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An Intuitive Neuronal Simulator

ABSTRACT2

Conductance-based models of neurons are used extensively in computational neuroscience.3
Working with these models can be challenging due to their high dimensionality and large number4
of parameters. Here, we present a neuron and network simulator built on a novel automatic type5
system that binds object-oriented code written in C++ to objects in MATLAB. Our approach builds6
on the tradition of uniting the speed of languages like C++ with the ease-of-use and feature-set7
of scientific programming languages like MATLAB. Xolotl allows for the creation and manipula-8
tion of hierarchical models with components that are named and searchable, permitting intuitive9
high-level programmatic control over all parts of the model. The simulator’s architecture allows10
for the interactive manipulation of any parameter in any model, and for visualizing the effects11
of changing that parameter immediately. Xolotl is fully featured with hundreds of ion channel12
models from the electrophysiological literature, and can be extended to include arbitrary con-13
ductances, synapses, and mechanisms. Several core features like bookmarking of parameters14
and automatic hashing of source code facilitate reproducible and auditable research. Its ease15
of use and rich visualization capabilities make it an attractive option in teaching environments.16
Finally, xolotl is written in a modular fashion, includes detailed tutorials and worked examples,17
and is freely available at https://github.com/sg-s/xolotl, enabling seamless integration into the18
workflows of other researchers.19

Keywords: code:MATLAB, code:C++, conductance-based, software, Hodgkin-Huxley20

1 INTRODUCTION

Nervous systems process and transmit information using electrically excitable membranes. Conductance-21
based models are a powerful biophysical simplification of an electrically excitable compartment in a22
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neuron (Hodgkin and Huxley 1952a). Studies based on the Hodgkin-Huxley formalism now contribute23
significantly to mainstream research in some circuits (Marder and Abbott 1995; Prinz 2010; Prinz 2006).24
These models provide an approachable framework for understanding many salient principles of electro-25
physiology, since they explicitly model cell membranes and ion channels as electrical components in a26
circuit. However, several challenges remain in working with biophysically-detailed conductance-based27
neuron models. First, these models can be high-dimensional with many nonlinear differential equations,28
each with several parameters. Second, many or all equations in these models can be strongly coupled29
through dynamical variables like the membrane potential. In multi-compartment models of spatially ex-30
tended neurons, membrane potentials in every compartment can be different, and are coupled to each31
other. Finally, the choice of programming language used to implement the model imposes tradeoffs in32
designing and using neuron and network simulators: simulators written in languages like C++ or FOR-33
TRAN can integrate equations quickly, but often lack the ease-of-use and interoperability of those written34
in scientific programming languages like Python, Julia, or MATLAB (Mathworks).35

Two major approaches have dominated the design of neuron simulators. One approach is to write the36
simulator in a fast compiled language like C and allow for the construction and simulation of neuron37
models using object-oriented paradigms. This approach has been implemented in NEURON (Hines and38
Carnevale 1997). Simulators designed in this way tend to perform fast computations with little overhead,39
but suffer from a steep learning curve. Wrapping these simulators in a more approachable language like40
Python or using graphical user interfaces (GUIs) mitigates these drawbacks (Hines, Davison, and Muller41
2009; Gratiy et al. 2018) at the cost of obfuscating the underlying algorithms and parameters (Brette42
et al. 2007; Hines, Davison, and Muller 2009). In contrast, simulators designed from the ground up in43
popular scientific computing languages can be easier to use and benefit from interoperability with other44
commonly-used tools. Simulators like DynaSim (Sherfey et al. 2018), ANNarchy (Vitay, Dinkelbach,45
and Hamker 2015), BRIAN (Stimberg et al. 2013), morphforge (Hull and Willshaw 2014), and PyNN46
(Davison et al. 2009) allow the user to specify models with strings of equations or components that are47
constructed using a special syntax, that can then be translated into a faster implementation language48
such as C or C++ (Stimberg et al. 2014a). This approach permits considerable flexibility for simulating49
systems of differential equations. Because models need to be translated between the two languages, the50
hierarchical nature of neuron models is not naturally encapsulated by these tools, and the syntax can51
be verbose. Neither approach facilitates the creation of tools that simultaneously maintain efficiency,52
ease-of-use, and clarity.53

To overcome these design limitations, we have developed a novel automatic type system, that we call54
cpplab, which binds MATLAB code to classes specified in C++ header files. This architecture automat-55
ically creates objects in MATLAB that represent the underlying object-oriented C++ code, allowing the56
symbolic manipulation of C++ objects in the MATLAB interface. In this paper, we introduce xolotl, an57
implementation of the cpplab system specialized in integrating conductance-based neuron and network58
models. Models can be easily constructed from components of different types in a few lines of MATLAB59
code using a hierarchical and intuitive syntax. Since models in the MATLAB workspace are automatically60
linked to models in the C++ implementation, configuring these objects in MATLAB transparently config-61
ures the underlying C++ objects. Xolotl comes packaged with hundreds of components that can be used62
to assemble cells and networks; has built-in visualization functions to inspect voltage time traces and acti-63
vation functions; and a GUI for real-time manipulation of model parameters. Xolotl’s ease of use makes it64
an attractive option for pedagogical applications, rapid prototyping of models, and primary research use.65
Our software aims to simplify the investigation of the dynamics of conductance-based network and neu-66
ron models, facilitate collaborative modeling, and is intended to complement other tools being developed67
in the computational neuroscience community.68
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2 DESIGN GOALS

Xolotl is designed to be easy-to-use and richly featured while being fast enough to use in everyday69
research. Our focus was on designing an approachable simulator of conductance-based neurons and net-70
works of these neurons; simulating arbitrary dynamical systems is therefore beyond the scope of this71
software. Specifically, the software was designed to simulate models of the form72

