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Abstract 

Objective: Osteoarthritis (OA) is a multifactorial disease with etiological heterogeneity. 
The objective of this study was to classify OA subgroups by generating metabolic 
phenotypes of OA from human synovial fluid.  

Design: Post mortem synovial fluids (n=75) were analyzed by high performance-liquid 
chromatography mass spectrometry (HPLC-MS) to measure changes in the global 
metabolome. Comparisons of healthy (grade 0), early OA (grades I-II), and late OA 
(grades III-IV) donor populations were considered to reveal phenotypes throughout 
disease progression.  

Results: Global metabolomic profiles in synovial fluid were distinct between healthy, 
early OA, and late OA donors. Pathways differentially activated among these groups 
included structural deterioration, glycerophospholipid metabolism, inflammation, central 
energy metabolism, oxidative stress, and vitamin metabolism. Within disease states 
(early and late OA), subgroups of donors revealed distinct phenotypes. Phenotypes of 
OA exhibited increased inflammation (early and late OA), oxidative stress (late OA), or 
structural deterioration (early and late OA) in the synovial fluid. 

Conclusion: These results revealed distinct metabolic phenotypes of OA in human 
synovial fluid, provide insight into pathogenesis, represent novel biomarkers and assist 
in developing personalized interventions for subgroups of OA patients. 
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Introduction 

Osteoarthritis (OA) affects over 250 million individuals worldwide and is 
associated with an annual economic burden of at least $89.1 billion [1]. OA is the most 
common joint disease characterized by pain and loss of function resulting from the 
breakdown of the articular cartilage [2]. Pathologically, OA joints exhibit cartilage 
damage, osteophyte formation, subchondral bone sclerosis, and varying degrees of 
synovitis [3]. Altered joint metabolism, inflammation, increased joint loading, joint injury, 
and other factors contribute to the development of OA [4-8].  

This multifactorial nature of OA contributes to a broad variation in presentation of 
symptoms, progression of disease, and response to treatments. In addition to the 
multiple contributing factors, the trajectory of OA prognosis is highly variable. Some 
patients rapidly progress into severe stages of disease, whereas others remain relatively 
stable for decades [9-12]. Similarly, the perception of pain is also variable, with some 
patients experiencing minimal pain despite obvious joint space narrowing and others 
experiencing extreme pain with minimal joint space narrowing. OA was recently 
described as having multiple phenotypes in which subsets of disease characteristics 
drive differences between subgroups of patients with distinct OA outcomes [8]. However, 
more data are needed to define these phenotypes. 

OA heterogeneity poses many challenges for understanding pathogenesis, 
facilitating diagnosis and therapeutic interventions [13-15]. Defining phenotypes of OA is 
important for many reasons. First, this would provide insight into factors that contribute 
to the development of these distinct phenotypes [8]. Secondly, it would allow for 
development of targeted treatments for specific subgroups of OA [8]. Finally, given the 
heterogeneity of OA, defining phenotypes is crucial for identifying biomarkers for early 
diagnosis across all phenotypes or within specific subgroups once identified. 

Metabolomics is a promising method for distinguishing phenotypes. 
Metabolomics analyzes large numbers of small-molecule intermediates [16]. Changes in 
the metabolome occur rapidly and reflect the overall biological response from changes in 
the genome, transcriptome, and proteome [17]. Metabolomic profiling generates a 
phenotype that characterizes functional cellular biochemistry [16, 17]. Global 
metabolomics is promising because it produces a global view of the metabolome with 
minimal bias. By focusing on all metabolite features in the sample, this analysis develops 
a network of pathways that illustrate metabolic perturbations with disease. Therefore, 
global metabolomic profiling is not only beneficial for identifying specific metabolites as 
potential biomarkers as demonstrated previously [18], but also providing insight into the 
underlying mechanism of disease.  

The SF is an ultrafiltrate of the plasma containing additional molecules produced 
by the cells in joint tissue. SF provides lubrication between the articular cartilage 
surfaces and eliminates metabolic waste. The SF is in direct contact with other OA-
affected tissues (i.e. articular cartilage, synovium, etc.) and will reflect local changes with 
disease [19]. This makes the SF a promising biofluid for phenotype identification given 
the heterogenous pathology of OA in the joint.  

The objective of this study is to apply our established LC-MS-based global 
metabolomic profiling method to generate metabolic phenotypes of SF from donors 
across all stages of OA (grades 0-IV). By characterizing global metabolomic profiles of 
early and late OA, this study seeks to (1) identify differences in metabolic pathways 
throughout disease progression from healthy to late stage disease, and (2) classify 
patients within early and late OA into subgroups representative of potential OA 
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phenotypes. To our knowledge, this is the first study to perform global metabolomic 
profiling of SF from donors with early and late stage OA to investigate metabolic 
perturbations throughout disease progression. 

 
 
Methods 

Human Synovial Fluid 

Post mortem SF samples (n=75) from knee joints were used for this study under 
an IRB exemption. Joints were graded based on severity of changes in the knee 
cartilage surfaces using the Outerbridge scoring system which grades joints from 0-IV 
based on macroscopic cartilage pathology[20]. The distribution of OA knees was as 
follows: grade 0 (n=7), grade I (n=28), grade II (n=27), grade III (n=13), and grade IV 
(n=4). SF samples were grouped in three cohorts: healthy controls (grade 0; n=7), early 
OA (grades I-II; n=55), and late OA (grades III-IV; n=17). These samples include both 
sexes and a variety of ages (Table 4.1). SF was frozen at -80˚C until analysis. All 
samples were de-identified and blinded prior to mass spectrometry and data analysis.  

