypes are shown in Supplemental Fig. S19. Based on the

clonal genotypes, we inferred the ancestral sequences at the internal nodes and this enabled us

to find the maximum likelihood solution for placing the mutations on the branches of the clonal

phylogeny. First, a heterozygous nonsense mutation was acquired in APC along with mutations

in KRAS oncogene and TP53 tumor suppressor gene and these initiated the tumor mass. The

subclone (D) consisting of diploid cells acquired another mutation in GATA1 and branched out

from the primary tumor mass. The primary tumor subclones developed by acquiring 6 more

somatic mutations including a mutation in CCNE1 oncogene. These mutations were subsequently

inherited in the metastatic tumor subclone (M). The accumulation of mutations in EYS, GATA1,

RBFOX1, TRRAP and ZNF521 marked the point of metastatic divergence. The two primary

tumor subclones were distinguished by the presence/absence of TPM4 mutation. It was specific to

the second primary subclone (P2) and was not identified in any of the tumor cells in the metastasis,

suggesting that the first primary subclone (P1) disseminated and established the metastatic tumor

mass. We ran MACHINA (El-Kebir, Satas, and Raphael, 2018) on the clonal phylogeny inferred

by SiCloneFit for reconstructing the migration history of the tumor clones for this patient. The

inferred migration graph (Fig. 3b) had two migrations with comigration number = 1. Since, two

anatomical sites were sequenced, the inference of minimum possible comigration number indicates

a single-source seeding pattern with colon being the source. The presence of a multi-edge in

the migration graph also indicates polyclonal seeding, where liver was seeded by two different

clones that originated in colon. However, the first seeding did not result in the clonal expansion,

metastatic tumor mass formed after the second seeding that was associated with the mutations in

EYS, GATA1, RBFOX1, TRRAP and ZNF521.

For comparison, we ran SCG on this dataset. SCG reported 4 clonal clusters and the inferred clonal

genotypes are shown in Supplemental Fig. S20. SCG could not distinguish the primary tumor cells

on the basis of the presence/absence of the TPM4 mutation and genotyped all of them to contain
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TPM4. Thus it did not report two primary tumor subclones that were detected by SiCloneFit and

instead only one primary tumor subclone (all primary tumor cells were assigned to this cluster)

was inferred.

The second dataset consisted of 182 cells (Leung et al., 2017) obtained from both primary colon

tumor and liver metastasis. The original study reported 36 somatic SNVs after variant calling.

The reported genotypes were binary values, representing the presence or absence of a mutation at

the SNV sites. After running the four-gamete test on this dataset, we identified 347 (out of 630)

pairs of SNV sites violating the four-gamete test indicating potential violation of the infinite sites

assumption. After running SiCloneFit on this dataset, we collected the samples from the posterior

and computed a maximum clade credibility tree based on the posterior samples as shown in Fig. 4b.

Six different clusters were identified in the MPEAR solution based on the posterior samples. The

largest cluster (N) consisted of normal cells that did not harbor any somatic mutation. There were

two clusters consisting of primary aneuploid tumor cells (P1 and P2) and two clusters consisting

of metastatic aneuploid tumor cells (M1 and M2). There was one more cluster (I) comprised of

diploid cells that harbored somatic mutations that were completely different from the primary or

metastatic clusters, representing an independant clonal lineage consistent with the findings reported

by Leung et al. (Leung et al., 2017). The clonal genotype of each cluster was inferred based on

the posterior samples. The inferred genotypes are shown in Supplemental Fig. S21. Based on

the clonal genotypes, we inferred the ancestral sequences at the internal nodes and this enabled

us to find the maximum likelihood solution for placing the mutations on the branches of the

clonal phylogeny. The first primary tumor clone (P1) evolved from the normal cells by acquiring 8

mutations including mutations in APC, NRAS, CDK4 and TP53. After that 4 additional mutations

(CHN1, APC, LINGO2, IL21R) were acquired before the first metastatic cluster (M1) diverged.