Ci
dVi

dt
=−∑

j
I j (1)

where Ci and Vi are the capacitance and membrane potential of compartment i. Compartments can73
represent whole neurons or parts of neurons. I j is the current due to ion channel population j and is given74
by75

I j = ḡ jm
p
j hq

j(V −E j)Ai (2)

Here, ḡ j is the maximal conductance, and E j is the reversal potential of the ion channel population j.76
Ai is the surface area of compartment i that contains these ion channels. m j and h j are activation and77
inactivation variables that change according to78

τm
dm
dt

= m∞ −m and τh
dh
dt

= h∞ −h

Typically, τm, τh, m∞, and h∞ are functions of the membrane potential Vi. The software uses integration79
schemes that have been specifically developed to solve equations of this form (Dayan and Abbott 2001;80
Hines 1984; Oh and French 2006), though other schemes can be used if desired.81

This software is designed to be used from within MATLAB, a scientific programming language com-82
mon amongst neuroscientists and engineers for pedagogy and research. Our goal was to make xolotl83
completely usable entirely from within MATLAB. Models created using this simulator appear in the84
MATLAB workspace as native objects, are thus fully scriptable, and are fully compatible with the large85
library of toolboxes that MATLAB provides, allowing the software to be used as a component of other86
packages and tools. All parameters of a model, and activation functions of any channel can be inspected87
at any point. We designed several features of the simulator to be easily extensible: adding custom con-88
ductances or synapse types is possible by calling functions that generate new C++ files on-the-fly. Finally,89
xolotl is fully auditable by design, with several tools to verify model and parameter integrity and aid in90
reproducibility.91

2.1 FEATURES

Object-oriented. Xolotl is designed to mirror the nested and hierarchical structure of networks and neu-92
rons. Biological neuronal networks are made up of neurons that are connected to each other with synapses.93
Each of these neurons contains within it a set of conductances and synaptic currents that contribute to its94
electrical behavior. Intracellular mechanisms can act within the cell, or parts of the cell, to modify and95
regulate conductances, synapses, or other dynamic properties of the cell. Similarly, a xolotl model can96
contain a set of compartments that can represent individual neurons. Each compartment can contain an97
arbitrary set of conductances. Compartments, conductances and synapses can contain mechanisms that98
can affect anything in the model. All objects in the xolotl model tree (compartments, conductances, etc.)99
are bonafide MATLAB objects with their own type and properties. This object-oriented programming100
paradigm naturally represents the hierarchical structure of biological networks that contain neurons that101
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contain populations of ion channels, and makes constructing, integrating, and thinking about these models102
easier.103

A rich library of network components. Xolotl comes packaged with hundreds of pre-existing components104
(compartments, synapses, conductances, and mechanisms) that can be used as building blocks to construct105
model neurons and networks. “Compartments” represent sections of membrane with a single membrane106
potential, intracellular Calcium concentration, and set of constituent components; and can represent either107
entire cells or parts of cells. Objects of type “conductance” represent populations of ion channels in a108
compartment that produce transmembrane currents. “synapse” objects connect two compartments together109
by introducing a current in the postsynaptic compartment that depends on the presynaptic compartment’s110
membrane potential. Objects of type “mechanism” can represent any intracellular mechanism and can111
read and modify any other component in the cell, and can run arbitrary dynamical systems within them.112
Parameters of any of these objects can be easily inspected and modified at any time, either manually or113
through a programmatic interface.114

Automatic type system. To circumvent the tradeoff between high-performance but hard-to-use languages115
like C++ and richly-featured but potentially slow languages like MATLAB, we constructed an automatic116
type system that links object oriented code in C++ to object oriented code in MATLAB. This architecture117
lets us construct the core of the simulator in C++, leveraging features of C++ like pointers that are not118
readily available in MATLAB. A rudimentary way to make this C++ code useable in MATLAB would119
be to re-write that code in MATLAB so that MATLAB objects can be bound to their C++ implemen-120
tations. However, this approach is cumbersome and inefficient, and can introduce errors. Instead, our121
automatic type system creates objects in MATLAB on-the-fly from C++ class specifications, obviating122
the need to rewrite code in MATLAB while preserving a tight coupling between objects in the MATLAB123
workspace and their C++ implementation. Crucially, this method makes developing new code much easier124
and simplifies the task of constructing complex frameworks that span these two languages.125

Automatic hashing and compiling. Because every model requires a compiled binary to run, a potential126
stumbling block is the problem of unambiguously linking a model to a binary executable. Xolotl solves127
this problem by hashing (Rivest 1992) the C++ header files of every component in the model recursively,128
allowing a model, no matter how complex, to be compactly represented by a short alphanumeric identifier129
(its “hash”). Compiled binaries are named using this hash, ensuring both that the correct binary is run130
to integrate the model, and that compilation occurs only as needed. This powerful feature enables the131
user experience to remain entirely within the MATLAB workspace, with compilation and selection of the132
correct binary occurring silently in the background.133

2.2 LIMITATIONS

Our focus on xolotl’s ease-of-use and speed imposed some limitations on its feature set.134

Limited to conductance-based models. xolotl has been developed specifically for conductance-based135
models. It does not currently support rate- or current-based models, or arbitrary dynamical systems.136

Limited numerical integration strategies. Most components in the software are integrated using the expo-137
nential Euler method, which has been used in integrating neuronal models (Oh and French 2006; Dayan138
and Abbott 2001). However, it may be desirable to use other methods under certain conditions. It is139
possible to introduce new components that implement other integration schemes, or to modify the inte-140
gration schemes of existing components, but that requires writing new C++ code. Currently, xolotl can141
only implement integration schemes with fixed step size.142

