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Abstract  24	

Chronic livestock diseases cause large financial loss and affect the animal health and welfare. 25	

Controlling these diseases mostly requires precise information on both individual animal and 26	

population dynamics to inform farmer’s decision. Mathematical models provide opportunities to 27	

test different control and elimination options rather implementing them in real herds, but these 28	

models require valid parameter estimation and validation. Fitting these models to data is a 29	

difficult task due to heterogeneities in livestock processes. In this paper, we develop an 30	

infectious disease modeling framework for a livestock disease (paratuberculosis) that is caused 31	

by Mycobacterium avium subsp. paratuberculosis (MAP). Infection with MAP leads to reduced 32	

milk production, pregnancy rates, and slaughter value and increased culling rates in cattle and 33	

causes significant economic losses to the dairy industry in the US. These economic effects are 34	

particularly important motivations in the control and elimination of MAP. In this framework, an 35	

individual-based model (IBM) of a dairy herd was built and a MAP infection was integrated on 36	

top of it. Once the model produced realistic dynamics of MAP infection, we implemented an 37	

evaluation method by fitting it to data from three dairy herds from the Northeast region of the 38	

US. The model fitting exercises used least-squares and parameter space searching methods to 39	

obtain the best-fitted values of selected parameters. The best set of parameters were used to 40	

model the effect of interventions. The results show that the presented model can complement 41	

real herd statistics where the intervention strategies suggested a reduction in MAP but no 42	

elimination was observed. Overall, this research not only provides a complete model for MAP 43	

infection dynamics in a cattle herd, but also offers a method for estimating parameter by fitting 44	

IBM models.  45	

 46	

 47	
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Introduction  48	

Chronic livestock diseases like paratuberculosis (PTB) and bovine tuberculosis (bTB) are 49	

commonly reported worldwide (1,2). Bovine TB is caused by the pathogen Mycobacterium bovis 50	

(M. bovis) while PTB is caused by Mycobacterium avium subsp. paratuberculosis (MAP). In the 51	

UK, bTB has been spreading over the last two decades, putatively due to the presence of a 52	

wildlife reservoir in badgers(3). In United States (US), 68% of dairy herds have apparently at least 53	

one cow that is infected with MAP (4). Both diseases pose a potential threat not only to animal 54	

health and production, but also to public health. Historically, bTB has been a contributor to 55	

human TB cases worldwide and PTB infections in humans have been associated with an 56	

increased risk of Crohn’s disease in humans(5). Recently, it has been reported that these 57	

diseases may induce additional collateral risks for public health due to dispensed antibiotics as 58	

a treatment in some cases can potentially contribute to the spread of antibiotic resistance(6). 59	

 60	

In the US cattle industry, the cost of PTB was estimated at $250 million every year (7). Infection 61	

by MAP usually occurs in the first year of life(8) and transmission can occur vertically (9) and/or 62	

horizontally via ingestion of fecal material contaminated by MAP (10). As PTB is a slowly 63	

progressive disease, progression of individual animals through different MAP infection states is 64	

a complex continuous process alternating excreting and non-excreting stages with a late onset 65	

of clinical signs (11,12). It has a large economic impact for producers due to decreased milk 66	

production (13–15), premature culling (16,17), reduced slaughter value (18), low fertility (19,20), 67	

and an increased animal replacement rate (21). However, tests routinely used on individuals have 68	

low sensitivities, especially in the early stages of the disease (22). 69	

 70	

In last two decades, different mathematical models have been developed on a within-herd scale 71	

to understand MAP transmission dynamics (23,24) and effectiveness of recommended control 72	
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strategies (25–28). These models were simulated to assess the impact of contact structure on 73	

the MAP transmission (23) , efficacy of test-and-cull policy (24,25,29,30), impact of low 74	

diagnostic test sensitivity in decision making (8,31), stopping some transmission pathways using 75	

hygiene improvement (32), improved calf management (33), impact of super-shedders in 76	

transmission(34,35) , and economic efficacy of recommended programs (29). Most of these 77	

studies suggest that culling a test positive animal is an effective solution to reduce the 78	

prevalence. However, none of the previous models considered the pervasiveness of MAP in the 79	

farm environment and the value of information of individual animal along with real dairy herd 80	

data. Moreover, controlling MAP requires significant management of testing and culling 81	

strategies to reduce the prevalence, which are normally unregulated and reliant on farmers’ 82	

decisions(36). The decision of culling an animal is not straightforward and poses a multiscale 83	

problem where an individual animal, farm dynamics, infectious status and disease symptoms, 84	

and management profit are related (37). Substantial costs are also related to the implementation 85	

of control measures and prevention (21,34,38). Though previous compartmental MAP models 86	

have shown many potential interventions programs, most considered population-level decision 87	

making rather than individual-level animal information. Recently, individual-based models (IBMs) 88	

have been proposed to show the value of the information about the infection, daily life events 89	

and management policy for each individual animal within the farm (32,37,39–42)  90	