After dissemination into liver, the first metatstatic subclone (M1) continued to evolve and acquired

a number of metastasis-specific mutations (e.g., SPEN, IL7R, PIK3CG, F8, LINGO2 ). Before

the divergence of the second metastatic subclone (M2), two more mutations (FHIT, ATP7B) were

acquired that were also present in the second primary tumor subclone P2. The second primary

tumor clone (P2) acquired two additional mutations in LRP1B and LINGO2 that were not present
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Figure 3: Inference of tumor clones and clonal phylogeny using SiCloneFit on metastatic
colorectal cancer patient CRC1. (a) Maximum clade credibility tree reconstructed from the
posterior samples obtained using SiCloneFit. Each tumor clone is a cluster of single cells and their
genotypes are also inferred. The temporal order of the mutations is reconstructed and mutations
are annotated on the branches of the clonal tree. The cancer genes and tumor-suppressor genes are
marked in purple. The colors of the shades represent the organ/anatomical site of the origin of the
cells. (b) Parsimonious migration history of the tumor clones inferred using MACHINA (El-Kebir,
Satas, and Raphael, 2018) with the SiCloneFit inferred clonal tree as input. The top figure shows
the clonal tree where the leaves are annotated by the anatomical sites and the anatomical sites
annotation of the internal nodes and root are inferred by MACHINA. The bottom figure shows the
migration graph of the cells with migration number 2 and comigration number 1. This indicates
polyclonal single-source seeding from colon to liver.

in either metastatic clone. The second metastatic clone disseminated after acquiring the ATP7B

mutation and further expanded the liver tumor mass by acquiring 7 additional mutations (e.g.,
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Figure 4: Inference of tumor clones and clonal phylogeny using SiCloneFit for metastatic
colorectal cancer patient CRC2. (a) Maximum clade credibility tree reconstructed from the
posterior samples obtained using SiCloneFit. Each tumor clone is a cluster of single cells and their
genotypes are also inferred. The temporal order of the mutations is reconstructed and mutations
are annotated on the branches of the clonal tree. The cancer genes and tumor-suppressor genes are
marked in purple. The colors of the shades represent the organ/anatomical site of the origin of the
cells. (b) Parsimonious migration history of the tumor clones inferred using MACHINA (El-Kebir,
Satas, and Raphael, 2018) with the SiCloneFit inferred clonal tree as input. The top figure shows
the clonal tree where the leaves are annotated by the anatomical sites and the anatomical sites
annotation of the internal nodes and root are inferred by MACHINA. The bottom figure shows the
migration graph of the cells with migration number 2 and comigration number 1. This indicates
polyclonal single-source seeding from colon to liver.

PTPRD, NR4A3, HELZ, TSHZ3 ). In the original study, SCITE identified two different lineages

for metastatic cells and inferred 4 mutations (FHIT, ATP7B, APC, and CHN1 ) between the two
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metastatic divergence events. These were called as “bridge mutations”. However, statistical analysis

(Leung et al., 2017) of the four bridge mutations provided strong evidence only for two of them

(FHIT and ATP7B), and the placement of the other two bridge mutations were uncertain. In

our analysis, SiCloneFit correctly identified the two strongly supported bridge mutations (FHIT

and ATP7B) as the mutations between the two metastatic divergence events. The other two

putative bridge mutations were identified as non-bridge and placed before the divergence of first

metastatic subclone. Other than the precursor mutations shared with the primary tumor clones,

the metastatic tumor clones had three more mutations in common (PTPRD, FUS and LINGO2 ).

