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Abstract

Humans can rapidly extract information from faces even in challenging viewing

conditions, yet the neural representations supporting this ability are still not well un-

derstood. Here, we manipulated the presentation duration of backward-masked facial

expressions and used magnetoencephalography (MEG) to investigate the computa-

tions underpinning rapid face processing. Multivariate analyses revealed two stages in

face perception, with the ventral visual stream encoding facial features prior to facial

configuration. When presentation time was reduced, the emergence of sustained fea-

tural and configural representations was delayed. Importantly, these representations

explained behaviour during an expression recognition task. Together, these results

describe the adaptable system linking visual features, brain and behaviour during face

perception.
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Introduction1

Our highly specialized face processing abilities are thought to be supported by feature-2

based face detection followed by configural processing (Calder, Young, Keane, & Dean,3

2000; Maurer, Grand, & Mondloch, 2002). However, it is still unclear how the brain4

efficiently represents a high-dimensional array of relevant facial features, and how this5

helps accomplish a wide range of behavioural goals.6

Although there is disagreement on the exact sequence of processing stages, face percep-7

tion is generally thought to progress from isolated features to first-order configuration (the8

feature positioning common across all faces) and second-order configuration (the identity-9

specific spacing between features), with holistic processing linking these into a gestalt10

(Farah, Wilson, & Tanaka, 1998; Harris & Aguirre, 2008; Piepers & Robbins, 2012). On11

the other hand, some behavioural goals, such as identity recognition, may rely on facial12

features and not on holistic perception (Visconti Di Oleggio Castello, Wheeler, Cipolli, &13

Gobbini, 2017).14

Furthermore, although the neural correlates of face perception have been reliably15

mapped in space and time, there is little agreement on how, where, and when specific16

computations are implemented. Both modular and distributed neural codes are thought17

to support face perception, with different computations being implemented within each of18

the ventral face-responsive areas (Grill-Spector, Weiner, Gomez, Stigliani, & Natu, 2018;19

Freiwald, Duchaine, & Yovel, 2016). For efficient information extraction, faces may be20

represented along low-dimensional axes based on features or topology (Henriksson, Mur,21

& Kriegeskorte, 2015; Leopold, O’Toole, Vetter, & Blanz, 2001); for example, a sparse22

identity code has been shown to predict neural responses to faces in primates (Chang &23

Tsao, 2017). However, it remains an open question how such codes adapt to task require-24

ments and viewing conditions, and the dynamics of face feature representations are not25

well understood.26

Here, we focused on the temporal dynamics of face representations during a chal-27

lenging expression discrimination task, by combining magnetoencephalography (MEG)28

with multivariate pattern analyses and a rapid presentation paradigm. We manipulated29

the presentation duration of backward-masked faces, some of which were shown outside30

awareness, to disentangle face detection from expression processing. This allowed us to31

evaluate the impact of limiting visual input on representational dynamics, while keeping32

task demands constant. We used source-space representational similarity analysis (RSA)33

and variance partitioning to evaluate the contribution of visual features to MEG responses34
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and behaviour.35

We found that among the visual features tested, facial features and configuration36

were most strongly represented in the ventral stream and contributed to behaviour. The37

temporal dynamics of these representations changed in response to stimulus duration,38

suggesting that it is important to study visual feature coding in dynamic contexts and39

with high temporal resolution. Finally, despite a behavioural effect, a neural response to40

faces outside of awareness did not encode any of the stimulus features tested, highlighting41

the qualitative distinction between face detection and face categorization.42

Methods43

Participants44

The participants were 25 healthy volunteers (16 female, age range 19-42, mean age 25.645

±5.39). All volunteers gave written consent to participate in the study in accordance46

with The Code of Ethics of the World Medical Association (Declaration of Helsinki). All47

procedures were approved by the ethics committee of the School of Psychology, Cardiff48

University.49

Stimuli50

The stimulus set consisted of 20 faces with angry, neutral and happy expressions (1051

female faces; model numbers: 2, 6, 7, 8, 9, 11, 14, 16, 17, 18, 22, 23, 25, 31, 34, 35,52

36, 38, 39, 40) from the NIMSTIM database (Tottenham et al., 2009). The eyes were53

aligned using automated eye detection as implemented in the Matlab Computer Vision54

System toolbox (Mathworks, Inc., Natick, Massachusetts). An oval mask was used to crop55

the faces to a size of 378 × 252 pixels subtending 2.6 × 3.9 degrees of visual angle. All56

images were converted to grayscale. Their spatial frequency was matched by specifying57

the rotational average of the Fourier amplitude spectra as implemented in the SHINE58

toolbox (Willenbockel et al., 2010), and Fourier amplitude spectra for all faces were set to59

the average across the face set.60

Masks and control stimuli were created by scrambling the phase of all face images in61

the Fourier domain. This was achieved by replacing the phase information in each of the62

images with phase information from a white noise image of equal size (Perry & Singh,63

2014). To ensure matched low-level properties between face and control stimuli, pixel64

intensities were normalized between each image and its scrambled counterpart, using the65
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minimum and maximum pixel intensity of the scrambled image.66

Experimental design67

At the start of each trial, a white fixation cross was centrally presented on an isoluminant68

gray background. Its duration was pseudorandomly chosen from a uniform distribution69

between 1.3 and 1.6 s. A face stimulus was then centrally presented with a duration of70

either 10 ms, 30 ms or 150 ms; the stimulus was followed by a phase-scrambled mask with71

a duration of 190 ms, 170 ms or 50 ms respectively (for a constant total stimulus duration72

of 200 ms). In each block, 10 trials contained no face; instead, a phase-scrambled control73

stimulus was flashed for 10 ms and followed by another mask.74

After a 500 ms delay intended to dissociate face perception from response preparation,75

participants had to correctly select the expression they had perceived out of three alter-76

natives presented on screen (Figure 3A). They had 1.5 seconds to make a button press; if77

they were sure that no face had been presented, they could refrain from responding. The78

mapping of the response buttons to emotional expressions changed halfway through the79

experiment so as to ensure that emotional expression processing would not be confounded80

by specific motor preparation effects.81

Next, participants had to rate how clearly they had seen the face using a 3-point scale82

starting from 0. They were instructed to only select 0 if no face had been perceived, 1 if83

they had perceived a face but not clearly, and 2 if they had clearly perceived the face. They84

had 2 seconds to make this response. Note that since the expression discrimination task85

was not forced-choice, references to awareness in this paper refer exclusively to subjective86

awareness, as indicated by perceptual ratings.87

In each of four blocks, each face was presented once with each of the three possible88

stimulus durations. We thus collected 80 trials per condition, except for the control89

condition (containing no face) which only had 40 trials.90

Data acquisition91

All participants with one exception acquired a whole-head structural MRI using a 1 mm92

isotropic Fast Spoiled Gradient-Recalled-Echo pulse sequence.93

Whole-head MEG recordings were made using a 275-channel CTF radial gradiometer94

system (CTF, Vancouver, Canada) at a sampling rate of 1200 Hz. Four of the sensors95

were turned off due to excessive sensor noise. An additional 29 reference channels were96

recorded for noise rejection purposes and the primary sensors were analyzed as synthetic97
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third-order gradiometers (Vrba & Robinson, 2001).98