Inefficient tools for handling large networks. xolotl was designed to work with small but complex net-143
works and models, where every compartment and component is named, rather than numbered. It is144
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more therefore suited towards simulating small, heterogeneous networks rather than large, homoge-145
nous networks. While the software can integrate large networks (> 1000 compartments), other tools146
are presumably more suited to this task, offering more natural frameworks for dealing with a large num-147
ber of identical units. Similarly, xolotl is not optimized to solve coupled ODEs on complex branched148
morphologies, that other simulators like NEURON (Hines and Carnevale 1997) are specialized for.149

New mechanisms require new C++ code. Adding new network components requires writing new C++150
code. A new conductance in the Hodgkin-Huxley formalism (Hodgkin and Huxley 1952b; Hodgkin,151
Huxley, and Katz 1952; Hodgkin and Huxley 1952a; Dayan and Abbott 2001) requires creating a new152
C++ header file, though this is generally trivial. Implementing a new integration scheme or component153
type requires much more in-depth knowledge of the underlying C++ core code.154

3 USAGE EXAMPLES

In this section, we illustrate how xolotl can be used to generate, inspect, and simulate a variety of models.155
These examples have been chosen to demonstrate various features of xolotl, and are intended to serve as156
templates upon which researchers and educators can build.157

3.1 SIMULATING A HODGKIN-HUXLEY MODEL

The axon of the giant squid contains a fast inactivating sodium conductance (NaV), a slower non-158
inactivating potassium conductance (Kd), and a passive leak current (Leak). Seminal work by Hodgkin159
and Huxley showed that depolarizations of the membrane could lead to an activation of the voltage-160
sensitive NaV channels, which led to a run away depolarization that was terminated by the inactivation161
of NaV channels and the activation of Kd channels that repolarized the membrane (Hodgkin and Huxley162
1952b; Hodgkin, Huxley, and Katz 1952). As one of the simplest models of excitable neural membranes,163
the Hodgkin-Huxley model often serves as a the first model introduced in pedagogical literature (Dayan164
and Abbott 2001; Sterratt 2011; Trappenberg 2010).165

In this example, we demonstrate how to simulate the spiking activity of a Hodgkin-Huxley-like model,166
and how the tools built into xolotl make it easy to set up and integrate the model and gain insight into the167
underlying biophysical mechanisms. This simple model consists of a single electrical compartment with168
three types of conductances (Figure 1A). This hierarchical organization of the neuron is mirrored in the169
structure of the model in the simulator: an object of type “compartment” is used to represent the cell body,170
and three objects of type “conductance” are used to model the three populations of ion channels (Figure171
1B). These models of ion channels were obtained from (Liu et al. 1998) based on electrophysiological172
recordings from the lobster stomatogastric ganglion (Turrigiano, LeMasson, and Marder 1995), and are173
part of the simulator. The code to set up this model is terse, idiomatic, relies on no special markup, and174
preserves the hierarchical nature of the model (Figure 1C).175

Adding an injected current and calling the built-in plot function plots the time series of membrane176
voltage. In the absence of injected current, the model is quiescent. When 0.2 nA is injected, the model177
tonically spikes (Figure 1A-B). The plot function displays a voltage trace colored by the dominant178
current (Figure 1A). Colors in the voltage trace indicate the strongest instantaneous inward current when179
the voltage is increasing, and strongest instantaneous outward current when the voltage is decreasing.180
This built-in feature reveals that the dominant current during the upswing of every action potential is181
the sodium current, and the dominant current immediately after the peak of the action potential is the182
potassium current, but that the leak current contributes to depolarization following an action potential.183
This feature could be useful in quickly understanding the contributions of a number of ion channel types184
in a complex voltage trace from a more complicated neuron model.185

Integrating the model returns the voltage time series for every compartment:186
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V = x.integrate;187

The model can be integrated for various amplitudes of injected current to determine its F-I (frequency188
current) curve (Kispersky, Caplan, and Marder 2012). Figure 1E shows the F-I curve of this model,189
obtained by repeated integration of the model. Finally, the built-in show function can plot activation190
(m) and inactivation (h) curves and voltage-dependent timescales of any channel type in the simulator191
(Figure 1D-G). These plots reveal that activation kinetics of the NaV channels are much faster than that192
of the Kd channels (Figure 1F), which facilitates the transient depolarization in an action potential. In193
summary, the simulator allows the user to construct and integrate this model in a few lines of code, and194
provides rich visualization of the dynamics of the model.195

3.2 PERFORMING A VOLTAGE CLAMP EXPERIMENT IN-SILICO

Voltage clamping is an experimental technique where a amplifier is configured to inject the appropri-196
ate amount of current through a electrode to maintain the voltage of a cell at a desired value (Dayan197
and Abbott 2001). Under this paradigm, the membrane voltage is “clamped” or fixed to a desired value,198
permitting the study of voltage-dependent ion channels, since the sum of all currents through the popu-199
lation of ion channels in the cell is equal and opposite to the current injected by the clamp (Figure 2A).200
By combining voltage clamp with the use of pharmacological agents to block all channels but the one201
of interest, the voltage-sensitivity of an ion channel population can be characterized (Cole and Moore202
1960; Cole 1955; Hodgkin and Katz 1949; Hodgkin, Huxley, and Katz 1952; Hodgkin and Huxley 1952a;203
Turrigiano, LeMasson, and Marder 1995).204

Xolotl can reproduce such a voltage clamp experiment in-silico. Figure 2B illustrates how a simple205
model with a single compartment and a single ion channel type can be set up and clamped to a desired206
voltage. Integrating the model yields the current required to clamp the cell at that voltage. Here, we use a207
delayed-rectifier potassium conductance (Liu et al. 1998) and simulate a voltage-clamp experiment whose208
goal is to infer the activation function of this channel. First, the cell is clamped to a number of different209
voltages (Fig. 2C) and the resultant clamp currents are measured by integrating the model (Fig. 2D). Since210
the compartment is being voltage clamped, integrating the model returns the clamping current:211