 91	

Mathematical models of infectious diseases often direct us to understand both infection biology 92	

and efficacy of intervention policies taken in human and veterinary medicine(43). However, 93	

translating modeling results into practice require appropriately real-world assumptions to be built 94	

into the model. We hypothesize that in case of MAP, the use of model results will more realistic 95	

when the model has been built on up-to-date infection biology and epidemiology, parametrized 96	

from adequate real herd data and fitted back to that real-world scenario to test the recommended 97	
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intervention strategies. In this paper, our aim is to build an IBM framework of MAP infection that 98	

is fitted to and validated by in-depth longitudinal data from three northeastern dairy farms. The 99	

objective of this study was four-fold: first, we extended an existing IBM of a dairy herd to 100	

resemble the population level parameters (i.e. milk yield, herd size) with three real herds to create 101	

three in silico herds; second, we fitted the milk-yield measurement of individual animal to those 102	

herds; third, we fitted the model-predicted apparent MAP prevalence to the observed data to 103	

obtain herd-specific important infection parameters; and fourth, we integrated a risk-based 104	

control strategies on those three in silico herds to evaluate the efficacy. Finally, we discuss the 105	

value of observational data to feed information to simulation models, thereby making simulations 106	

more reflective and predictive of real-world circumstances. 107	

 108	

 109	

Materials and Method  110	

The Individual-based model 111	

We used the dairy herd model named a multiscale agent-based simulation of a dairy herd 112	

(MABSdairy), an improved version of dairy herd published in Al-Mamun et al. (32,40). The 113	

MABSdairy is a multiscale stochastic IBM that simulates individual cows in a standard US cattle 114	

herd with a daily time step. In brief, each cow resides in one of three different management 115	

operations: adult/milking (aged >720 days), calf (aged 1-60 days) and heifer rearing housing 116	

(aged 61-719 days). Adult cows must calve to produce milk and the lactation cycle refers to the 117	

period between one calving and the next. The lactation cycle included the processes of a 118	

voluntary waiting period (interval during the postpartum period), insemination, and the dry off 119	

period (a non-lactating period prior to an impending parturition to optimize milk production in the 120	

subsequent lactation). For the fitting purpose, we modified the milk production Wood lactation 121	

curve by adding a herd-specific term and a herd-specific random component(44). The function 122	
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is defined as 123	

!" = $%&'(" + *+ ∗ *- 

																																								/ℎ'1'		2 = 3$1245	1	$7%	2	95	*$1:	;, =	$7%	> 

(1) 

where Yt is the yield on day t after calving, d is days in milk (DIM), a is a scaling factor for initial 124	

yield, b is a rate factor for the increase in yield to peak, c is a rate factor for the decline after 125	

the peak, fi farm specific factor and fr is a random number. We used base milk yield parameters 126	

from Dematawewa et al. for parities 1 and ≥2 in the basic model (45). 127	

 128	

MAP infection dynamics 129	

The infection compartments in the milking herd were divided into four categories: susceptible 130	

(XA), latent (H), low shedding (Y1), and high shedding (Y2). In calf rearing housing, there were two 131	

infection categories: susceptible (XC) and infected (YC). In heifer rearing housing, there were also 132	

two infection categories: susceptible (XH) and infected (YH). We included six different 133	

transmission routes: adult-to-adult, adult-to-calf (vertical transmission), adult-to-calf (horizontal 134	

transmission), environmental contamination, calf-to-calf, and heifer-to-heifer. The detailed 135	

infection structure is shown in Fig1.  136	

 137	

Fig1. A flow diagram of animal movement among infection categories for the adult, calves, and 138	

heifers within the herd. Each horizontal gray box classifies the animals according to their initial 139	

age group. The green and red boxes define the susceptible and infected states, respectively, for 140	

each animal in the three age categories. The probabilities of exit at each time point from 141	

susceptible to latent, latent to low shedding and low shedding to high shedding animals are s1, 142	

h1, and y1, respectively. Vertical transmission probabilities from latent, low shedding and high 143	
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shedding animals are Vh ,Vy1, and Vy2, respectively. Horizontal transmission probabilities to calves 144	

from low shedding and high shedding animals are Hy1 and Hy2, respectively. The probability an 145	

animal gets infected by the environment is βenvironment. Calf-to-calf and heifer-to-heifer 146	

transmission probabilities are Cinf and Yinf, respectively. Stochastic death/sale probabilities for 147	

adult, calves, and heifers are µa, µc, and µh, respectively. ? is the replacement animals coming 148	

from heifer compartment upon completion of two years.  149	

 150	

In the milking herd group, adult animals could be infected by low and high shedding adults. The 151	

probability of fecal-oral transmission for adult animals can be given by:  152	

 

@7*ABCD"EABCD" = FG
FB+-H(" + FHIJ+-KILHI"

M
 

FB+-H(" = 	FNO!P + FNQ!P 

FHIJ+-KILHI" = 	R	(0,1) 

 

 (2) 

Susceptible adult animals in the milking herd compartment were susceptible to MAP infection 153	

by contact with low shedding (Y1) and high shedding (Y2) animals with transmission rates of FNO 154	

and βWQ, respectively. βX is the adult-to-adult transmission coefficient, FHIJ+-KILHI" is the MAP 155	

contamination risk from the environment and N is the total number of animals in the milking herd, 156	

N= XA+H+Y1+Y2. The horizontal infection probability to calves can be determined by  157	

@7*ABCD"E(ADY = FA
FB+-H(" + FHIJ+-KILHI"

M(
 

 

 (3) 

FAis the horizontal transmission coefficient for an adult to newborn calves and N[is the total 158	

number of calves at every day, N[ = X[ + Y[. A calf can also become infected vertically (i.e., in 159	

utero infection) by an adult and which are modelled using the certain proportions(25) . 160	
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A calf stays in calf rearing housing for the first 60 days after birth. The probability of direct 161	

transmission was calculated as  162	

@7*(ADYE(ADY = ^ + F(
!( + FHIJ+-KILHI"

M(
 

 

 (4) 