Stimuli were presented using a ProPixx projector system (VPixx Technologies, Saint-99

Bruno, Canada) with a refresh rate set to 100 Hz. Images were projected to a screen with100

a resolution of 1920 x 1080 pixels situated at a distance of 1.2 m from the participant.101

Recordings were made in four blocks of approximately 15 minutes each, separated by short102

breaks. The data were collected in 2.5 s epochs beginning 1 s prior to stimulus onset.103

Participants were seated upright while viewing the stimuli and electromagnetic coils104

were attached to the nasion and pre-auricular points on the scalp in order to continuously105

monitor head position relative to a fixed coordinate system on the dewar. To help co-106

register the MEG data with the participants’ structural MRI scans, we defined the head107

shape of each subject using an ANT Xensor digitizer (ANT Neuro, Enschede, Netherlands).108

An Eyelink 1000 eye-tracker system (SR Research, Ottawa, Canada) with a sampling rate109

of 1000 Hz was used to track the subjects’ right pupil and corneal reflex.110

Behavioural analysis111

In order to assess the effects of stimulus duration and face expression on behaviour, we112

calculated confusion matrices based on expression discrimination responses to each stim-113

ulus category (Figure 3). Performance was quantified as proportion correct trials after114

excluding trials with no response, and a rationalized arcsine transformation was applied115

prior to statistical analysis (Studebaker, 1985). We then performed a 3 × 3 repeated-116

measures ANOVA with factors Duration (levels: 10 ms, 30 ms, 150 ms) and Expression117

(levels: angry, happy, neutral).118

MEG multivariate pattern analysis (MVPA)119

To test for differences between conditions present in multivariate patterns, we used a linear120

Support Vector Machine (SVM) classifier with L2 regularization and a box constraint c =121

1. The classifier was implemented in Matlab using LibLinear (Fan, Chang, Hsieh, Wang,122

& Lin, 2008) and the Statistics and Machine Learning Toolbox (Mathworks, Inc.). We123

performed binary classification on (1) responses to neutral faces versus scrambled stimuli124

(face decoding); (2) all three pairs of emotional expressions (expression decoding).125

For face decoding, time-resolved classification was performed separately for each stim-126

ulus duration. To assess the presence of subjectively non-conscious responses, the classi-127

fication of faces presented for 10 ms was performed after excluding any trials reported as128

containing a face. To ensure that decoding results were not biased by stimulus repetitions129
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Figure 1: Overview of the MVPA analysis pipeline.A. Trial averaging and multivariate
noise normalization (MNN) procedure. Σ is the error covariance matrix. B. Sensor-
space time-resolved decoding (left) and temporal generalization (right). C. Source-space
searchlight decoding procedure. D. Sources included in the representational similarity
analysis based on face vs. scrambled classification results. P: posterior; A: anterior; L:
left; R: right.

or recognition of face identities across the training and test sets, cross-exemplar five-fold130

cross-validation was used to assess classification performance: the classifier was trained on131

16 of the 20 face identities and 8 of the 10 scrambled images, and tested on the remaining132

4 faces and 2 scrambled exemplars.133

To assess similarities between responses across stimulus duration conditions, face cross-134

decoding was also performed, whereby a decoder was trained on 150 ms faces and tested135

on 30 ms faces and vice-versa. The analysis was repeated for all pairs of conditions, using136

cross-exemplar cross-validation to ensure true generalization of responses; the resulting137

accuracies were averaged across the two training/testing directions, which led to similar138

results.139

The temporal structure of face responses was assessed through temporal generaliza-140

tion decoding (King & Dehaene, 2014). Classifier models were trained on each sampled141

time point between -0.1 and 0.7 s and tested on all time points in order to evaluate the142

generalizability of neural patterns over time at each stimulus duration. For this analysis,143

a cross-exemplar hold-out procedure was used to speed up computation (the training and144

test sets each consisted of 10 face identities/5 scrambled exemplars).145

For expression decoding, classification was separately applied to all pairs of emotional146

expression conditions for each stimulus duration. As low trial numbers were a limitation147
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of the study design, we increased the power of our analysis by also pooling together trials148

containing faces shown for 30 ms and 150 ms (which were shown to share representations149

in the cross-decoding analysis). Performance was evaluated using five-fold cross-exemplar150

cross-validation. Note that splitting the datasets according to perceptual rating led to151

largely similar results (Supplementary Figure 3).152

To achieve equal class sizes in face decoding, face trials were randomly subsampled153

(after cross-exemplar partitioning) to match the number of scrambled trials. For expression154

classification, trial numbers did not significantly differ between conditions after artefact155

rejection (F (1.92, 46.18) = 0.15,P = 0.85, η2 = 0.0062).156

MEG sensor-level analyses157

MEG data were analyzed using Matlab (Mathworks, Inc.) and the Fieldtrip toolbox158

(Oostenveld, Fries, Maris, & Schoffelen, 2011). Prior to analysis, trials containing excessive159

eye or muscle artefacts were excluded based on visual inspection, as were trials exceeding 5160

mm in head motion (quantified as the displacement of any head coil between two sampled161

time points). Using eyetracker information, we also excluded trials containing saccades162

and fixations away from stimulus or blinks during stimulus presentation. A mean of 8.71%163

±9.4% of trials were excluded based on this procedure.164

For all analyses, MEG data were downsampled to 300 Hz and baseline corrected using165

the 500 ms before stimulus onset. A low-pass filter was applied at 100 Hz and a 50 Hz166

comb filter was used to remove the mains noise and its harmonics.167

To improve SNR (Grootswagers, Wardle, & Carlson, 2017), each dataset was divided168

into 20 equal partitions and pseudo-trials were created by averaging the trials in each169

partition. This procedure was repeated 10 times with random assignment of trials to170

pseudo-trials and was performed separately for the training and test sets.171

To improve data quality, we performed multivariate noise normalization (MNN; Guggen-172

mos, Sterzer, and Cichy, 2018). The time-resolved error covariance between sensors was173

calculated based on the covariance matrix (Σ) of the training set (X) and used to nor-174

malize both the training and test sets, in order to downweight MEG channels with higher175

noise levels (Equation 1).176

X∗ = Σ− 1
2X (1)

In sensor-level MVPA analyses, all 271 MEG sensors were included as features and de-177

coding was performed for each sampled time point between -0.1 and 0.7 s around stimulus178
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onset.179

MEG source-space analyses180

For source analyses, each participant’s MRI (N=24) was coregistered to the MEG data181

by marking the fiducial coil locations on the MRI and aligning the digitized head shape182

to the MRI with Fieldtrip. MEG data were projected into source space using a vectorial183

Linearly Constrained Minimum Variance (LCMV) beamformer (Van Veen, van Dronge-184

len, Yuchtman, & Suzuki, 1997). To reconstruct activity at locations equivalent across185

participants, a template grid with a 10 mm isotropic resolution was defined using the186