I_clamp = x.integrate;212

By repeating the integration at a number of clamp voltages, we observe that the asymptotic clamp213
currents depend on the clamp voltage in a nonlinear manner (Fig. 2E), since the open probabilities of214
the channel are functions of the membrane voltage. Assuming the reversal potential is known, Eq. (2)215
can be used to solve for the total conductance of the channel as a function of the clamp voltage (Fig.216
2F). Finally, a sigmoid can be fit to the normalized conductance-voltage curves to obtain the activation217
function of the ion channel population (Fig. 2G-H). Xolotl can therefore be used to describe graphically218
the theoretical underpinnings of ion channel characterization through voltage clamp and can serve as an219
effective pedagogical tool in computational neuroscience.220

3.3 INTRACELLULAR MECHANISMS

So far, the models we described only considered the voltage dynamics of a cell (the solution to Eq. 1).221
However, real neurons possess several dynamical features, arising from a variety of intracellular mecha-222
nisms. Xolotl makes it possible to model and include arbitrary intracellular mechanisms. In xolotl, these223
intracellular mechanisms are represented by the “mechanism” object, and can be bound to compartments,224
conductances, and other object types.225

A key intracellular mechanism is the cytosolic buffering of Calcium and its influx through voltage-226
gated Calcium channels. Figure 3A shows a model of a single-compartment model with 8 populations227
of ion channels (Liu et al. 1998). Without any explicit mechanism for Calcium influx or buffering, the228
intracellular Calcium levels in this model do not change (Figure 3B) and the model tonically spikes (Figure229
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3C). Calcium buffering and influx can be modeled by a differential equation that increases intracellular230
Calcium with the current through Calcium channels and relaxes back to a baseline value (Liu et al. 1998;231
Prinz, Billimoria, and Marder 2003; Dayan and Abbott 2001) (Figure 3D). This mechanism exists in the232
xolotl library as CalciumMech1 and can be added to the model using a simple add statement (Figure233
3E). The intracellular Calcium in the model now oscillates periodically (Figure 3F), synchronized to bursts234
in action potentials in this cell (Figure 3G).235

Neurons can regulate their electrical activity by controlling the spectrum of ion channels they express236
(MacLean et al. 2003; Turrigiano, LeMasson, and Marder 1995; Schulz, Goaillard, and Marder 2006).237
Here, we will show how xolotl can be used to represent a recently proposed model of a homeostatic238
feedback system that controls the transcription rates of ion channels with the integral of an error signal239
derived from the intracellular Calcium concentration (O’Leary et al. 2013; O’Leary et al. 2014) (Figure240
3H). Since this mechanism affects each ion channel population individually, an object corresponding241
to this mechanism is added to each conductance object in the neuron (Figure 3I). Setting all maximal242
conductance densities to some low value and integrating the model shows that the intracellular Calcium243
levels rise over time and approach the target Calcium concentration (Figure 3J), while all conductance244
densities increase and then remain bounded (Figure 3K). Examining the voltage dynamics of the cell245
reveal that it transitions from quiescence to truncated bursts of action potentials to periodic bursting as246
this mechanism regulates the neuron’s ion channel spectrum. In summary, xolotl can be used to construct247
neuron models with intracellular mechanisms such as Calcium influx and buffering, and homeostatic248
regulation.249

3.4 USING SNAPSHOTS TO EXPLORE MODEL DYNAMICS AND PARAMETERS

Switching back and forth points in parameter space and state space of a neuron model is a common occur-250
rence in working with neuron models, and a significant fraction of a modeler’s time is spent in a feedback251
loop of running simulations, viewing the output, changing parameters, and re-running simulations (De252
Schutter 1992). Xolotl makes it easy to bookmark configurations of a model and return to them at will.253
Internally, xolotl uses the serialize method to gather all parameters and dynamic variables into a vec-254
tor of values that is passed to the underlying C++ implementation. A paired deserialize method is255
used to update all parameters and variables in the object tree from this vector. This architecture provides256
a natural framework for representing the state of any model, no matter how complex, using a vector of257
numbers. The snapshot method built into xolotl leverages this schema to save the entire state of the258
model in a named variable, that can be accessed using another built-in method called reset.259

(Figure 4) illustrates how these features can be used to explore the dynamics of the model presented260
in the previous section. First, the current state of the model is saved using the snapshot method into261
a state called “initial”. In this state, the model exhibits periodic bursting activity due to a particular con-262
figuration of maximal conductance densities (Figure 3, orange). On setting the maximal conductances of263
the Calcium-permissive channels to 0, the model switches to a tonic spiking activity (Figure 3, purple).264
Integrating the model for a longer duration allows the homeostatic control mechanism in the cell to restore265
the conductance profile and bursting activity to a state close to the original state (Figure 3, green). This266
state is saved using the name “final”.267

The initial state can be returned to using the reset method, and a new manipulation to the model can268
be explored. Here, the intracellular Calcium target is modified, and the model is re-integrated, to yield269
a different voltage activity (Figure 3, blue). At the end of this numerical exploration, any of the saved270
states can be quickly returned to using the reset method, making the process of re-initializing models271
to desired states and parameters both error-free and efficient.272

3.5 SIMULATING NETWORK MODELS

Neurons communicate and interact using synapses, electrochemical junctions between cells (Gjorgjieva,273
Drion, and Marder 2016; Hua and Smith 2004). In chemical synapses, the presynaptic neuron releases274
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packets of neurotransmitter across the synaptic cleft, which activate receptors on the postsynaptic neuron.275
In electrical synapses, no chemical intermediary is involved. New patterns of activity can emerge from276
the characteristics of the connecting synapses (Li, Bucher, and Nadim 2018; Nadim et al. 1999; Gutierrez277
and Marder 2013; Gutierrez, O’Leary, and Marder 2013).278