This is an evidence for a potential convergent evolution. To evaluate the accuracy of this, we

performed the mixture-model Bayesian binomial test (Leung et al., 2017), which provided strong

evidence of recurrence for two of these mutations (FUS and LINGO2, see Supplemental Fig. S22,

Supplemental Results for details). Apart from the primary and metastatic tumor clones, there was

another cluster (I) consisting of 7 primary diploid cells that had completely independent somatic

mutations. These cells acquired mutations in SPEN, ALK, ATR, NR3C2 and EPHB6 but did

not share any other mutations with the primary or metastatic tumor cells, representing an entirely

different tumor lineage that did not expand significantly. We reconstructed the migration history

of the tumor clones by running MACHINA (El-Kebir, Satas, and Raphael, 2018) on the SiCloneFit

inferred clonal phylogeny, whose leaves (clonal clusters) were annotated by the anatomical site

of origin of the associated cells. The inferred migration graph (Fig. 4b) had two migrations with

comigration number = 1 (also the minimum possible comigration number for two anatomical sites),

indicating polyclonal single-source seeding from colon to liver. Here, both the seeding events led to

expansion of tumor mass in liver and resulted in two different metastatic subclones.

SCG reported 5 clonal clusters from this dataset (Supplemental Fig. S23). Clustering and geno-

typing results of SCG mostly agreed with that of SiCloneFit. However, SCG failed to detect

two primary tumor subclones and instead clustered them together into one subclone resulting in

incorrect genotyping for those cells. Furthermore, SCG did not infer any phylogeny.
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Discussion

Inference of tumor subclones and their evolutionary history is of paramount importance given their

contribution to drug resistance and therapeutic relapse. While this problem has been investigated

in depth in the context of bulk sequencing data, methods are lacking for SCS data, most promising

and high-resolution data for studying tumor heterogeneity. Here, we reported on SiCloneFit, a novel

probabilistic framework for inferring the number and structure of tumor clones, their genotypes and

evolutionary history from noisy somatic SNV profiles of single cells. Our unified framework jointly

reconstructs the tumor clones as clusters of single cells as well as their genealogical relationship in

the form of a clonal phylogeny. In this process, SiCloneFit accounts for the effects of mutational

events (point mutations, LOH, deletion) in the evolutionary history of the tumor via a finite-

sites model of evolution and denoises the effects of technical artifacts such as allelic dropout,

false-positive errors, missing entries and cell-doublets to infer the clonal genotypes. SiCloneFit

employs a Gibbs sampling algorithm consisting of partial reversible-jump MCMC, partial Gibbs

updates for estimating the latent variables by sampling from the posterior distribution. A major

distinguishing feature of SiCloneFit is that it jointly solves the subclonal reconstruction and tumor

phylogeny inference problems from SCS datasets whereas existing methods either cluster the cells

into subclones or infers a tumor phylogeny. The phylogeny inference methods (except SiFit) also

rely on infinite sites assumption to restrict the search space. On the contrary, SiCloneFit employs

a finite-sites model of evolution to account for mutation recurrence and losses. At the same time,

SiCloneFit accounts for cell doublets, an important technical artifact that is not dealt with by

existing single-cell phylogeny inference methods.

We assessed SiCloneFit’s performance through a comprehensive set of simulation studies aimed at

creating experimental settings corresponding to different aspects of modern SCS datasets. Datasets

were generated with a varying number of cells, genomic sites and tumor subclones, a wide range of

error rates, varying amount of missing data and cell doublets. In simulated benchmarks, SiCloneFit

outperformed the state-of-the-art methods based on different metrics for evaluating its performance

in inferring the clonal clusters, clonal genotypes and the clonal evolutionary history. We also applied
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SiCloneFit on two targeted SCS datasets from two metastatic colon cancer patients for studying

the intratumor heterogeneity. For these tumors, SiCloneFit inferred the primary and metastatic

subclones as clusters of single cells, inferred their genotypes, reconstructed the genealogy of these

subclones and inferred the temporal order of the mutations in their evolutionary history revealing

mutations that potentially played an important role in metastatic divergence.

SiCloneFit’s model is flexible, and more complex model of evolution can be incorporated to account

for copy number information. The inclusion of copy number variations along with SNVs can improve

the estimation of subclones and help in uncovering the interaction between SNV and CNVs at the

single cell level. The error model can be further extended to utilize reference and variant read

counts at each mutation site in each cell as the input data instead of presence/absence of mutation

inferred by a variant caller.