F(	is the horizontal calf-to-calf transmission coefficient, N[ is the total number of calves at each 163	

day, Xc is susceptible calves, Yc is infected calves. During the first day after birth, a calf may also 164	

be infected horizontally by infected adults present in the maternity pen or vertically by an infected 165	

dam.  166	

Susceptible calves became susceptible heifers and infected calves became infected heifers. 167	

Infected heifers could infect susceptible heifers by the heifer-to-heifer transmission path 168	

@7*_H+YH-E_H+YH- = F_
!_ + FHIJ+-KILHI"

M`a
 

 (5) 

F_	is the horizontal heifer-to-heifer transmission coefficient, and the total number of heifers is 169	

Nbc = Xd + Yd. After one year, the infected heifers became latent heifers and eventually entered 170	

the milking herd as latent adults. For simplifying the model, we assumed that heifer remains in 171	

the heifer rereading housing are transiently shedding while they ended up in the adult herd as 172	

latent animals.    173	

 174	

Observed herd data  175	

The longitudinal dataset used here was obtained from a longitudinal study of three commercial 176	

dairy farms in the northeastern US: farm A in New York State, farm B in Pennsylvania, and farm 177	

C in Vermont (46,47). All three farms participated in the Regional Dairy Quality Management 178	

Alliance (RDQMA) project, which was a multistate research program conducted under a 179	

cooperative research agreement between the USDA Agricultural Research Service (ARS) and 180	
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four Universities: Cornell University, Pennsylvania State University, University of Pennsylvania, 181	

and University of Vermont. The project consisted of longitudinal data collection for endemic 182	

infectious diseases of public and animal health concern in dairy herds. For a more complete 183	

description, including information on farms, samplings, and microbial analyses, see Pradhan et 184	

al.(46) Briefly, the milking herds consisted of approximately 330, 100, and 140 cows on farms A, 185	

B, and C, respectively. Sampling commenced in February, March, and November 2004 on farms 186	

A, B, and C, respectively, and continued for approximately 7 years, until 2010. The project design 187	

included a biannual collection of individual fecal samples and a quarterly collection of individual 188	

serum samples from all milking and non-lactating cows. Additionally, culled cows were tracked 189	

as much as possible from the farm to the slaughterhouse, where four gastrointestinal (GI) tissues 190	

and a fecal sample were collected with the cooperation of USDA Food Safety and Inspection 191	

Service (FSIS) personnel. The harvested tissues included two lymph nodes located at the 192	

ileocecal junction and two pieces of ileum, one taken from 20 cm proximal to the ileocecal valve 193	

and the other taken from very near the ileocecal valve. In addition to the sampling of animals, 194	

the farm environment was sampled in approximately 20 locations on a biannual basis. All fecal 195	

and environmental samples were tested by 4-tube culture for presence of viable MAP organisms, 196	

reported as colony-forming units per tube. All serum samples were tested using the ParaCheck 197	

ELISA (Prionics USA Inc., La Vista, NE) for antibody reactions to MAP antigens. On each of the 198	

farms, demographic data, production data and herd management information was collected. 199	

Precise demographic data included birth date, birth location, calving dates, fertility data, animal 200	

location data (pen status at any point in time), dry-off dates and culling information and cull 201	

dates. These demographic data were collected for each animal present on the farms. All infection 202	

data, strain typing data, herd management, demographic and production data was maintained 203	

in a relational database. 204	

 205	
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Model parameters 206	

The parameterization of the base dairy herd model is described in Al-Mamun et al. (32,48). Initial 207	

infection parameter values were updated according to Mitchell et al. 2015(43). Table 1 provides 208	

the base parameters for the initial MAP transmission before fitting the model to the RDQMA 209	

herds.  210	

Table 1. Base parameter values of Mycobacterium avium subsp. paratuberculosis (MAP) 211	

infection within a dairy herd. 212	

Symbols Description Initial value References 

Vh The proportion of calves from latent animals 

infected at birth 

0.15 (25) 

Vy1 The proportion of calves from low-shedding 

animals infected at birth 

0.15 (25) 

Vy2 The proportion of calves from high-

shedding animals infected at birth 

0.17 (25) 

FG Adult-to-adult transmission coefficient  0.05 (32) 

FA Adult-to-calf transmission coefficient  0.383 (32) 

F( Calf-to-calf transmission coefficient 0.0025 (32) 

F_ Heifer-to-heifer transmission coefficient  0.001 Calibrated in 

the model 

FeO Transmission rate between low shedders 

(Y1) and susceptible (XA) 

2/year  Calibrated in 

the model  

FeQ Transmission rate between high shedders 

(Y2) and susceptible (XA) 

20/year Calibrated in 

the model 

 213	
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 214	

Model fitting method 215	

The goal of the model-fitting exercise was to estimate key parameters in order to produce results 216	

consistent with the epidemiologic data from three farms. Our fitting exercise was two-fold: first, 217	

we fitted our base dairy herd models with farm-specific parameters (total population and milk 218	

yield), then we fitted the model predicted apparent prevalence results based on antemortem 219	

ELISA and fecal testing and postmortem tissue and fecal testing results for the farm. To assess 220	

the goodness-of-fit we sampled from the defined parameter ranges in multiple rounds and the 221	

model was run for three different scenarios of each of the three farms. The model fitting was 222	

done using a non-linear fitting method named Nelder-Mead Simplex Method (49), which is used 223	

for unconstrained optimization. While fitting the milk yield and apparent prevalence, the best-fit 224	

parameters were extracted.  225	

To determine the specific range for each parameter, we used multidimensional parameter space 226	

searching method. The point estimate of each parameter was taken as a mean value and, using 227	