MNI template brain and was warped to each individual MRI. The covariance matrix was187

calculated based on the average of all trials across conditions bandpass-filtered between188

0.1 and 100 Hz; this was then combined with a single-shell forward model to create an189

adaptive spatial filter, reconstructing each source as a weighted sum of all MEG sensor190

signals (Hillebrand, Singh, Holliday, Furlong, & Barnes, 2005). To alleviate the depth bias191

in MEG source reconstruction, beamformer weights were normalized by their vector norm192

(Hillebrand, Barnes, Bosboom, Berendse, & Stam, 2012). To improve data quality, MNN193

was included in the source localization procedure, by multiplying the normalized beam-194

former filters by the error covariance matrix to ensure that sensors with higher noise levels195

were downweighted. Next, the sensor-level data were multiplied by the corresponding196

weighted filters in order to reconstruct the time-courses of virtual sensors at all loca-197

tions in the brain. This resulted in three time-courses for each source, containing each198

of the three dipole orientations, which were concatenated for use in the MVPA analysis199

in order to maximize classification performance (Gohel, Lim, Kim, Kwon, & Kim, 2018).200

Preprocessing (baseline correction and downsampling) was performed as for sensor-level201

analyses.202

A searchlight approach was used in source-space classification, whereby clusters with203

a 10 mm radius were entered separately into the decoding analysis. To exclude sources204

outside the brain and in the cerebellum, we restricted our searchlight analysis to sources205

included in the 90-region Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer206

et al., 2002). Given the 10 mm resolution of our sourcemodel, this amounted to a maximum207

of 27 neighbouring sources being included as features (mean 26.9, median 27, SD 0.31).208

Source-space subliminal face decoding was performed on 30 ms time windows with a 3209

ms overlap using the time windows identified in sensor-space decoding in order to reduce210

computational cost. We also performed supraliminal face decoding (150 ms faces vs.211
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scrambled stimuli) in order to identify a face-responsive ROI for use in the RSA analysis.212

This was accomplished by identifying searchlights achieving a cross-subject accuracy above213

the 99.5th percentile (P<0.005, 66 searchlights; Figure 1).214

Significance testing215

We evaluated decoding performance using the averaged accuracy across subjects (propor-216

tion correctly classified trials) and assessed its significance through randomization testing217

(Nichols & Holmes, 2001).218

For sensor-level decoding, 1,000 label shuffling iterations across the training and test219

sets were used to estimate the null distribution using the time point achieving maximum220

average accuracy in the MVPA analysis (Dima, Perry, & Singh, 2018). Omnibus correction221

for multiple comparisons was applied across tests, time points and sources where applicable222

(Nichols & Holmes, 2001; Singh, Barnes, & Hillebrand, 2003), with a supplementary false223

discovery rate correction applied for tests where the null distribution was not separately224

estimated. To avoid spurious effects, a threshold of 5 consecutive significant time points225

(52 in 2D temporal generalization maps) was imposed. For source-space decoding, 100226

randomization iterations were performed for each source cluster and subject in order to227

reduce computational cost, which were randomly combined into 1000 whole-brain group228

maps (Stelzer, Chen, & Turner, 2013). A minimal extent of three consecutive time windows229

with a FDR-corrected P < 0.005 was applied.230

Representational Similarity Analysis (RSA)231

Neural patterns and analysis framework232

To interrogate the content of neural representations in space and time, we performed233

representational similarity analysis (RSA). For this analysis, MEG data were source re-234

constructed as described above and trials were sorted according to expression and face235

identity. RSA was performed separately for each stimulus duration and only trials con-236

taining faces were included in the analysis. We tracked representational dynamics using a237

searchlight analysis restricted to the occipitotemporal sources identified in face decoding,238

with a temporal resolution of 30 ms. The exclusion of responses to scrambled stimuli from239

the RSA ensured that feature selection was based on an orthogonal contrast (Figure 1).240

To create MEG representational dissimilarity matrices (RDMs), we calculated the241

squared cross-validated Euclidean distance between all pairs of face stimuli (Guggenmos242

et al., 2018). Note that as the data were multivariately noise-normalized, this is equivalent243
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to the squared cross-validated Mahalanobis distance (Walther et al., 2016). For each244

participant, the data were split into a training set (the first 2 sessions) and a test set (the245

last 2 sessions). The two stimulus repetitions contained in each set were averaged, and246

these were averaged across subjects to create training and test sets. To compute the cross-247

validated Euclidean distance between two stimulus patterns (X∗,Y∗), we calculated the248

dot products of pattern differences based on the training set and the test set (Equation 2).249

This procedure has the advantage of increasing the reliability of distance estimates in the250

presence of noise.251

d2(X∗, Y ∗) =
n∑

i=1
(X∗

i − Y ∗
i )train(X∗

i − Y ∗
i )test (2)

The spatiotemporally resolved MEG RDMs were then correlated with several model252

RDMs to assess the contribution of different features to neural representations. In an initial253

analysis, we calculated Spearman’s rank correlation coefficients between each model RDM254

and the MEG RDM (Nili et al., 2014). To further investigate the unique contribution255

of each model, we entered the significantly correlated models based on visual features of256

the images into a partial correlation analysis, where each model’s correlation to the MEG257

data was recalculated after partialling out the contribution of the other models.258

Note that a model based on behaviour, which was also represented in the MEG data259

for all stimulus duration conditions, was not included in the partial correlation analysis;260

the rationale is that we were interested in the contribution of each visual property in-261

dependently of the others, but we did not expect a unique contribution of behaviour in262

the absence of expression-related visual properties, and partialling out the behavioural263

model from the visual models would not be easily interpretable. Instead, we preferred264

to independently describe the correlations between behaviour and visual features, brain265

and behaviour, and brain and visual features, as the three main factors of interest in our266

analysis.267

Model RDMs268

We investigated the temporal dynamics of face perception by assessing the similarity269

between MEG patterns and 9 models quantifying behaviour and facial/visual properties270

(Figure 2).271

To create behavioural model RDMs, we calculated the number of error responses made272

by each participant to each stimulus and summed these up to create a cross-subject be-273

havioural RDM. For each stimulus duration, we created separate behavioural RDMs by274
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Figure 2: Models used in RSA analysis. A. Example model RDM: each model maps pair-
wise dissimilarities between faces, which are sorted according to expression and identity.
B. Model RDMs showing predicted distances between all pairs of stimuli. 2D multidi-
mensional scaling (MDS) plots are shown above each model to visualize how the three
expression categories are organized according to each model. For the local and global
configuration models, we also show the facial landmarks and the within-feature/between-
feature distances used to create each model. Behav: behavioural models; Expr: high-level
expression models (all-vs-all, neutral-vs-others, and angry-vs-others); Config: face config-
uration models.
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calculating pairwise cross-validated Euclidean distances between error response patterns,275

using a cross-session training/test split as described above.276

To create face configuration RDMs, we first used OpenFace (Baltrusaitis, Robinson, &277

Morency, 2016) to automatically detect and label face landmarks. The software created278