In closing, SiCloneFit advances the understanding of intratumor heterogeneity and clonal evolution

through improved computational analysis of SCS data. As SCS becomes more high-throughput gen-

erating somatic SNV profiles for thousands of cells, SiCloneFit will be very helpful in reconstructing

the tumor clones and clonal phylogeny from such large datasets. Being capable of handling dou-

blets, SiCloneFit will find important applications in removing doublets, as their percentage can be

high in more high-throughput datasets. Methods like SiCloneFit will have important translational

applications for improving cancer diagnosis, treatment and therapy in clinical applications.

Methods

Model Description

We assume that we have measurements fromm single cells. For each cell, n somatic single nucleotide

variant (SNV) sites have been measured. The data can be represented by a matrix Dn×m = (Dij) of

observed genotypes, where Dij is the observed genotype at the ith site of cell j. Let gt be the set of

possible true genotype values for the SNVs, and go be the set of observable values for the SNVs. For

binary measurements for SNVs, gt = {0, 1}, whereas go = {0, 1, X}, where 0, 1 and X denote the
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absence of mutation, presence of mutation, and missing value respectively. If ternary measurements

are available for SNVs, gt = {0, 1, 2} and go = {0, 1, 2, X}, where 0 denotes homozygous reference

genotype, 1 and 2 denote heterozygous, and homozygous non-reference genotypes, respectively, and

X denotes missing data.

We assume that there is a set of K clonal populations from which m single cells are sampled and

the clonal populations can be placed at the leaves of a clonal phylogeny, T . Each clonal population

consists of a set of cells that have identical genotype (with respect to the set of mutations in con-

sideration) and a common ancestor. The genotype vector associated with a clone c is called clonal

genotype (denoted by Gc) and it records the genotype values for all n sites for the corresponding

clone. The true genotype vector of each cell is identical to the clonal genotype of the clonal popula-

tion where it belongs to. The clonal genotype matrix, GK×n, represents the clonal genotypes of K

clones. It is important to note that, K, the number of clones is unknown. To automatically infer

the number of clones and assign the cells to clones, we introduce a tree-structured infinite mixture

model. (Meeds et al., 2008) describes a nonparametric Bayesian prior over trees similar to mixture

models using a Chinese restaurant process (CRP) (Pitman, 2006) prior. For this tree-structured

CRP, each node of the tree represents a cluster. In our model, we extend this idea to define a

nonparametric Bayesian prior over binary trees, leaves of which represent the mixture components

(clonal clusters). A Chinese restaurant process defines a distribution for partitioning customers

into different tables. In our problem, single cells are analogous to customers and clonal clusters are

analogous to tables. Let cj denote the cluster assignment for cell j and assume that cells 1 : j − 1

have already been assigned to clonal clusters {1, . . . , |c1:j−1|}, where |c1:j−1| denotes the number

of clusters induced by the cluster indicators of j − 1 cells. The cluster assignment of cell j, cj is

based on the distribution defined by a Chinese restaurant process is given by

p(cj = c|c1:(j−1), α0) =
nc

j − 1 + α0

p(cj 6= ck∀k < j|c1:(j−1), α0) =
α0

j − 1 + α0

(1)

where nc denotes the number of cells already assigned (excluding cell j) to cluster c. α0 is the
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concentration parameter for the CRP model.

The clonal phylogeny, T , is a rooted directed binary tree whose number of leaves is equal to

the number of clonal clusters, K = |c| defined by the assignment of m cells to different clusters

by the CRP. The root of T represents normal (unmutated) genotype and somatic mutations are

accumulated along the branches of the phylogeny. Each leaf in the clonal phylogeny corresponds

to a clonal cluster, c ∈ {1, . . . ,K} and is associated with a clonal genotype Gc that records the set

of mutations accumulated along the branches from the root. To model the evolution of the clonal

genotypes, we employ a finite-site model of evolution, Mλ, that accounts for the effects of point

mutations, deletion and loss of heterozygosity on the clonal genotypes. The model of evolution

assigns transition probabilities to different genotype transitions along the branches of the clonal

phylogeny. The true genotype of each cell is identical to the clonal genotype of the clonal cluster

where it is assigned. However, observed genotypes of single cells differ from their true genotype

due to amplification errors introduced during the single-cell sequencing work flow. The effect of

amplification errors is modeled using an error model distribution parameterized by FP error rate,