Latin Hypercube Sampling, 100,000 parameter combinations were generated spanning the 228	

specified range ±75% of the mean values. The searching was done in two stages. In the first 229	

stage, we set a broad range to identify the particular regions of the parameter range and chose 230	

the best 10000 (1%) parameter sets. In the next stage, we ran the simulation with 10% parameter 231	

sets to compare with the best fit curve by minimizing the sumsquare error. The parameter ranges 232	

presented in the results section were calculated from the top 1% simulations.  233	

 234	

Intervention strategies  235	

Once the three in silico herds were stable using fitted values, we tested a proposed intervention 236	

strategy. We chose risk-based testing and culling strategies suggested by Al-Mamun et al. (32). 237	
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In brief, all cows that tested negative throughout testing were marked as low risk or green cows. 238	

The cows that tested positive were divided into two groups: yellow and red. Red animals had at 239	

least 2 positive tests out of the last 4 tests and yellow cows had one positive test. We proposed 240	

two controls: control I, culling red animals straightway (aggressive culling); and control II, culling 241	

only red animal with a delay of 305 DIM (delayed culling). The simulations results were then 242	

compared against the observed pre-fitted data from the three herds. To evaluate the efficacy of 243	

the intervention, we divided our seven years of observation into two parts: the first 4 years were 244	

used for pre-intervention fit, while the last 3 years were used for validation against the model 245	

results, in which the intervention was introduced and run for 3 years. Moreover, we extended the 246	

intervention for more two years to see the long-term efficacy.  247	

 248	

Simulation background  249	

First, the base dairy herd model was initiated with a certain proportion of adult animals for farms 250	

A (330), B (100) and C (140). Second, after a 2-year burn-in period the model was run for 7 more 251	

years to resemble the observations of the real herds. During the 2 years burn-in period, each 252	

farm was assumed to be self-sufficient in producing their own replacement, so that no animal 253	

purchase from outside was needed. The model was initiated with a pre-determined distribution 254	

of animals with different parities. Every day, the algorithm first determined the group of animals. 255	

If it found adult animals, it checked reproductive status (voluntary waiting period (VWP), waiting 256	

to be inseminated, and pregnant) and milk yield status. Any cow on the 280th day of pregnancy 257	

was assumed to calve. For a newborn calf, the stillbirth probability was checked; if the calf was 258	

not stillborn, it was flagged as a calf. Only female calves were kept in the herd, and male calves 259	

were removed/sold immediately after birth. Once an adult animal calved, it transitioned to VWP 260	

status and continued in the milking herd loop until it was removed due to culling or death. 261	

Mortality was allowed in the calf rearing loop; otherwise, calves were transferred into the heifer 262	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394569doi: bioRxiv preprint 

https://doi.org/10.1101/394569
http://creativecommons.org/licenses/by/4.0/


	 13	

loop at the 61st day of age. In the heifer loop, heifers were inseminated at the 400th day of age 263	

in order to become pregnant, so that they would calve at the 680th day of age. When heifers 264	

were ready to calve for the first time, they transitioned to the milking herd in the model. The 265	

model was fitted for the 7 years data for each farm. Third, for testing intervention strategies, each 266	

model was fitted to the first 4 years of data- that is called pre-intervention fit, and then the 267	

intervention was tested in 2 phases. In the first phase, 3 years and then extended more 2 years 268	

to see how the suggested strategies result in long term. The base model was developed as 269	

custom codes in MATLAB and other data analysis were done using R.  270	

 271	

Results 272	

The purpose of the fitting exercises was to obtain a better fit to the estimates of three herds prior 273	

fitting to the apparent prevalence. The model predicted total number of animals (adult, calves, 274	

and heifers) closely resembles the data from the three real farms (shown in table 2).  275	

 276	

Table 2. The comparison of observed and predicted values from three in silico farms in terms of 277	

a total number of animals, and average daily milk yield (in kg) for 305 days, presented as Mean 278	

(95% Confidence Interval).  279	

Herd A Total number of animals Milk yield: parity 1 Milk yield: parity ≥ 2 

 Observed  720 (708-754) 36.07 (29.61-40.73) 39.48 (27.11-49.86) 

 Predicted  714 (693-737) 36.15 (30.44-40.73) 39.49 (27.56- 50.18) 

Herd B    

 Observed  194 (102-230) 33.38 (24.34-40.35) 34.52 (17.42-47.40) 

 Predicted  200 (182–219) 32.97 (26.51-38.31) 34.97 (21.86-48.29) 

Herd C    
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 Observed  262 (116-339) 27.49 (19.03-34.68) 27.49 (19.03-34.68) 

 Predicted  221 (184-257) 27.16 ( 20.23-32.98) 27.90 (17.12-38.06) 

 280	

Fig2 shows the concordance between predicted and observed milk yield data from three herds. 281	

It is evident that the models predicted milk yield estimations matched with the observed milk 282	

yield from three northeastern herds. The best fit model predictions to the observed milk yield 283	

curve for parity 1 and parity ≥2 are shown in supplementary FigS1 . The best fitting lines also 284	

describe that the model was able to capture inherent randomness from the data into the model. 285	