68 2D landmarks for each face. We removed landmarks corresponding to the face outline279

and the 2 outermost eyebrow landmarks, to account for cases in which these landmarks280

were cropped out by the oval mask used in the MEG stimulus set. The final landmark281

set consisted of 47 coordinates for 6 facial features (eyes, eyebrows, nose, and mouth),282

which were visually inspected to ensure that they were correctly marked. To capture283

feature-based (local) facial configuration, we calculated within-feature pairwise Euclidean284

distances between landmarks (Figure 2B). To quantify global face configuration, we cal-285

culated between-feature Euclidean distances (the distances between each landmark and286

all landmarks belonging to different facial features). Distances were then concatenated to287

create feature vectors describing each face in terms of its local/global configuration, and288

Euclidean distances between them gave the final configural model RDMs. These mod-289

els correspond to the featural and configural stages in classic models of face perception290

(Diamond & Carey, 1986; Piepers & Robbins, 2012).291

To create a high-level identity model, we assigned distances of 0 to pairs of face identi-292

ties repeated across emotional expression conditions, and distances of 1 to pairs of different293

face identities. We used a similar strategy to create high-level emotional expression mod-294

els. An all-versus-all model was created by assigning distances of 0 to all faces belonging295

to the same emotional expression condition, and distances of 1 to pairs of faces differing296

in emotion. We also tested a neutral-versus-others model by assigning distances of 0 to all297

emotional faces (happy + angry), and an angry-versus-others model by assigning distances298

of 0 to all benign faces (happy + neutral).299

To account for variability in expression that is not captured by such high-level binary300

representations, we also tested a model based on Action Units. Action Units quantify301

changes in expression by categorizing facial movements (Ekman & Friesen, 1977). We used302

OpenFace (Baltrusaitis et al., 2016) to automatically extract the intensity of 12 Action303

Units in our image set (Supplementary Table 4), and we calculated pairwise Euclidean304

distances between these intensities for all pairs of faces in our stimulus set to obtain an305

Action Unit RDM.306

Finally, a spatial envelope model was created in order to capture image characteristics307

using the GIST descriptor (Oliva & Torralba, 2001). This procedure extracts 512 values308
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per image by applying a series of Gabor filters at different orientations and positions,309

and thus quantifies the average orientation energy at each spatial frequency. To obtain310

the spatial envelope RDM, we calculated pairwise Euclidean distances between all images311

using the GIST values.312

Finally, models were subject to multidimensional scaling (MDS) to visualize how each313

model represents the similarity between facial expressions in a 2D space (Figure 2).314

Significance testing315

To assess the significance of spatiotemporally resolved correlation maps, we used a ran-316

domization approach. Model RDMs were shuffled 1,000 times and correlations were re-317

computed for each of the 66 searchlights using the time window achieving the maximal318

correlation coefficient across models for each of the stimulus duration conditions. Since319

negative correlations were not expected and would not be easily interpretable, P-values320

were calculated using a one-sided test (Furl, Lohse, & Pizzorni-Ferrarese, 2017). To correct321

for multiple comparisons, P-values were omnibus-corrected by creating a maximal distri-322

bution of randomized correlation coefficients across searchlights, models and conditions,323

and FDR and cluster-corrected across timepoints (α = 0.05, thresholded at 3 consecutive324

time windows).325

Variance partitioning326

To gain more insight into the relationship between behavioural responses, expression cat-327

egories and face configuration models, we used a variance partitioning approach (Greene,328

Baldassano, Esteva, Beck, & Fei-fei, 2016; Groen et al., 2018). For each stimulus duration329

condition, the corresponding behavioural RDM was entered into a hierarchical multiple330

linear regression analysis, with three model RDMs as predictors: the two facial configura-331

tion models and the most correlated high-level expression model (10 ms: neutral-vs-others;332

30 and 150 ms: angry-vs-others). These models were selected to reduce the predictor space333

before performing variance partitioning. To quantify the unique and shared variance con-334

tributed by each model, we calculated the R2 value for every combination of predictors (i.e.335

all three models together, each pair of models separately, and each model separately). The336

EulerAPE software was used for visualization (Micallef and Rodgers, 2014; Figure 6B).337
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Figure 3: Overview of the experimental paradigm and behavioural results. A. Stimuli were
presented on screen for 150 ms, 30 ms, or 10 ms, and were followed by a 50 ms, 170 ms,
or 190 ms scrambled mask. B-D. Confusion matrices mapping the average proportion
of trials receiving each of the possible responses (X-axis) out of the trials belonging to
each category (Y-axis). "No response" trials were excluded for statistical analysis, but are
shown here as representing a "no face" response. E. Perceptual ratings for each stimulus
duration summarized as average proportion of trials.

Results338

Perception and behaviour339

We assessed the effects of stimulus duration and face expression on behaviour using a 3×3340

repeated-measures ANOVA with factors Duration (levels: 10 ms, 30 ms, 150 ms) and Ex-341

pression (levels: angry, happy, neutral) on rationalized arcsine-transformed accuracies342

(see Methods). Stimulus duration had a strong effect on expression discrimination perfor-343

mance, with average performance not exceeding chance level at 10 ms (33.45% ± 2.99)344

and rising well above chance at 30 and 150 ms (78.62% ± 2.11 and 91.83% ± 1 re-345

spectively). This was reflected in a significant main effect of duration in the ANOVA346

(P < 0.0001, F (1.21, 29.06) = 221.05, η2 = 0.9). Face expression had a weak ef-347

fect, with angry faces categorized less accurately than both happy and neutral faces348

(P = 0.046, F (1.95, 46.71) = 3.33, η2 = 0.12), and with no significant interaction effect349

(P = 0.23, F (1.74, 41.83) = 1.53, η2 = 0.06).350

Participants found the task challenging, as reflected in the perceptual awareness rat-351

ings: 84.5% of the 10 ms trials were rated as not containing a face (Figure 3E). This352

suggests that participants were complying with the task with respect to both expression353

discrimination and perceptual rating. Importantly, for faces presented for 10 ms, there was354

no difference in accuracy between expressions (P = 0.43, F (1.65, 39.5) = 0.8) or between355

any pair of cells in the confusion matrix (P = 0.6, F (3.42, 82.07) = 0.64), suggesting that356

faces presented at this duration were equally likely to be categorized as any expression.357
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Spatiotemporal dynamics of face perception358

To investigate face processing as a function of stimulus duration, we performed within-359

subject cross-identity decoding of responses to faces vs. scrambled stimuli. The analysis360

included three components: sensor-level time-resolved classification to evaluate the pro-361

gression of condition-related information; sensor-level temporal generalization to assess362

the temporal structure of this information; and source-space decoding to obtain spatial363

information about subliminal responses to faces (Figure 1).364

We first decoded responses to neutral faces vs. scrambled stimuli using data from all365

MEG sensors, separately for each stimulus duration. In the case of faces presented for366

10 ms, any trials reported as containing a face were excluded, to ensure that we assessed367

responses outside of subjective awareness. Scrambled stimuli could be discriminated from368

faces presented for 150 and 30 ms starting as early as 100 ms (Figure 4A). After the initial369

peak in performance, decoding accuracy decreased, but remained well above chance for370

the remainder of the decoding time window. For faces presented for 10 ms and reported371

as not perceived, there was only a weak increase in decoding performance, which reached372

significance at 147 ms and dropped back to chance level after ~350 ms (Supplementary373