Network models in xolotl consist of compartment objects that can be connected by synapse objects.279
Two compartments representing different neurons can be connected using synapses using the built-in280
connect method. For example, to connect two single-compartment neurons called LP and PY using a281
chemical synapse of type Cholinergic with strength 30 nS, we can use282

x.connect('LP','PY','Cholinergic','gbar',30);283

Xolotl has several types of synapses built-in, and other synapse classes can be easily added using284
templates. Figure 5 demonstrates the implementation of a model of the triphasic pyloric rhythm in the285
stomatogastric ganglion of crustaceans (Prinz, Bucher, and Marder 2004). The pyloric model contains286
three compartments (AB, LP, and PY) and seven synapses (Figure 5A). This structure is recapitulated in287
the hierarchy of the xolotl object, where conductances are contained within compartments (Figure 5B).288
The membrane potentials show triphasic rhythmicity in the three compartments (Figure 5C-E). When the289
PY is depolarized, the dynamical variable mediating the glutamatergic (Glut) synapse model between290
PY and LP is close to 1 and LP is inhibited (Figure 5F). Conversely, when PY is hyperpolarized, the291
dynamical variable is close to 0. In this model, when PY spikes, IPSPs can be seen in the LP voltage trace292
(Figure 5D-E).293

3.6 USING THE GUI TO MANIPULATE PARAMETERS

Conductance-based neuron models are typically high dimensional and contain many parameters. Chang-294
ing a single parameter monotonically can cause non-monotonic changes in behavior of the model, and295
certain dynamical features may only emerge when in specific non-convex regions of parameter space296
(Golowasch et al. 2002). It is often challenging to build intuition about what effect a parameter has on the297
model under these conditions. Traditionally, the technique used by computational neuroscientists in build-298
ing intuition about these models is to iteratively run simulations, view outputs and change parameters. In299
practice, this meant writing a script, running it, inspecting the output, changing parameters in the script,300
and repeating this process. It can be cumbersome, and every step in this process involves “mode” changes:301
switching between a text editor, viewing a graphical output, and the command line that can frustrate the302
researcher.303

Xolotl is designed to streamline this process and allows for any parameter in any model to be ma-304
nipulated using graphical sliders, with immediate, real-time feedback of its behavior. Any model in the305
simulator can be manipulated using306

x.manipulate307

This method creates a GUI element with sliders for every parameter, and also creates a set of plots that308
shows the dynamical behavior of the model (Fig. 6). By default, time series of the voltage and the calcium309
of every compartment are shown, though this can be modified. Moving any of the sliders updates the value310
of that parameter in the model, and also triggers a function call that reintegrates the model and updates the311
output plots. This function call can also update custom plots, like the one shown in (Fig. 6B). Any model312
can be manipulated in this way without writing any additional code.313

This feature was only possible due to our architectural decision to split the code base across two pro-314
gramming environments. A rich scientific programming environment like MATLAB makes it possible to315
easily generate user interface elements and to bind them to data in plots, while the sheer speed of compiled316
languages like C++ allow for the immediate, real-time feedback and updating of plots. By default, any317
parameter in the model can be manipulated, including parameters in user-defined mechanisms that do not318
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exist in the base simulator. The GUI can be constrained to arbitrary subsets of model parameters using319
wild card matching (as shown in Fig. 6) or by manually specifying the parameters of interest.320

4 BENCHMARKS

Our goal in designing xolotl was to create an easy-to-use neuron and network simulator that was fast321
enough and accurate enough for routine use by computational neuroscientists. In this section, we bench-322
marked the speed and accuracy of xolotl in simulating single and large numbers of Hodgkin-Huxley-like323
neuron models (as in Fig. 1) and bursting neuron models based on the bursting neurons in the lobster324
stomatogastric ganglion (STG) (Prinz, Bucher, and Marder 2004). For each type of neuron model, we325
compared our software to NEURON (Hines and Carnevale 1997), a high-performance and powerful neu-326
ron simulator specialized in simulating neurons with complex morphologies and DynaSim (Sherfey et327
al. 2018), a general-purpose simulator that can solve coupled differential equations numerically. All328
simulators were run on the same hardware using fixed time-step solvers: xolotl used the Exponential329
Euler method (Dayan and Abbott 2001), NEURON used the implicit Euler solver (Hines and Carnevale330
1997) and DynaSim used C-compiled 2nd-order Runge-Kutta integration scheme as recommended for331
high-performance (Sherfey et al. 2018). We measured the speed of each simulator by dividing the time332
simulated for, by the time it took for the simulator to complete integration. For example, if a simulator333
could simulate 10 seconds of model data in 1 second, its speed would be 10X. We measured the speed of334
every simulator as a function of simulation time step, total length of simulation, and system size.335

All three simulators were faster with larger time steps, since fewer iterations were needed (Fig. 7A-B),336
and were approximately linear in the region tested. Xolotl compared favorably to NEURON and DynaSim337
in this task. We also measured the quality of the simulated output by comparing it to the simulated output338
at the smallest time step. Simulation error was measured using the LeMasson cost (LeMasson and Maex339
2000), and was comparable amongst the three simulators (Fig. 7C-D). Since xolotl sets up and runs the340
simulation in C++, it needs to transfer parameters and data to and from the underlying implementation.341
To measure the performance cost of this overhead, we repeated these benchmarks on all three simulators342
at a fixed time step of 0.1 ms and varied the length of time simulated for. Speed increased with simulation343
duration up to a point, and then saturated, indicating a fixed performance cost to the overhead (Figure344
7E-F, black lines). Simulations using DynaSim, which also used a similar architecture and need to move345
data between C implementations and the MATLAB workspace, showed a similar increase in speed with346
simulation length (Figure 7E-F, red lines). However, simulations using NEURON ran at a constant speed347
irrespective of simulation length, presumably due to differences in the underlying implementation (Figure348
7E-F, blue lines).349