The estimation of the critical parameters a, b, c, and fi of the modified lactation curve are 286	

presented in table 3. 287	

 288	

Fig2. The comparison of observed and model predicted milk yield distribution for 1% simulation 289	

using best fit parameters for the milk yield. In the box plot, the bottom and top end of the bars 290	

are minimum and maximum values respectively, the top of the box is the 75th percentile, the 291	

bottom of the box is the 25th percentile, and the horizontal line within the box is median; outliers 292	

are presented as a solid black circle and the density of the milk yield is presented by the width 293	

of the violin. 294	

Table 3. The estimated parameters from the fitting exercise for the modified milk yield function 295	

for three farms A, B, and C.  296	

 a  b  c Herd specific parameter 

(fi) 

 Farm A-Parity 1 17.87 0.207 0.00199 3.59 

 Farm A-Parity≥2 25.23 0.199 0.00329 5.19 

 Farm B-Parity 1 16.09 0.198 0.00196 6.60 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/394569doi: bioRxiv preprint 

https://doi.org/10.1101/394569
http://creativecommons.org/licenses/by/4.0/


	 15	

 Farm B-Parity≥2 23.38 0.200 0.00392 8.33 

 Farm C-Parity 1 15.25 0.193 0.00269 6.55 

 Farm C-Parity≥2 16.50 0.215 0.00399 9.00 

 297	

Model fitting exercises 298	

Table 4 represents the observed apparent prevalence and apparent incidence and the tracking 299	

of the animals in the next biannual testing for three farms for seven years, 2004-2010. The 300	

observed prevalence shows zero infected animals in the last half of 2010, for the sake of 301	

persistence scenario we replace that with the previous quarter value. During our simulation, we 302	

normalized the prevalence with the previous half of the year so that it remains consistent for our 303	

simulation. We simulated the three in silico farms to fit with the observed apparent prevalence 304	

data from herd A, B and C.  305	

 306	

Fig3 shows the model predicted prevalence with a 95% confidence interval while fitting against 307	

the observed prevalence. It should be noted that our model confidence interval overpredicts the 308	

prevalence of herd B, but for other two herds it forecasts the better fitting. Through this model 309	

fitting exercise, our aim was to estimate the critical infection parameters for each herd, so that 310	

we can suggest herd specific intervention strategies.311	
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 312	

Table 4. The calculation of apparent prevalence and apparent incidence and the tracking of the animals in the next testing in bi-313	

annually phase for three farms (2004-2010). 314	

Year 2004 2005 2006 2007 2008 2009 2010 

Test phase 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Herd A               

Total positive cows a 14 25 34 28 34 32 21 23 24 17 14 9 7 0 

 Animals tested  315 330 364 349 354 364 338 332 337 347 341 347 296 239 

 Apparent prevalence  4.4 7.6  9.3  8.0  9.6  8.8  6.2  6.9  7.1  4.9  4.1  2.6  2.4  0.0  

 New casesb  14 16 18 12 13 13 7 10 11 6 5 2 0 0 

 Cow-years at riskc    239   293  284  272   276   280   198 

 Apparent incidenced    0.13   0.10  0.09   0.06   0.06   0.02   0 

Herd B   

 Total positive cows  9 8 6 3 6 5 4 3 3 2 5 5 1 0 

 Animals tested  106 122 128 128 113 113 115 114 111 109 113 109 82 1 

 Apparent prevalence 8.5 6.6 4.7 2.3 5.3 4.4 3.5 2.6 2.7 1.8 4.4 4.6 1.2 0.0 

 New cases  9 1 2 0 5 4 1 0 1 1 4 1 0 0 

 Cow-years at risk   72  99  95  94  93   83   37 

 Apparent incidence   0.14  0.02  0.10  0.01  0.02   0.06   0 
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Herd C   

 Total positive cows  0 17 26 23 19 22 18 20 18 15 13 8 7 0 

 Animals tested  0 121 145 149 178 161 145 155 157 145 142 117 102 0 

 Apparent prevalence NA 14.0 17.9 15.4 10.7 13.7 12.4 12.9 11.5 10.3 9.2 6.8 6.9 NA 

 New cases 0 17 9 7 5 9 5 4 4 5 2 2 1 0 

 Cow-years at risk    13  114  123  110  117  108  33 

 Apparent incidence   1.27  0.14  0.11  0.08  0.08  0.04  

0.0

3 

aTest positive cows by considering enzyme-linked immunosorbent assay (ELISA) testing, fecal testing and tissue testing. 315	

bNumber of cows tested positive for the first time 316	

cObservation time (in years) from entry in the study (at the first testing) until each cow tested positive or left the study (by culling, i.e. 317	

the infection status of cow is right censored) 318	

dNew cases per year / cow-years at risk319	
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 320	

Fig3. The fitting results of three in silico herds A (top), B (middle), and C (bottom) compared to 321	

the observed apparent prevalence for 7 years by biannual sampling. The shaded region shows 322	

the 95% confidence interval of the best 1% simulation runs.  323	

 324	

Estimated parameters 325	

Table 5 provides the best fit estimates of herd-specific infection parameters for three 326	

northeastern dairy herds. Among the three herds, the model suggested that dam-to daughter 327	

transmission routes were the major transmission routes with the coefficient (!") values of 0.4046, 328	

0.1781 and 0.825 for farm A, B and C respectively. Environmental contamination was the second 329	

major transmission routes while adult-to-adult transmission route was ranked third. Interestingly, 330	

we found that the importance of adult-to-calf transmission was highest in herd C, in which the 331	

initial number of latent animals were highest in numbers among the three herds. Based on the 332	

best 1% parameter sets, herd C again had the highest number of latent animals present (shown 333	

in supplementary table S1).  334	

Table 5. The values of fitted parameters for three farms A, B and C. 335	

Parameters Herd A Herd B Herd C 

Adult to adult transmission 

coefficient (!$) 

0.0069 0.0023 0.0005 

Adult to calf transmission 

coefficient (!") 