Table 1). To assess how well face representations generalized across stimulus durations, we374

repeated this analysis by training and testing on stimulus exemplars presented for different375

amounts of time (Figure 4B). Decoding accuracy was high when cross-decoding between376

30 ms and 150 ms faces, with two increases in performance at M170 latencies (100-200377

ms) and after 300 ms. On the other hand, representations only generalized to 10 ms faces378

for a limited time window corresponding to the M170 component.379

Using temporal generalization decoding (King & Dehaene, 2014), we investigated the380

temporal structure of face responses, and we found that this changed with stimulus dura-381

tion. For faces presented for 150 ms, successful temporal generalization started at ~93 ms382

in a diagonal pattern suggestive of transient representations, with more sustained repre-383

sentations (square patterns) arising at M170 latencies and after 300 ms (Figure 4D-E). For384

30 ms stimuli, a transient representation pattern started at ~110 ms after stimulus onset385

and sustained representations only arose later (~400 ms). Early processing thus appears386

to be heavily biased by stimulus presentation duration, with 30 ms faces failing to elicit a387

stable representation at M170 latencies. For faces presented for 10 ms, only few transient388

clusters survived correction for multiple comparisons, with the largest one occurring after389

200 ms.390

Finally, we spatially localized the subliminal response to faces in source space. All par-391
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Figure 4: Face vs. scrambled decoding results. A. Sensor-space time-resolved decod-
ing accuracy for all stimulus durations. Colour-coded vertical bars mark above-chance
decoding onset and horizontal lines show significant time windows (P<0.05, corrected).
B. Sensor-space time-resolved cross-decoding for all pairs of stimulus durations. Cross-
validation was performed across exemplars and accuracies were averaged over the two
training/test directions. C. Sources achieving above-chance decoding of 10 ms faces out-
side awareness at M170 latencies in source space (P<0.005, corrected). D. Sensor-space
temporal generalization accuracy and significant clusters (white contours; P<0.05, cor-
rected) for all stimulus durations. E. Significant temporal generalization clusters for all
three stimulus durations, showing more sustained representations of faces presented for
150 ms (legend as in A).
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ticipants with one exception acquired a structural MRI, which was used to source localize392

the MEG data using a Linearly Constrained Minimum Variance (LCMV) beamformer393

(Van Veen et al., 1997). We performed whole-brain searchlight classification of 10 ms394

faces vs. scrambled stimuli (N=24), using source clusters with a radius of 10 mm and395

time windows of 30 ms. Faces were successfully decoded in a right occipital area at M170396

latencies (Figure 4C), with a later stage associated with ventral patterns.397

Temporal dynamics of expression perception398

Next, we performed sensor-level cross-identity decoding of all pairs of emotional expres-399

sions separately for each stimulus duration. The analysis was performed similarly to the400

time-resolved face decoding analysis described above.401

The highest decoding performance was achieved on late responses to expressions pre-402

sented for 150 ms (Figure 5A). Expressions presented for 30 ms also achieved above-chance403

decoding, although these effects were more transient. We also performed this analysis on404

pooled datasets (faces presented for 30 and 150 ms), as the face cross-decoding analysis405

showed that responses generalized between these two categories (Figure 4B). This revealed406

a multi-stage progression for all expressions, with transient early decoding at M100 laten-407

cies and an increasing accuracy at later stages (Figure 5B). We found no above-chance408

performance when decoding 10 ms expressions. This finding adds to emerging evidence409

against the automatic processing of expression outside awareness (Koster, Verschuere,410

Burssens, Custers, & Crombez, 2007; Pessoa, Japee, & Sturman, 2006; Hedger, Gray,411

Garner, & Adams, 2016; Schlossmacher, Junghöfer, Straube, & Bruchmann, 2017), and412

we explore potential reasons for this result below.413

Face representations in occipitotemporal cortex414

To interrogate the neural representations underpinning these pattern differences, we per-415

formed representational similarity analysis (RSA) using a searchlight approach at the416

source level (Su, Fonteneau, Marslen-wilson, & Kriegeskorte, 2012) in a face-responsive417

area of interest determined using an orthogonal contrast. We investigated the representa-418

tional dynamics of face perception by assessing the similarity between MEG patterns and419

models quantifying behaviour, face features, face configuration, expression, identity and420

visual properties, using both a Spearman’s rank correlation (Nili et al., 2014) and partial421

correlation (see Methods).422
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Figure 5: Expression decoding results. A. Time-resolved decoding accuracy for the three
expression decoding problems and the three stimulus durations. White horizontal lines
show significant time windows (P<0.05, corrected). B. Time-resolved accuracy for the
three expression decoding problems using the pooled datasets (30 + 150 ms).

Occipitotemporal cortex encodes behavioural responses423

Among the other model RDMs tested, behavioural RDMs correlated most with the high-424

level expression models (particularly the angry-vs-others model at 30 ms and 150 ms,425

Spearman’s ρ = 0.29 and ρ = 0.34). At 150 ms, the behavioural RDM also correlated with426

the configural face models (ρ = 0.22 and ρ = 0.18). As expected based on performance,427

behavioural RDMs at 10 ms did not correlate with the other two (ρ = −0.05 and ρ =428

−0.09 respectively), while behavioural RDMs at 30 and 150 ms were positively correlated429

(ρ = 0.38; Figure 6A).430

Based on these links, face configuration, together with facial expression, appears to431

partially explain behavioural responses. To test this, we performed a variance partitioning432

analysis, using hierarchical multiple regression to quantify the unique and shared variance433

in behaviour explained by facial configuration and high-level expression models. In the434

10 ms condition, the neutral-vs-others model and the two configural models explained435

25.1% of the variance; in the 30 ms and 150 ms conditions, the angry-vs-others model and436

the configural models explained up to 45.7% of the variance in behaviour. Furthermore,437

while the expression model contributed most of the variance, over 75% of this variance438

was shared with the configural models. The unique contribution of the configural models439

increased with stimulus duration (from ~2% at 10 ms, to ~20% at 150 ms). Together,440

these results point to the role of face configuration in driving high-level representations441

and behaviour. Note that we were unable to decode 10 ms expressions from the MEG442

data; however, the variance partitioning analysis of behavioural responses in this condition443

showed a contribution of both facial expression and configuration to behaviour.444
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Figure 6: Relating behaviour to representational models. A. Model inter-correlations
(Spearman’s ρ). B. Variance partitioning results, showing the contributions of expression
and face configuration models to behavioural responses at each stimulus duration. Values
represent % of the total R2.