Many simulators have been designed with a focus on simulate large numbers of compartments, either350
as networks with many identical neurons or in a large multi-compartment neuron model (Brette et al.351
2007; Sherfey et al. 2018; Vitay, Dinkelbach, and Hamker 2015; Delorme and Thorpe 2003). While our352
software is not designed for this task per se, we measured its performance as a function of the number of353
compartments simulated. Xolotl can quickly create a number of identical copies of a compartment using354
the replicate method:355

x.replicate('compartment_to_replicate',n_copies);356

We used the replicate method to create and run models with varying numbers of neurons (either357
Hodgkin-Huxley-like or bursting neurons) and measured the speed of all three simulators as a function of358
system size. Plotting the speed normalized by the system size vs. the system size, we observed that the359
speed of integration of xolotl is linear with system size (Figure 7G-H, black lines), for up to 1000 single-360
compartment neurons (up to 13,000 ODEs). Its performance compares favorably with that of NEURON361
and DynaSim as a function of system size (Figure 7G-H).362
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5 DISCUSSION

We set out to design a neuron and network simulator that could be useful in the classroom setting, espe-363
cially for students of computational neuroscience, while also being powerful, fast, and extensible enough364
to be used for research. By using a novel architecture that permits the symbolic manipulation of C++ ob-365
jects in a intuitive MATLAB interface, we demonstrated some of the features of xolotl using simulations366
of single-compartment models of Hodgkin-Huxley like neurons (Fig. 1); voltage clamp experiments to367
recover activation functions of single channel types (Fig. 2); a neuron model where intracellular mech-368
anisms can control the dynamics of Calcium and can regulate the maximal conductance of ion channel369
types in an activity-dependent manner (Fig. (3); and a network of neurons with multiple synapse types370
(Fig. 5). We also illustrated how built-in features of the simulator make it easy to bookmark and jump371
between model configurations (Fig. 3, purple), and how parameters of the model can be changed using372
sliders and their effect can be viewed in real time (Fig. 6).373

5.1 A FOCUS ON USABILITY

“About half the time spent on a typical simulation project involves creating and tuning the model. Thus,374
a good user interface may contribute more to the overall efficiency of a project than pure computation375
speed.” (De Schutter 1992). Xolotl is designed primarily with ease-of-use in mind. This includes the time376
it takes to install, setup, and learn how to use the software, the time to write and debug scripts, and the time377
to perform the simulations (Rudolph and Destexhe 2007). An easy-to-use simulation environment must378
minimize time spent in all these domains, especially during human engagement with the software. Com-379
plicated software remains broadly inaccessible and time-consuming even to perform single-compartment380
simulations, though the actual simulation time may be very small.381

We have focussed on making our software as easy to use as possible, without sacrificing performance or382
extensibility. For example, the software and all dependencies can be installed using a single-line installer383
script from within the MATLAB command line. The installation includes worked example scripts that384
demonstrate various features of the simulator, that can be run without any configuration. We decided385
to built the the front-end interface to xolotl in MATLAB to facilitate interoperability with existing tools386
for time series analysis, optimization, and parallel computing. This allowed us to build rich tools for387
visualization and to interact with the simulation.388

5.2 COMPARISON WITH OTHER SIMULATORS

Over the years, several simulators have been developed to integrate systems of coupled differential equa-389
tions that model the spiking activity of neurons (Brette et al. 2007; Sherfey et al. 2018; Vitay, Dinkelbach,390
and Hamker 2015; Delorme and Thorpe 2003; Hines and Carnevale 1997; Bower, Beeman, and Hucka391
2003). A critical architectural choice in designing a simulator is how much “scaffolding” a user is pro-392
vided with to construct a model; whether a model is specified by equations or by components, or by some393
combination of the two. In an equation-oriented architecture, the user starts with a blank slate and the394
primary method of specifying a model is to write out its differential equations (Stimberg et al. 2014b). In395
contrast, in a component-oriented architecture, the primary method of specifying a model is to assemble396
it from pre-existing components, each of which include differential equations, parameters, and solvers.397
Both approaches have advantages and disadvantages that are discussed below.398

An equation-oriented simulator can be more transparent and allows the user to know exactly what is399
being solved, but equations can be cumbersome to write out, read, or to debug. In most commonly used400
programming environments, these equations have to be entered as strings, and complex parsing has to be401
carried out by the simulator to check that these strings constitute valid equations. In addition, parameters402
have to be written explicitly into equations, and it is usually not trivial to change parameters after initial403
specification. In contrast, components are easy to assemble into a model, but it can be hard to know what404
they contain, where they are physically located on the user’s computer, and how they can be changed.405
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NEURON is primarily a component-oriented neuronal simulator, and new components are specified in406
special model files that can be “inserted” into a model. BRIAN is an equation-oriented neuronal simulator407
meant to be used from within Python (Goodman and Brette 2009). XPP is a general purpose dynamical408
system simulator that is equation-oriented (Ermentrout 2002). DynaSim is an equation-oriented simulator409
with some component-oriented capabilities. Models can be specified by both strings of equations or com-410
ponents, but since models do not exist as objects in the workspace, parameters and variables have to be411
reinitialized when changed (Sherfey et al. 2018).412

Xolotl is a purely component-based simulator, and all equations need to be included in a C++ header file413
that specifies a object. Since our automatic type system binds MATLAB objects to the underlying C++414
header files, objects can be inspected and parameters can be modified in the MATLAB workspace. To415
mitigate some of the drawbacks of the component-oriented paradigm, we have implemented an architec-416
ture that allows the user to access the underlying C++ code of any object by simply clicking on the object417
tree in the MATLAB command line. This feature removes the uncertainty inherent in other component-418
oriented simulators of the equations underlying each component, and allows the user to modify these419
equations if needed.420