α and FN error rate, β. The generative process can be described as follows:

1. draw α0 ∼ Gamma(a, b), α ∼ Beta(aα, bα), β ∼ Beta(aβ, bβ)

2. For j ∈ {1, 2, . . . ,m}, draw cj ∼ CRP (α0).

From this, derive K = |c|, the total number of clusters (or clones) implicitly defined by c.

3. draw T ∼ Tprior(K).

4. For λ ∈Mλ, draw λ ∼ Beta(aMλ
, bMλ

)

5. For k ∈ {1, 2, . . . ,K}, draw Gk ∼ F (Gk|T ,Mλ).

6. For j ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n}, draw Dij ∼ E(Dij |Gcji, α, β).

c denotes the clonal assignments of all cells. Tprior is the prior distribution on phylogenetic trees for

a fixed number of leaves. Mλ denotes the set of parameters in the finite-sites model of evolution.

F denotes a distribution on the genotypes at the leaves of a phylogenetic tree and can be computed

using Felsenstein’s pruning algorithm Felsenstein, 1981 given the phylogeny and a finite-site model
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of evolution. E is the error model distribution that relates the observed genotype at locus i for cell

j, Dij to clonal genotype Gcji. a, b, aα, bα, aβ, bβ, aM , bM denote different hyperparameters used in

this model.

In addition to the variables in the singlet model, the doublet-aware model of SiCloneFit incorporates

a Bernoulli variable for each cell for indicating whether the cell is a singlet or a doublet, a Beta

distributed variable for doublet rate and a secondary cluster indicator for each cell so that a doublet

can be assigned to two clonal clusters. Supplemental Table S6 defines the expected genotype for

a doublet. These additional variables are described in Supplemental Table S7. The generative

process for the doublet-aware model is described in detail in Supplemental Methods.

Model of Evolution and Error Model

To capture the effect of point mutations, LOH and deletion on the clonal genotypes along the

branches of clonal phylogeny, we employ a finite-site model of evolution similar to the one introduced

in SiFit (Zafar et al., 2017). The finite-site model of evolution,Mλ, is modeled using a continuous-

time Markov chain that assigns a probability with each possible transition of genotypes. The

transition rate matrix of the continuous-time Markov chain for binary and ternary genotypes can

be defined based on branch length, t, and parameters λr and λl, accounting for the effects of

recurrent mutation and mutation loss, respectively. These are described in detail in Supplemental

Methods.

To account for FP and FN errors in SCS data, we introduce an error model distribution, E(Dij |Gcji, α, β),

which gives the probability of observing genotype Dij for locus i in cell j, given the true clonal

genotype Gcji. The error model distribution for ternary and binary data are shown in Supplemental

Table 4 and Supplemental Table 5 respectively.
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Posterior Distribution

The posterior distribution P over the latent variables of the SiCloneFit model is given by

P(V|D,H) ∝ P (D|V)× P (V|H) (2)

where V denotes the set of latent variables in the model, V = {c,G, T ,Mλ, α, β, α0}. c is a vector

containing cluster assignment for all cells and it implicitly defines the number of clones K. H is the

set of fixed hyper-parameters of the model, H = {aα, bα, aβ, bβ, aM , bM , a, b}. In Eq. (2), the term

P (D|V) denotes the likelihood of the model and the term P (V|H) denotes the product of prior

probabilities. The posterior distribution for the doublet-aware model is described in Supplemental

Methods.

