Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

rawMSA: End-to-end Deep Learning Makes Protein Sequence Profiles and Feature Extraction obsolete

Claudio Mirabello, View ORCID ProfileBjörn Wallner
doi: https://doi.org/10.1101/394437
Claudio Mirabello
1IFM Bioinformatics, Linköping University, Linköping, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Björn Wallner
1IFM Bioinformatics, Linköping University, Linköping, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Björn Wallner
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

In the last few decades, huge efforts have been made in the bioinformatics community to develop machine learning-based methods for the prediction of structural features of proteins in the hope of answering fundamental questions about the way proteins function and about their involvement in several illnesses. The recent advent of Deep Learning has renewed the interest in neural networks, with dozens of methods being developed in the hope of taking advantage of these new architectures. On the other hand, most methods are still based on heavy pre-processing of the input data, as well as the extraction and integration of multiple hand-picked, manually designed features. Since Multiple Sequence Alignments (MSA) are almost always the main source of information in de novo prediction methods, it should be possible to develop Deep Networks to automatically refine the data and extract useful features from it. In this work, we propose a new paradigm for the prediction of protein structural features called rawMSA. The core idea behind rawMSA is borrowed from the field of natural language processing to map amino acid sequences into an adaptively learned continuous space. This allows the whole MSA to be input into a Deep Network, thus rendering sequence profiles and other pre-calculated features obsolete. We developed rawMSA in three different flavors to predict secondary structure, relative solvent accessibility and inter-residue contact maps. We have rigorously trained and benchmarked rawMSA on a large set of proteins and have determined that it outperforms classical methods based on position-specific scoring matrices (PSSM) when predicting secondary structure and solvent accessibility, while performing on a par with the top ranked CASP12 methods in the inter-residue contact map prediction category. We believe that rawMSA represents a promising, more powerful approach to protein structure prediction that could replace older methods based on protein profiles in the coming years.

Availability datasets, dataset generation code, evaluation code and models are available at: https://bitbucket.org/clami66/rawmsa

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted October 22, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
rawMSA: End-to-end Deep Learning Makes Protein Sequence Profiles and Feature Extraction obsolete
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
rawMSA: End-to-end Deep Learning Makes Protein Sequence Profiles and Feature Extraction obsolete
Claudio Mirabello, Björn Wallner
bioRxiv 394437; doi: https://doi.org/10.1101/394437
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
rawMSA: End-to-end Deep Learning Makes Protein Sequence Profiles and Feature Extraction obsolete
Claudio Mirabello, Björn Wallner
bioRxiv 394437; doi: https://doi.org/10.1101/394437

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4109)
  • Biochemistry (8813)
  • Bioengineering (6517)
  • Bioinformatics (23456)
  • Biophysics (11788)
  • Cancer Biology (9205)
  • Cell Biology (13318)
  • Clinical Trials (138)
  • Developmental Biology (7433)
  • Ecology (11407)
  • Epidemiology (2066)
  • Evolutionary Biology (15145)
  • Genetics (10433)
  • Genomics (14041)
  • Immunology (9169)
  • Microbiology (22152)
  • Molecular Biology (8808)
  • Neuroscience (47558)
  • Paleontology (350)
  • Pathology (1428)
  • Pharmacology and Toxicology (2491)
  • Physiology (3730)
  • Plant Biology (8079)
  • Scientific Communication and Education (1437)
  • Synthetic Biology (2220)
  • Systems Biology (6037)
  • Zoology (1252)