Another architectural choice in designing simulators is the syntax required for specifying models.421
Equation-oriented simulators specify models as strings of equations, so must invent a new syntax to422
specify derivatives, variables, and other common elements in coupled differential equations. Some423
component-oriented simulators like NEURON also specify their own syntax, or have invented their own424
language to specify components and write out equations. While this allows for powerful features such425
as support for units in NEURON, the user is required to learn a novel syntax and vocabulary, hindering426
ease of use. In general, the syntax for model specification in different simulators can be different. For427
example, DynaSim, BRIAN, XPP, and NEURON all use different, incompatible formalisms to represent428
equations, increasing the cognitive load on users using more than one simulator. Here, we have elected not429
to specify a domain-specific “middleware” layer, and instead specify and implement models and equations430
in idiomatic C++. This greatly decreases the learning curve and allows users with a general familiarity431
with programming languages to quickly acquaint themselves even with the most technical parts of the432
simulator.433

5.3 AUDITABILITY AND REPRODUCIBILITY

The use of computational tools is increasingly central to the scientific method; yet, the lack of auditability434
and accountability in their use has led to a crisis of credibility affecting many scientific fields (Stodden435
et al. 2016; Baker 2016). Unlike in experimental research, where a lack of reproducibility can manifest436
due to meaningful reasons like uncharted differences in experimental protocols or intrinsic variability,437
the reasons for irreproducibility in computational research are often trivial and include: a) typographical438
errors from transcribing model parameters and equations, b) obscure software design that leads to users not439
knowing precisely what equations the software is solving, or what parameters it is using, c) incompatibility440
with version control systems and rolling software development that leads to ambiguity in which the version441
of the software that was used to generate a particular result is unclear, and d) convoluted architectures that442
make it too complex for non-experts to understand the inner workings of the software (Xu, Xu, and Deng443
2017; Sedano 2016; Vikström 2009).444

Our software was designed with this threat model in mind, and has features that allow the user to answer445
the following questions in the affirmative: “Can I be sure that I am doing what I think I am doing?” and “Is446
it possible for others to reproduce exactly what I have just done?”. Our goal was to design software that447
would allow the user to verify for herself that the software was running as she intended, and to be able to448
reproduce results from others quickly and unambiguously. The primary design choice in our software that449
enables auditability and reproducibility is that every simulation is tied to an alphanumeric checksum, or450
hash, using the MD5 algorithm (Rivest 1992). The hash is computed from every C++ file that is part of the451
model, and any changes in any C++ file included in the model will trigger a recompilation of that model.452
Thus, the hash guarantees that a given model is derived from a set of source files, obviating any ambiguity453
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about the code used to generate a model. In addition, every parameter and state variable in the model454
can also be hashed together with underlying code, allowing the user to generate a short checksum that455
guarantees with high probability that every aspect of the model – code, parameters, and initial conditions456
– are exactly as they should be.457

Typographical errors from transcribing model parameters and equations can also be detected using458
hashes, and the component-oriented architecture of our software makes it easy to debug code and spot459
errors. Our software has been designed so that it is possible to explore the model interactively in the com-460
mand line, and it is possible to “click through” from the highest level of the model in the command line all461
the way down to the underlying code of any component in the model. This design allows the user to know462
precisely the equations being solved, and view the code that numerically integrates them. Finally, the core463
of our software is written in a few hundred lines of code and contains just four classes: compartments,464
conductances, synapses, and mechanisms. This architectural simplicity lets a motivated user understand465
the entirety of our code quickly.466

5.4 OUTLOOK AND FUTURE DIRECTIONS

In its current form, xolotl is an efficient and easy to use neuron and network simulator that is actively be-467
ing used in research. Results from an early version of this simulator guided intuition in the modeling of a468
recently characterized Calcium-dependent Potassium channel found in Drosophila neuromuscular presy-469
naptic terminals (Bronk et al. 2018). Work on the simulator continues in the open at a publicly accessible470
repository (https://github.com/sg-s/xolotl/), and the library of conductances, synapses and mechanisms471
that xolotl ships with grows continuously. While this simulator was intended as a research tool, the many472
worked examples that are built into it demonstrate how it could also be used as a teaching tool.473

Because xolotl models are bonafide MATLAB objects, they are compatible with most of the powerful474
tools that exist within MATLAB. For example, it is possible to write simple scripts that run xolotl models475
in parallel using MATLAB’s parallel processing toolbox, speeding up large simulations. Xolotl models are476
also compatible with the global optimization toolbox in MATLAB, allowing parameters in xolotl models477
to be optimized, enabling the creation of toolboxes that efficiently tune parameters in neuron models to478
satisfy arbitrary constraints (Achard and De Schutter 2006; Krichmar 2014; Keren, Peled, and Korngreen479
2005; Van Geit 2007; Druckmann et al. 2008).480