Behavioural RDMs showed the strongest and most sustained correlations with MEG445

patterns in ventral stream areas, including sources corresponding to the location of the446

fusiform face area (FFA) and occipital face area (OFA; Figure 7). Behavioural repre-447

sentations evolved differently in time for the three stimulus durations. For 10 ms faces,448

behaviour explained the data starting at 120 ms until the end of the analysis time window.449

Representations emerged similarly early for 150 ms faces and reached the noise ceiling be-450

fore decreasing again at 400 ms. For 30 ms faces, correlations were significant starting at451

210 ms in a relatively focal right temporal area. Patterns were more posterior for 10 ms452

faces and more extensive, including sources corresponding to the OFA and FFA, for 150453

ms faces.454

The correlation time-courses suggest interesting differences in processing as a function455

of the information available: for clearly perceived faces, features relevant in behaviour456

are extracted between 120-400 ms, while behavioural responses for briefly presented faces457

appear to require sustained processing, as reflected by behaviour-related correlations not458

dropping back to zero. These results are in line with previous evidence of behavioural459

representations in ventral stream areas in scene and object perception (Walther, Caddigan,460

Fei-Fei, & Beck, 2009), and suggest that visual feature processing, even at early stages, is461

closely linked to behavioural goals.462
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Figure 7: Correlations between MEG patterns and behavioural model RDMs for each
stimulus condition duration (vertical columns). The top panels show correlation time-
courses averaged across all significant searchlights; the noise ceiling is shown as a dotted
horizontal line and is only approached in the 150 ms condition. The cortical maps show
significant correlation coefficients for the first and last significant time windows (onset
and offset times) on the inflated template MNI brain. The hemisphere shown is indicated
with the letter R/L. Model RDMs are shown in the lower left corner of each column. See
SourceMovies1 for movies showing the evolution of behavioural representations in time.
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Configural face processing from featural to relational463

The two face configuration models were also represented in the MEG patterns. In the464

correlation analysis, the local and global configuration models explained representations465

in partially overlapping areas of the ventral stream (corresponding to the right FFA lo-466

cation), with local configuration representations arising earlier (at 120 ms for 150 ms467

faces, and 360 ms for 30 ms faces). The RSA method used here favoured sustained cor-468

relations over transient peaks; note that the global configuration model approached the469

noise ceiling during a transient time window at M170 latencies for both 150 ms and 30470

ms faces, suggesting a contribution of second-order characteristics, although this occurred471

later than feature representations (Supplementary Figure 4). The partial correlation anal-472

ysis revealed further differences between conditions: for 150 ms faces, the local and global473

models made unique, successive contributions in explaining the data; conversely, for 30474

ms faces we detected no unique contributions, suggesting that the extraction of configural475

information from faces occurs differently in the absence of sufficient information. None of476

the models significantly correlated with MEG patterns elicited by 10 ms faces.477

Note that although both internal (eyes, nose, mouth) and external (face shape, hair)478

face features have been shown to contribute to neural responses to faces (Axelrod, 2010),479

we focus here on internal features; for the purposes of this paper, external features were480

excluded from the stimuli and we refer to the second-order configuration of distances481

between internal features as "global configuration". Internal features are relevant to the482

context of expression discrimination and have been shown to be more reliable even in facial483

recognition contexts (e.g. Longmore, Liu, and Young, 2015).484

Transient representations of visual and high-level models485

Two other models elicited brief representations in the MEG data. For 150 ms faces, the486

spatial envelope model explained left hemisphere occipital representations starting at ~400487

ms, suggesting sustained processing of visual features, potentially based on feedback mech-488

anisms. For 30 ms faces, a high-level expression model (neutral-vs.-others) was represented489

in the MEG data starting at 300 ms (Figure 9). This can be speculatively explained by490

the formation of task-related representations in the absence of sufficient information. On491

the contrary, when faces are clearly presented, only models encoding face characteristics492

are represented, while categorical models show no contribution to occipitotemporal repre-493

sentations. Note that despite the role of facial features in explaining neural responses, the494

Action Unit model RDM did not significantly correlate with the MEG patterns, probably495
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Figure 8: Significant correlations between MEG patterns and configural model RDMs.
A: Correlation analysis results are significant for the 150 ms and 30 ms conditions. B:
Partial correlation results are significant for the 150 ms condition. Only right hemisphere
searchlights correlate with the configural models. Maps are shown for the onset and offset
times of significant correlation. See SourceMovies2 for movies showing the evolution of
behavioural representations in time.
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Figure 9: Significant correlations between: (1) MEG patterns for the 150 ms condition and
the spatial envelope model RDM (top); (2) MEG patterns for the 30 ms condition and the
high-level neutral-vs-others model (bottom). Only left hemisphere searchlights correlate
with the two models. Maps are shown for the onset time of significant correlation, as
clusters are sustained until offset (top: 0.54 s, bottom: 0.36 s).

due to the static and brief nature of our stimuli.496

Although correlation coefficients between the models and neural data are generally low497

(Supplementary Table 3), the noise ceiling shows that the maximal correlation possible498

with our data is also low (mean ρ=0.21); this is not surprising, considering the low ρ-values499

usually found in MEG RSA studies, and the fact that our paradigm involved complex, high-500

level visual stimuli and a demanding task. In this case, the noise ceiling serves as a useful501

benchmark for the explanatory power of our models. For example, the behavioural RDM502

reaches the noise ceiling in the 150 ms condition, but not for briefer stimuli, suggesting503

that behavioural representations fully explain the data when stimuli are clearly perceived.504

The local configuration model also shows good explanatory power at its earliest stage, and505

the same is true for the global model for a brief time window. Other significant models do506

not reach the noise ceiling (Supplementary Figure 4); given the complex face processing507

and task-related activity reflected by the MEG patterns, this is not surprising. In fact, the508

explanatory power of the configural models at early stages (100-200 ms) is striking, as is509

the strength of behavioural representations in ventral stream within 400 ms. Furthermore,510

the initial peak in performance of the behavioural model overlaps with the peak of the local511

configuration model. Together with the shared variance between configuration, expression512

and behaviour shown in the variance partitioning analysis (Figure 6D), this points to the513

role played by facial configuration in the extraction of emotional cues essential in the514

expression discrimination task.515

Discussion516

The cross-identity decoding and representational similarity analyses described here con-517

verge to highlight the dynamic nature of face representations in the ventral visual stream.518
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Face feature and face configuration representations link occipitotemporal neural patterns519

and behavioural responses during an expression discrimination task, while their temporal520

dynamics change to accommodate challenging viewing conditions.521

In the time-resolved decoding analysis, a response to faces (150 ms and 30 ms) emerged522

at ~100 ms, while faces shown outside of subjective awareness were decodable for a brief523

time window (147 - 350 ms), in line with previous studies showing evidence of face per-524

ception outside of awareness (Axelrod, Bar, & Rees, 2015). Temporal representations also525

varied with stimulus duration: for 150 ms faces, a sustained representation emerged at526

M170 latencies which was absent for 30 ms faces. This suggests that clearly presented faces527

are perceived through a multi-stage process, while disrupted recurrent processing leads to528

delayed stable representations. Although the M170 component decreases in amplitude529

with face duration (Supplementary Figure 1), its duration does not predict such a marked530

change in temporal structure, especially given the high decoding accuracy at this latency531

obtained in both conditions in the time-resolved face decoding analysis. Trial-to-trial532

variability, cited as another potential explanation for diagonal patterns (Vidaurre, Myers,533