0.4046 0.1781 0.825 

Environmental transmission 

coefficient 	(!'()*+,(-'(.) 

0.0869 0.0711 0.0162 
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Calf to calf transmission 

coefficient (!/) 

5.3�10-06 3.61�10-06 5.2�10-06 

Heifer to heifer transmission 

coefficient (!0) 

4.36�10-06 1.18�10-06 1.98�10-06 

Initial Latent animals (1*) 18 12 81 

Initial low shedding animals 

(234) 

15 2 12 

Initial high shedding 

animals	(254) 

22 8 9 

It is also noticeable that herd A has the highest adult-to-adult transmission probability among 336	

the three farms. Also, the initial starting distribution of the infected animals was very important 337	

for the fitting. It is seen that herd C start with the highest proportion of latent (73%) and low 338	

shedding (31%) animals among the three farms. The best-fitted parameters set is shown in the 339	

supplementary table (shown in supplementary table S1).  340	

 341	

Intervention strategies 342	

Once the three in silico herds were obtained from the fitting exercises, our next aim was to test 343	

the risk-based test and culling policy for each farm. The risk-based intervention was 344	

implemented after 4 years of the initially fitted model to see the efficacy of the intervention 345	

strategy. Fig4 presents the summary of the pre-intervention, post-intervention and extended 346	

intervention results to the three fitted dairy herds. The results clearly show that the suggested 347	

intervention policy reduces the overall apparent prevalence for three herds, but it is noticeable 348	

that for high endemic herds the risk-based culling was comparatively less effective than the low 349	

endemic herds. To investigate further, we extended our intervention 2 years beyond the 350	
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observations, but we did not see any elimination of MAP infection for the risk-based culling policy 351	

with control II. Culling red animals immediately (control I) was the best policy for all herds to 352	

decrease prevalence. Furthermore, we also calculated the number of years taken by the model 353	

to reduce the prevalence by 25% and 5% while two control programs were implemented after 354	

the pre-intervention period for three farms (shown in FigS2).  355	

 356	

Fig4. The apparent prevalence during the pre- and post-intervention period during the simulation 357	

of three in silico herds with two control strategies. Control I: culling red animals immediately and 358	

control II: culling only red animal with a delay of 305 days in milk. The two control measures are 359	

simulated in separating runs of the three in silico herds. 360	

 361	

Discussion and conclusion 362	

Currently, only imperfect intervention strategies are available for PTB in the US. Therefore, there 363	

is a need to develop more effective control strategies to facilitate elimination of this disease from 364	

dairy herds. To enhance this effort, the mathematical modeling can play an important role, but 365	

the models can only provide realistic results when built from real herd data, to estimate the herd 366	

and infection-specific parameters and to test different intervention strategies prior to 367	

implementation in real herds. This paper presents an IBM modeling framework of MAP where 368	

simulation prediction was fitted and validated using datasets from a longitudinal study 369	

conducted in three northeastern dairy herds. The fitting exercise shows that the IBM is capable 370	

to reproduce the observed milk yield of each of the three herds separately and estimate key 371	

herd-related parameters. Next, the model results show the best fit to the observed apparent 372	

prevalence and estimate critical transmission parameters for three herds. Ultimately, the best 373	

fitted in silico herd models were simulated using risk-based test and culling intervention 374	
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strategies, showing that these strategies may be more beneficial for low prevalence herds than 375	

for moderately endemic herds.  376	

 377	

The epidemiology of MAP is difficult to study due to the slow progressing nature of MAP, 378	

insufficient testing methods, intermittent shedding of MAP and lack of clinical signs. Many 379	

infected animals are only detected years after initial infection or are actually never detected. 380	

However, precise information on the infection status of animals is valuable for implementing 381	

control strategies. Furthermore, specific information about the animal’s daily life events in the 382	

herd (such as age, milk yield, parity status, clinical signs and adult, calf and heifer rearing 383	

management policies) may assist in designing real-world control strategies. To this purpose, our 384	

IBM approach introduced a closed dairy herd model validated with longitudinal datasets 385	

(43,46,50). The basic herd fitting results suggest that we were able to create three in silico farms 386	

where the animal distribution was similar to the real herds (shown in table 1). This fitting exercise 387	

suggests that our base dairy herd model is capable of producing stable closed in silico dairy 388	

herds, with similar milk yield based on herd-specific milk yield parameters. This kind of features 389	

is very important to evaluate the economic efficacy of the implemented interventions (51). 390	

Moreover, often milk yield gets ignored from the MAP infection model, but accumulatively lower 391	

milk yield influences the culling of animals which is not normally marked that the animal was 392	

culled due to Paratuberculosis symptoms. Similar picture was seen in our data analysis of 393	

RDQMA herds where we found there were only 0.01% times where the animal was culled due 394	

to Paratuberculosis. Our previous study shows that low- and high-path animals produced more 395	

milk before their first positive test than always-negative animals, especially high-path animals. 396	

Although mean production decreased after a first positive test, low-path animals were shown to 397	

recover some productivity(50,52). To account the overall impact of milk yield on culling, we used 398	
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threshold values of milk yield for parity 1 and 2 for each farm by calculating median milk yield 399	

values for each parity from observed data.      400	

 401	

Next, we fitted three in silico herds to the apparent prevalence of the RDQMA herds. The 95% 402	

prediction interval shows that our model captured the trends of the apparent prevalence for three 403	

farms (shown in Fig3). Here we used antemortem ELISA and fecal testing and postmortem tissue 404	

and fecal testing results to determine the test positive animals in our model. In reality, 405	

determining the prevalence is a complex process and such fine-grained detail is rarely available. 406	