Likelihood Function

The likelihood function employed by SiCloneFit is given by

P (D|V,H) = E(D|c,G, α, β) =

n∏

i=1

m∏

j=1

E(Dij |Gcji, α, β) (3)

In Eq. (3), E(Dij |Gcji, α, β) is given by the error model distribution of observing genotype Dij for

site i in cell j, given the true clonal genotype Gcji and is parameterized by α and β. This error

model is based on the error model of SiFit (Zafar et al., 2017). The likelihood of the doublet-aware

model is described in Supplemental Methods.

Prior Distributions

The SiCloneFit model incorporates a compound prior given by

P (V|H) = P (c,G, T ,Mλ, α, β, α0|H)

= F (G|T ,Mλ)P (c|α0)P (T )P (α, β,Mλ, α0|H)

(4)
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where

P (α, β,Mλ, α0|H) = P (α|aα, bα)P (β|aβ, bβ)P (Mλ|aM , bM )P (α0|a, b).

F (G|T ,Mλ) denotes the prior distribution on the clonal genotype matrix given a clonal phy-

logeny T and parameters of the model of evolution Mλ, and it can be efficiently calculated using

Felsenstein’s pruning algorithm (Felsenstein, 1981) assuming sites are independent and identically

distributed. P (c|α0) denotes the prior probability of partitioning m single cells into K (K is the

number of clusters defined by c) clusters under a CRP with concentration parameter α0. P (T )

denotes the prior probability on the clonal phylogeny. This is a product of prior on topology and

prior on branch length. We consider uniform distribution for the prior on topology and exponential

distribution for the prior on branch lengths. As the values of the error rate parameters α, β and

the parameters of the model of evolutionMλ lie between 0 and 1, we use Beta distribution as their

prior. For the concentration parameter α0, we assume a Gamma prior as suggested in (Escobar

and West, 1995). We set the value of hyperparameters for the Gamma distribution to a = 1 and

b = 1 for all the analyses performed, but these are user-specified parameters in the software. All

the prior distributions are described in detail in Supplemental Methods. The doublet-aware model

of SiCloneFit contains additional parameters for indicating whether a cell is a singlet or a doublet,

doublet rate and assigning a cell to two clonal clusters and the associated prior distributions are

described in Supplemental Methods.

Inference

We designed a Markov chain Monte Carlo (MCMC) sampling procedure based on the Gibbs sam-

pling algorithm to estimate the latent variables according to Eq. (2). Our algorithm is inspired

by a partial Metropolis-Hastings, partial Gibbs sampling algorithm described in (Neal, 2000). In

each iteration, the sampler first samples new cluster indicators, c∗, for all the cells using partial

Metropolis-Hastings partial Gibbs updates. During this, the dimensionality of the sample may

change due to addition of a new cluster (resulting in addition of new edges in the clonal phylogeny)

or removal of an existing singleton cluster (resulting in removal of existing edges from the clonal

24

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394262doi: bioRxiv preprint 

https://doi.org/10.1101/394262
http://creativecommons.org/licenses/by-nc/4.0/


phylogeny). In case the dimensionality changes, the absolute value of the determinant of the Ja-

cobian matrix is also taken into account, which results in partial reversible-jump MCMC (Green,

1995) updates. When such dimension changing moves are accepted, the corresponding new clonal

phylogeny T ∗ and new clonal genotype matrix G∗ are also accepted. The sampler next samples a

new clonal phylogeny and new parameters of the model of evolution with the help of a Metropolis-

Hastings MCMC sampler. After that, new clonal genotype for each clonal cluster is sampled from

the conditional posterior distribution. To sample new values of the error rate parameters from

their corresponding conditional posterior distributions, our sampler employs rejection sampling.

Finally, the concentration parameter α0 is sampled based on the method described in (Escobar and

West, 1995). The sampling algorithms for both the singlet and doublet models of SiCloneFit are

described in detail in Supplemental Methods.

Software Availability

SiCloneFit has been implemented in Java and is freely available at https://bitbucket.org/

hamimzafar/siclonefit, released under the MIT license.
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