Care has been taken to reduce the amount of technical debt (Suryanarayana, Samarthyam, and Sharma481
2014) associated with this project, with all parts of the simulator and dependencies written in a modular,482
objected oriented fashion. As a result, many of the key features and architectures of xolotl can be reused483
by others in their own applications. For example, cpplab, the automatic type system that binds C++484
code to MATLAB objects, is independent of this simulator, and exists as a distinct repository that has485
been made freely available (https://github.com/sg-s/cpplab); and the framework for generating a GUI with486
sliders for each parameter that is hooked up to function callbacks also exists as an independent repository487
(https://github.com/sg-s/puppeteer) that can be easily integrated into other applications.488
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Figure 1: Simulating a single-compartment Hodgkin-Huxley spiking neuron model. (A) Schematic repre-
sentation of a single-compartment neuron with three populations of ion channels (colored rectangles). (B)
In xolotl, the soma is represented using an object of class “compartment” and populations of ion chan-
nels are represented by “conductance” objects contained within the compartment object. (C) The code
snippet shown sets up this neuron model, injects current, integrates and plots the voltage, and displays
activation functions, all in a few lines of code. (D) Simulated voltage trace of a Hodgkin-Huxley model
with three conductances and 0.2 nA of injected current. Colors indicate the dominant current (gold is fast
sodium (NaV), blue is delayed rectifier (Kd), red is Leak). (E) firing rate vs. current (f-I) curve of this
neuron. (F-G) Steady-state gating functions for activation (m) and inactivation (h) gating variables. (H-I)
Voltage-dependence of time constants for activation (m) and inactivation (h) gating variables
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Figure 2: Simulating a voltage-clamp experiment. The diagram shows a cell with delayed rectifier potas-
sium conductance (Liu et al. 1998) that is being recorded from in two-electrode voltage clamp (A). The
code snippet shown here sets up a model with a single compartment and a single channel type, and clamps
the cell to a constant voltage and integrates it (B). Voltage steps that the cell is clamped to (C). Clamp
currents as a function of time (D). Asymptotic clamped current vs. clamped voltage for this cell (E). Ac-
counting for the reversal potential of Potassium ions yields the conductance-voltage curve of this channel
type (F). Normalized conductance-voltage curves, with sigmoid fits with various exponents (G). An expo-
nent of n = 4 yields the best fit, allowing for the characterization of the activation function of this channel
type (H).
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Figure 3: Modeling intracellular mechanisms. A single-compartment neuron model with 8 channel types
(A). Because there is no mechanism for changing intracellular Calcium in this model, the Calcium level
stays constant (B), and the cell tonically spikes (C). Intracellular Calcium buffering and influx through
voltage gated Calcium channels (VGCCs) can be modeled using a simple differential equation (D). Code
snippet shows how this mechanism can be added to the neuron model (E). The cell now bursts periodically,
with synchronized oscillations in intracellular Calcium (F-G). Schematic of Calcium-dependent integral
control homeostasis (O’Leary et al. 2013; O’Leary et al. 2014) (H). In this feedback system, the rates of
mRNA synthesis depend on the Calcium level in the cell, which depends on the membrane voltage, which
in turn depends on the conductance density of all channel types, which, through translation, depends
on the mRNA abundance. (I) The code snippet shows how these integral controllers are implemented
as mechanism objects, and can be added to conductances. (J) On integrating the model, intracellular
calcium levels rise and approach the target (red dashed line). This is accompanied by an increase in the
conductance densities of all channels being controlled by this homeostatic mechanism (K). The voltage
behavior of the cell changes from silence to bursting with truncated spikes to regular bursting.
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Figure 4: Snapshots allow the user to bookmark points in parameter and state space of the model and
return to them ad arbitrium. The initial state (orange node) of the single compartment model in the
previous example is saved using the snapshot method. This method saves all parameters and dynamic
variables of the model in a named state. The first column (orange plots) shows the profile of conductances
and the voltage dynamics of the model at this point at this time. The maximal conductances of the Calcium
channels are then set to zero (purple node), changing the voltage dynamics of the neuron (purple plots).
After evolving the model for some time (green node), the conductance profile and voltage dynamics
returns to a state similar to the initial state (green plots). This configuration is now saved in a state called
f inal and the initial configuration is returned to using the reset method (backwards arrow from green
to orange). Another parameter is now changed (the Calcium target), and the model is integrated to reach
a new state (blue node) where the voltage dynamics are different from the initial state. In summary, any
state can be bookmarked using a descriptive name using the snapshot method, and can be returned to
using the reset method.
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Figure 5: Simulating a network of conductance-based model neurons, coupled by voltage-dependent
dynamic chemical synapses. A three-compartment model of the pyloric network in the crustacean
stomatogastric ganglion (Prinz, Bucher, and Marder 2004) (A). Each neuron is modeled with a single
compartment with 7-8 intrinsic conductances and 1-3 post-synaptic conductances. Synapses can be one
of two types (Cholinergic (dashed lines) or Glutamatergic (solid lines)) and have different kinetics. The
code snippet shows how neurons can be created, wired together using synapses, and how the model can
be integrated to return voltages and intracellular calcium levels in every compartment, and the state of
every synapse (B). Simulated voltage trace of a model network for the three compartments obtained from
this simulation (C-E) . Time series activation variable of the Glutamatergic synapse between PY and LP
(red connection in diagram) shows how the synapse becomes active every time the PY neuron spikes (F).
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Figure 6: Manipulating neuron parameters in real time. Any set of parameter in the model can be ma-
nipulated; here, the maximal conductance of every conductance type in the model from Fig. 1 is being
manipulated using the code snippet shown here. The screenshot shows a GUI with sliders for every pa-
rameter of interest that is created by the manipulate method. These sliders can be linked to an arbitrary
number of visualization functions. In this example, two visualization functions are used: the built in plot
method (A) and a custom function that computes the firing-rate-vs.-injected current curve for this neuron
(B). Both plots refresh themselves with every movement of any slider, allowing the user to build intu-
ition about how every parameter controls the dynamical behavior of the model. A screen recording of this
model being manipulated in real time is included in Supplementary Material
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Figure 7: Comparison of speed and accuracy of xolotl, NEURON and DynaSim. The top row shows simu-
lations of a tonically-firing Hodgkin-Huxley model with three conductances with constant injected current
(as in Fig. 1). The bottom row shows simulations of a bursting stomatogastric ganglion neuron model with
8 conductances (as in Fig. 5). Ratio of run-time to simulation time (relative speed) as a function of simu-
lation time step (A, B). Simulation error as a function of the step size (C, D). Relative speed of integration
as a function of the simulation length (E, F). Relative speed of integration, normalized by system size, as
a function of the number of compartments simulated simultaneously (G, H). All benchmarks were per-
formed on the same computer, and all simulators using fixed time-step integration methods. NEURON
was run using the Python wrapper.
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