Stokes, Nobre, & Woolrich, 2018), is also not expected to systematically vary between534

our conditions. On the other hand, sustained representations in temporal generalization535

analyses are thought to be reflective of conscious perception and recurrent processes (De-536

haene, 2016). It has previously been suggested that faster stimulus presentation leads to537

more transient representations (Mohsenzadeh, Qin, Cichy, & Pantazis, 2018); however, the538

backward masking procedure used here disrupts the formation of a stable representation539

by entering the visual stream, and it is unclear whether different methods of preventing540

awareness would lead to the same results.541

Information supporting face decoding outside of subjective awareness was localized542

to occipitotemporal cortex in our searchlight source-space decoding analysis (Figure 4C).543

Given the disruption of recurrent processing in backward masking (Lamme, Zipser, &544

Spekreijse, 2002; Boehler, Schoenfeld, Heinze, & Hopf, 2008), the early stages of this545

response can be attributed to either purely feedforward activity, or to feedback connections546

targeting V1 at early processing stages (Wyatte, Jilk, & O’Reilly, 2014; Mohsenzadeh et547

al., 2018). Furthermore, the fact that we detect a response to faces, and not to expression,548

suggests that the different tasks of identification and categorization are supported by549

qualitatively different mechanisms. However, the spatial resolution of MEG, together550

with recent observations of information spreading in searchlight source-space MVPA (Sato,551

Yamashita, Sato, & Miyawaki, 2018), prevent us from drawing strong conclusions about552
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the origin of this response to faces. To minimize such concerns, we restricted our source-553

space decoding analysis to localizing effects identified at the sensor level, and we applied554

randomization testing with an omnibus threshold in order to avoid spurious effects.555

All expressions presented for at least 30 ms were decodable from MEG data starting556

at ~100 ms. Since all analyses were performed across facial identity and stimuli were557

matched for low-level properties, this suggests that expression categorization begins at558

the early stages of visual perception (Aguado et al., 2012; Dima, Perry, Messaritaki,559

Zhang, & Singh, 2018), in line with behavioural goals. However, in terms of non-conscious560

expression processing, the results are mixed. Despite the absence of a subliminal expression561

effect in MEG responses, behavioural data suggest that expression (specifically, a model562

differentiating between emotional and neutral stimuli) explains approximately one quarter563

of the variance in behavioural responses given to faces presented for 10 ms. This effect is564

not revealed by the more traditional accuracy-based behavioural analysis, suggesting that565

model-based approaches to the analysis of behavioural responses can provide additional566

information. With the caveat that low numbers of trials were included in this analysis,567

the fact that cross-subject patterns of response reflected shared variance between the568

models based on expression, facial features and facial configuration points to a certain569

degree of expression processing taking place outside of subjective awareness. The absence570

of a subliminal expression effect in the neural data may be explained by several factors,571

including the limited ROI used in RSA, the study design minimizing residual awareness,572

and challenges in the detection of a potential subcortical response.573

Representational similarity analysis results linked stages in time-resolved decoding to574

stages in feature extraction and to behavioural responses. Ventral stream areas encoded575

sustained and extensive behavioural representations as early as 120 ms after stimulus onset576

(Figure 7), suggesting that the extraction of features essential in behavioural decision-577

making is a rapid process accomplished in face-responsive cortex. This is in line with578

evidence found in higher-level object and scene perception (Walther et al., 2009; Bankson,579

Hebart, Groen, & Baker, 2018; Groen et al., 2018) and with previous studies showing that580

the perceptual similarity of faces is represented in neural patterns (Said, Moore, Engell,581

& Haxby, 2018; Furl et al., 2017).582

Furthermore, ventral stream areas encoded facial features prior to facial configuration583

when faces were presented for 150 ms. This adds to evidence suggesting that emotional584

face perception is supported by the processing of diagnostic features, such as the eyes585

and mouth (Wegrzyn, Vogt, Kireclioglu, Schneider, & Kissler, 2017). What is more,586
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configural representations explain behaviour and overlap with behavioural representations,587

suggesting that it is face configuration that drives expression-selective responses in ventral588

stream areas and guides behaviour.589

Previous studies have shown differential modulation of ERP components by first-order590

and second-order face configuration. Some studies have shown early components (P1,591

N170) to encode the former only (Mercure, Dick, & Johnson, 2008; Zion-Golumbic &592

Bentin, 2007), while others have also shown effects of second-order configuration at N170593

latencies (Eimer, Gosling, Nicholas, & Kiss, 2011). Furthermore, fMRI studies have re-594

ported a division of labour in the face-selective network, with the FFA thought to play595

a special role in representing both types of configural information (Golarai, Ghahremani,596

Eberhardt, & Gabrieli, 2015). Recently, it has been suggested that featural and configural597

processing of even non-face objects elicit face-like responses in the OFA and FFA (Zachar-598

iou, Safiullah, & Ungerleider, 2018). Here, we combined the strengths of source-localized599

MEG data and the RSA framework to tease apart the two models using a single stimulus600

set. The searchlight RSA analysis revealed that the two models overlap spatially in a right601

ventral stream area corresponding to the FFA, but are dissociated temporally: for 150 ms602

faces, representations switch from first-order to second-order at ~300 ms after stimulus603

onset, bringing together previous fMRI and electrophysiological findings.604

Furthermore, this two-stage process appears to depend on the amount of information605

available to the visual system. For 150 ms faces, local and global configuration models606

make unique, temporally distinct contributions to explaining the data, as shown in the607

partial correlation analysis. For 30 ms faces, no unique variance is explained by the608

two models; furthermore, representations are temporally overlapping in the correlation609

analysis and occur after 300 ms (Figure 8). This complements our sensor-level temporal610

generalization findings: 30 ms faces are processed through a series of transient coding steps611

at early stages and a stable representation is formed after 300 ms, when both first-order612

and second-order features are represented. On the other hand, for 150 ms faces, a two-stage613

process takes place, with an initial stable representation emerging at M170 latencies and614

supported mainly by first-order features, and a later representation after 300 ms encoding615

second-order configuration. Feature representations thus appear to be linked to the late616

emergence of stable representations, thought to be reflective of recurrent processing and617

categorization. Importantly, this idea is supported by spatially and temporally overlapping618

behavioural representations in ventral stream areas.619

The findings we present here constitute a stepping stone towards a better understand-620
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ing of high-level representations in face perception. While binary categorical models can621

estimate high-level representations and task-related processing, the code supporting visual622

perception is likely to be better understood in terms of behavioural goals and the visual623

features supporting them. We show that face-responsive cortex dynamically encodes fa-624

cial configuration starting with first-order features, and that this supports behavioural625

representations when participants are performing an expression discrimination task. Fur-626

thermore, we show that the cascade of processing stages changes with stimulus duration,627

pointing to the adaptability of the face processing system in achieving goals with lim-628

ited visual input. This highlights the importance of investigating neural computations629

in a spatiotemporally resolved fashion; furthermore, when employing rapid presentation630

paradigms, it is important to consider the changes in neural dynamics and stimulus repre-631

sentations induced by relatively small changes in stimulus duration. Together, our results632

bridge findings from previous fMRI and electrophysiological research, revealing the spa-633

tiotemporal structure of face representations in human occipitotemporal cortex.634
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Appendix844

Sensor-space Source-space
150 ms 30 ms 10 ms 10 ms

Max % accuracy 82.3 76.8 56.8 59.62
SD (%) 13.6 14.18 9.3 8.35
Decoding onset (ms) 100 100 147 120-150

Supplementary Table 1: Face decoding results.