For antemorterm fecal culture test the sensitivity is determined 23-29% and 70-74% for infected 407	

cattle and infectious cattle respectively while at the slaughter house culture of tissue and fecal 408	

results 50% and 100% sensitivity and specificity, respectively. On the contrary for ELISA test 409	

our RDQMA suggests 20% and 96% sensitivity and specificity, respectively and these numbers 410	

are aligned with the previous reports by Nielsen and Toft(53) . To avoid this complexity, we have 411	

chosen a range of 25-35% sensitivity for infected animals and 96% specificity. Recently, an 412	

adaptive test scheme was suggested from a simulation model simulated on the standard Danish 413	

dairy herd (8).In another study, test-records from 18,972 Danish dairy cows with MAP specific 414	

IgG antibodies on their final test-record were used to estimate age-specific sensitivities (54). It 415	

is a critical decision for a farm owner to choose one of the antemorterm test as the outcome of 416	

the fecal culture results can be delayed while ELISA test is also imperfect. Moreover, it also 417	

depends of the testing practices and recommendations varied in different geographical regions 418	

while strategies like adaptive test scheme, age-specific sensitivities and frequent testing can 419	

provide us optimal solution. But, care should be taken whether using frequent testing strategies 420	

may pick the false positive animal.   421	

 422	
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In order to control an infectious disease, it is important to determine which transmission routes 423	

are playing a major role in persistence of the pathogen on the farm. Traditionally, the dam-to-424	

daughter route is considered the primary route for transmitting MAP, but it can vary due to herd 425	

management policy. It is very difficult to estimate this parameter directly from the epidemiological 426	

data due to imperfect testing, misidentification of super-shedders and management policies. The 427	

parameter value range estimated here suggests that dam-to-daughter transmission was indeed 428	

the primary transmission route with environmental transmission played as a secondary role. The 429	

role of environmental contamination is also difficult to measure from the epidemiological data, 430	

as MAP is pervasive within a dairy herd. A recent effort was made to quantify the environmental 431	

contamination through fecal-culture and mathematical studies (55). In our longitudinal data, the 432	

environmental samples were collected quarterly from several locations from farms. The cultures 433	

results suggest that manure storage areas and shared alleyways were most likely to be positive 434	

for three herds (56), but no relationship was found between non-pen environmental sample 435	

status and the distance between shedding animals and the sample’s location, and neighboring 436	

pens did not significantly affect the results of the pen-level analysis. In our model, we modeled 437	

!'()*+,(-'(. in a crude way using a probability distribution for the sake of simplicity. To precisely 438	

quantify the role of different environments, further investigation into infection sources may be 439	

needed, potentially by examining the pathogens’ genomic sequencing data.  440	

 441	

To date, the best-suggested control strategies against MAP is test and cull strategies. 442	

Previously, several compartmental models were used to test different testing and culling 443	

strategies, providing the average impact of the testing and culling strategies. However, targeted 444	

test and cull requires combining information from each individual animal with farm management 445	

and hygiene policy. Recently, an IBM model suggested that a new ethanol vortex ELISA 446	

(EVELISA) could be cost-effective and that quarterly test-and-cull control was able to 447	
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significantly reduce the prevalence (41). Another model, SimHerd, developed by Kudahl et al. 448	

required fecal culture confirmation of ELISA-positive cows before culling, and relied on repeated 449	

testing to find the most infectious animal. Neither of these two models were validated and fitted 450	

to real dairy herd data (57). A recent mechanistic bio-economic model showed that MAP can be 451	

eradicated, although the control strategy necessary was economically unattractive (27,31). That 452	

model was parameterized specifically for Danish conditions, which are different from the US. In 453	

a previous effort, we suggested risk-based culling strategies with four different options: 454	

aggressive culling, culling open red cows after 305 DIM, culling dam and offspring and culling 455	

dam but not the offspring and we tested these intervention strategies along with different hygiene 456	

conditions on hypothetically endemic herds. For this study, we implemented two risk-based 457	

control strategies: aggressive culling and culling open red cows after 305 DIM on three pre-fitted 458	

herds. We found that aggressive culling resulted in the elimination of 24% and 47% of iterations 459	

after three years and extended intervention, respectively, for a very low endemic herd (farm B). 460	

We also found a probability of elimination 0.11 and 0.24 using culling of open red cows after 305 461	

DIM in three years and extended intervention, respectively. However, it is expected to predict 462	

elimination in very low endemic herds and previously it was seen in a few studies 463	

(26,27,42,43,58). On the contrary, we found elimination in only 6% times after 5 years extended 464	

intervention using aggressive culling in case farm A, which has considerably higher prevalence, 465	

and we did not predict any elimination while culling open red cows after 305 DIM for farms C 466	

and A in long run. However, in terms of moderate and higher prevalence most of the cases, the 467	

farmers want to reduce the prevalence and it is important to simulate how long it takes to reduce 468	

the prevalence at a certain level. From FigS2, it can be said that low endemic herd is more likely 469	

to reach 5% of initial prevalence by less than 2 years while high endemic herd needs extended 470	

time to reach to that point, but it may take more than 10 years in some cases. This suggests that 471	

culling high shedding animals may not provide elimination in high endemic herds, although it can 472	
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lower the prevalence. The study by Kirkby et al. serial testing along with hygiene play a critical 473	

role in the elimination process in Danish dairy herds, but these may not be economically 474	

justifiable (58). Caution should be taken in transferring conclusions from Denmark to the US, as 475	

both systems are different in many factors. Control activities are not uniformly coordinated 476	

nationally and internationally due to the variation in different farm management policies and 477	

government programs. 478	

MAP is endemic in the bovine population in the US, which makes elimination unlikely at this time. 479	

When elimination is not possible, we have to rely on implementing the best herd-specific control 480	

strategies. Previous compartmental models have shown variable results for investigating 481	

infection dynamics(23,25,27) , test-and-culling strategies(25,59) , vaccination(24,60,61) , and 482	

intermittent MAP shedding(30,43). None of these combined the individual animal’s information 483	

with herd management policy while fitting the model to real herd data, however. In this regard, 484	

the IBM paradigm should provide more effective approaches to test the intervention by 485	

considering information about the individual animal and overall population. Before using the 486	

insights of any IBM, very careful consideration should be given how the model was 487	

parameterized and validated. In this current study, we developed a fitting framework where an 488	

existing IBM model was fit against a longitudinal field study on three northeastern dairy herds to 489	

create the real herd's condition in the in silico platform. The fitting exercises provide estimates 490	

of the critical parameters related to an infection whose transmission is herd-specific. Like all 491	

models, our model is limited by its assumptions. First, the current model fitting exercise only 492	

included combined testing efficacy, whereas in reality the observed herds used three different 493	

testing strategies (fecal culture, ELISA, and tissue culture). Second, the current model modeled 494	

the role of environmental contamination crudely, but the model is adaptive in nature, allowing for 495	

a more rigorous assessment of environmental contamination once data become available. Third, 496	
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our current model did not include any economic justification of the suggested control strategies, 497	

but the same base model has previously been used to show the economic justification of culling 498	

in case of the MAP in a separate study (51). 499	

This modeling and fitting exercise presented in this paper open multiple doors of further 500	

investigations in future. One extension of model can include the impact of MAP infection on milk 501	

yield while including the economics of milk production for these three farms. Previously, it shown 502	

that the mean milk production decreases after a first positive test, non-progressing animals were 503	

shown to recover milk productivity while progressing animals continue to exhibit a decrease in 504	

milk production, especially after their first high-positive fecal culture (52). This indicates there 505	

needs more investigation how to relate milk production loss as a function of MAP infection 506	

progression and testing results. Another extension of the model may include the clinical and 507	

molecular data of the infected animals. But adding molecular data will require more investigation 508	

how to find who infects whom parameters from the phylogenetic analysis (62,63). The current 509	

model is adaptive in nature to add strain specific data for each individual animal.      510	

In conclusion, an important aspect of model building is to perform validation of the models to 511	

the real-life data. In this study, we developed an IBM framework for validating a dairy herd model 512	

and infection dynamics of the MAP to a longitudinal dataset. The assessment of model results 513	

leads us to the conclusion that the evaluation of model results is still a combination of intuitive 514	

model results, validation of the model with the quality data, assumptions that integrated into the 515	

modeling process and estimation of key critical parameters along with true biologics. This 516	

framework can be used in any infectious disease scenario to quantify the importance of key 517	

transmission routes, mapping individual-level data to population-level phenomena and decision 518	

making based on implemented intervention policies while considering between host 519	

transmission mechanisms within a closed population. In summary, the quality of the conclusions 520	
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drawn from model studies is closely linked to the quality of the data used for estimation of the 521	

parameters and model validation. Models that have been validated with real-world data are more 522	

likely to produce useful and valid results.  523	
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Mean (95% CI) 
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Mean (95% CI) 
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0.0033 (0.00062-

0.0069) 

0.0046 (0.0017-

0.0075) 

0.0041 (0.00047-

0.0065) 

Adult to calf transmission 

coefficient (!") 

0.54 (0.11-0.96) 0.37 (0.064-0.079) 0.63 (0.055-0.9) 

Environmental transmission 

coefficient 	(!'()*+,(-'(.) 

0.053 (0.0089-

0.090) 

0.05 (0.0056-0.078) 0.046 (0.0036-

0.087) 

Calf to calf transmission 

coefficient (!/) 

0.69×10-6 (0.4×10-

6-1.2×10-5) 

6.5×10-6 (0. 69×10-

6-1.2×10-5) 

8.4×10-6 (0.18×10-

6-1.2×10-6) 

Heifer to heifer transmission 

coefficient (!0) 

0.54×10-6 

(0.53×10-6-0.1×10-

4) 

4.9×10-6 (0.29×10-6-

0.11×10-5) 

3.9×10-6 (0.35×10-6 

-0.1×10-4) 

Initial latent  30 (3-75) 10 (5-19) 73 (52-85) 

Initial low shedding animals 18 (4-35) 12 (2-36) 31 (4-49) 

Initial high shedding animals 16 (7-23) 11 (2-22) 13 (2-23) 

 770	

FigS1. The model predicted fitted to the observed milk yield for 360 days in milk for Farm A, B 771	

and C. The milk yield was calculated using equation shown in the method section. 772	

FigS2. The model predicted median number of years to reduce the apparent prevalence by 25% 773	
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	 38	

(top panel) and 5% (bottom panel) calculated from top 1% simulations with best set of 774	

parameters while implementing two control scheme I: aggressive culling and control II: delayed 775	

culling after the pre-intervention fit for the farms A, B and C.   776	
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