Stimulus duration
150 ms 30 ms 10 ms 30 + 150 ms

A-N H-N A-H A-N H-N A-H A-N H-N A-H A-N H-N A-H
Max % accuracy 61.9 63.1 60.76 57.79 58.49 58.12 56.62 55.86 55.87 60.48 60.21 59.74
SD (%) 8.57 6.78 9.34 10.91 9.92 10.38 10.88 9.11 13.66 9.04 10.52 13.41
Decoding onset (ms) 180 113 220 437 120 633 N/A N/A N/A 107 113 117

Perceptual rating
2 1 0 2 + 1

A-N H-N A-H A-N H-N A-H A-N H-N A-H A-N H-N A-H
Max % accuracy 59.55 62.54 64.03 56.56 56.88 56.63 57.64 55.32 56.01 60.43 62.25 60.24
SD (%) 12.24 11.6 10.82 12.1 13.63 13.21 14.46 10.24 12.47 11.95 12.07 12.25
Decoding onset (ms) 230 113 523 307 120 130 N/A N/A N/A 220 113 127

Supplementary Table 2: Expression decoding results.

Model Behavioural Expression Spatial Envelope Global Config Local Config
150 ms ρ ρ ρpart ρ ρpart ρ ρpart ρ ρpart

Max rho 0.23 0.14 0.14 0.17 0.17 0.18 0.17 0.18 0.16
SD 0.12 0.03 0.03 0.06 0.06 0.09 0.08 0.07 0.06
Onset (ms) 120 N/A N/A 420 390 300 330 120 120
Offset (ms) 390 N/A N/A 540 540 450 390 300 180
30 ms ρ ρ ρpart ρ ρpart ρ ρpart ρ ρpart

Max rho 0.17 0.14 0.14 0.13 0.12 0.15 0.13 0.14 0.12
SD 0.07 0.03 0.03 0.05 0.04 0.07 0.03 0.05 0.04
Onset (ms) 210 300 300 N/A N/A 390 N/A 360 N/A
Offset (ms) 540 360 360 N/A N/A 450 N/A 510 N/A
10 ms ρ ρ ρpart ρ ρpart ρ ρpart ρ ρpart

Max rho 0.18 0.09 0.1 0.13 0.14 0.17 0.16 0.11 0.12
SD 0.04 0.03 0.03 0.04 0.05 0.04 0.04 0.03 0.04
Onset (ms) 120 N/A N/A N/A N/A N/A N/A N/A 180
Offset (ms) 660 N/A N/A N/A N/A N/A N/A N/A 240

Supplementary Table 3: RSA results for the 5 models achieving significant correlations.
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AU Code Facial Action Coding System Name
AU01 Inner brow raiser
AU02 Outer brow raiser
AU04 Brow lowerer
AU06 Cheek raiser
AU09 Nose wrinkler
AU10 Upper lip raiser
AU12 Lip corner puller
AU14 Dimpler
AU15 Lip corner depressor
AU17 Chin raiser
AU20 Lip stretcher
AU25 Lips part

Supplementary Table 4: Action Units (AU) used to create the Action Unit model RDM.

Supplementary Analysis 1: Event-related field (ERF) analysis845

We assessed the presence of difference between conditions in event-related fields (ERF).846

For the purposes of this analysis, MEG data were bandpass-filtered between 0.1 and 30 Hz847

and axial gradiometer event-related fields were averaged across subjects to calculate the848

global field power across all trials and conditions. This allowed us to determine three time849

windows of interest for evoked response component analysis: 63-137 ms (M100), 137-203850

ms (M170), and 203 – 306 ms (M220).851

Next, we averaged evoked response fields for each condition and subject within the852

three time windows. We tested for differences between responses to faces and scrambled853

stimuli, and between responses to different emotional expressions, using paired t-tests and854

repeated-measures ANOVAs respectively at each sensor and time window. Significant855

sensors were determined using randomization testing (5000 iterations) and corrected for856

multiple comparisons using the maximal statistic distribution (α = 0.001).857

We assessed the presence of a response to faces by contrasting neutral faces with858

scrambled stimuli at each stimulus duration. For 150 ms faces, we found significant859

differences at M170 latencies and M220 latencies (P < 0.0007, t(24) > 6.07), but no860

significant effects at M100 latencies surviving our alpha of 0.001 (only one occipital sen-861

sor showed a non-significant effect with P = 0.0059, t(24) = 4.89). A significant, but862

smaller, cluster of right temporal sensors was also found for 30 ms faces at M170 la-863

tencies (P < 0.0004, t(24) > 5.99). No conclusive effects were found when contrasting864

faces presented for 10 ms with their scrambled counterparts, regardless of whether trials865

where a face was perceived were excluded or not (P > 0.015, t(24) < 4.66 across compar-866

isons), and no effect of emotional expression was found at any of the stimulus durations867
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(P > 0.06, F (2, 48) < 8.59). Several factors could explain the absence of emotional expres-868

sion effects in our ERF data: (1) stimuli were highly controlled for low-level properties,869

minimizing visually-driven differences in early time windows; (2) our time windows of in-870

terest did not include late stages dominated by task-related processing of expression; (3) we871

performed a whole-brain analysis with a conservative correction for multiple comparisons.872

Supplementary Figure 1: ERF analysis results. A-D. Global field power averaged across
participants and trials for each stimulus duration condition. Note decreasing M170 ampli-
tudes with stimulus duration. Left. Significant sensors in the face vs scrambled contrast
at M170 (137-203 ms) and M220 (203-306 ms) latencies (P<0.001 corrected).

Supplementary Figure 2: Face vs scrambled temporal generalization decoding for each
perceptual rating category. The same progression from stable to transient representations
is observed as when datasets were split according to stimulus duration.
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Supplementary Figure 3: Expression decoding. A. Time-resolved decoding accuracy
for each pair of expressions and perceptual rating, with above-chance time-windows high-
lighted in white (P<0.05 corrected). B. Accuracy time-courses obtained using pooled
datasets (awareness ratings of 1 + 2). C. Temporal generalization accuracy and signifi-
cant clusters (white contours; P<0.05, corrected) for the three decoding problems using
the pooled datasets (duration of 30 + 150 ms). The last panel shows significant temporal
generalization clusters for all three decoding problems. Angry vs neutral decoding leads
to earlier stable representations.

Supplementary Figure 4: Correlation time-courses obtained in the RSA analysis. All
significant searchlights are plotted separately against a noise ceiling averaged across sig-
nificant searchlights.
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