 

Donor Demographic Information 

Age, sex, and OA grade were included for all donors (Table 1). Additional clinical 
data available for some but not all donors included donor height and weight, cause of 
death, pre-existing medical conditions, and history of OA.  

 

Global Metabolomic Profiling  

Metabolites were extracted and analyzed by LC-MS analysis as previously 
described with slight modifications [21, 22]. SF samples were thawed on ice and 
centrifuged at 4˚C at 500xg for 5 minutes to eliminate cells and debris. The supernatant 
was resuspended in 50:50 water:acetonitrile at -20˚C for 30 minutes. The sample was 
vortexed for 3 minutes and centrifuged at 16100xg for 5 minutes at 4˚C. The supernatant 
was completely evaporated in a vacuum concentrator for ~2 hours, and the dried pellet 
was resuspended in 500 µL of acetone to precipitate proteins at 4°C for 30 minutes. The 
sample was then centrifuged at 16100xg for 5 minutes. The supernatant was completely 
evaporated by speedvac, and the pellet was resuspended in mass spectrometry grade 
50:50 water:acetonitrile. Metabolite extracts were analyzed in positive mode using an 
Agilent 1290 UPLC system connected to an Agilent 6538 Q-TOF mass spectrometer 
(Agilent Santa Clara, CA). Metabolites were chromatographically separated on a Cogent 
Diamond Hydride HILIC 150x2.1 mm column (MicroSolv, Eatontown, NJ) using an 
optimized normal phase gradient elution method, and spectra were processed as 
previously described [18].  

 

Statistical Methods and Analysis 

Global metabolomic profiling generates a large multivariate dataset of thousands 
of mass-to-charge ratios (m/z) and their corresponding peak intensities [17]. The dataset 
was reduced by removing metabolite features (m/z values) with median intensity values 
of zero across all experimental groups. All data analysis steps were completed using 
MetaboAnalyst unless otherwise noted [23]. Data were log transformed to correct for 
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non-normal distributions and standardized (mean centered divided by standard 
deviation). Standardized data were used for all analyses unless indicated otherwise. 

All statistical tests used an a priori significance level of 0.05, and false discovery 
rate (FDR) corrections were applied when performing multiple comparisons per 
metabolite between groups. The Kolomogorov-Smirnov test (KS-test) was used in 
MATLAB (MathWorks, Inc. Natick, MA) to compare cumulative median metabolite 
distributions between cohorts. This nonparametric test does not require assumptions 
about the underlying distributions and therefore is useful for metabolomics datasets that 
typically contain non-normal distributions. Specific differences between multiple groups 
were determined using analysis of variance (ANOVA) F-tests. Two-tailed Student’s t-
tests examined specific differences between two groups only. Differentially regulated 
metabolites between two groups were visualized by volcano plot to assess both 
significance and magnitude of change simultaneously. Metabolite features with a p-value 
(FDR corrected) less than 0.05 and greater than twofold change were considered both 
statistically significant and biologically important in these analyses.  

Multivariate methods assessed variations in the metabolomic datasets. 
Unsupervised hierarchical clustering analysis (HCA) based on Euclidean distance and 
average linkage separated samples into groups of similar abundance patterns [24].  
HCA assessed subgroups of donors exhibiting distinct OA phenotypes. HCA is 
visualized using heatmaps, known as a clustergrams, to analyze the overall 
metabolomic profiles. Clustergrams reveal both clusters of co-regulated metabolite 
features and the relative similarity between experimental groups [24]. Principal 
component analysis (PCA) is another unsupervised method used to analyze 
metabolomics data. PCA orthogonally transforms a set of observations into principal 
components that each represent a fraction of the overall variance within the dataset. 
Partial least squares-discriminant analysis (PLS-DA) is a supervised classification 
method that reveals the underlying source of distinction between known groups. PLS-DA 
scores each variable in each component indicating how important that variable was in 
contributing to the separation.  

Metabolite features (m/z values) were matched to known metabolite identities 
and mapped to relevant pathways using the metabolite library and pathway enrichment 
tool, mummichog [25]. Mummichog predicts a network of functional activity based on the 
projection of detected metabolite features onto local pathways. Pathway libraries MFN 
and Biocyc were used for compound identification and pathway enrichment (mass 
tolerance: 0.1 ppm; positive mode). Pathways reported were significant by pathway 
overrepresentation analysis with an FDR-adjusted p-value less than 0.05.  

To determine if cohorts or phenotypes were associated with any confounding 
variables, Student’s t-tests, logistic regression, and post hoc Chi Squared tests were 
employed to assess differences between groups based on the available clinical data 
including age, sex, and BMI were assessed between both groups and phenotypes.   

 
 
Results  

Differences in Global Metabolomes between Healthy Donors, Early and Late OA 

A total of 9903 metabolite features were detected in SF from donors with grade 
0-IV OA. This dataset was refined to 1362 detected features by removing features with a 
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median intensity of zero. ANOVA identified 39 differentially expressed metabolite 
features between healthy, early OA, and late OA SF (FDR-corrected p<0.05).  

We first explored whether the global metabolomes were distinct between healthy, 
early, and late OA cohorts. To examine differences between cohorts, three pairwise 
comparisons were made: healthy vs. early OA; healthy vs. late OA; and early vs. late 
OA. Between-group differences in global metabolomes were assessed using KS-tests, 
and this revealed significant differences between all pairwise comparisons (pks<0.01; 
Fig. 1). Taken together, these results indicate that the global metabolomes are 
significantly different between healthy, early, and late OA.  

To visualize differences in metabolomic profiles and identify specific metabolite 
features with the greatest discriminative capabilities for separating cohorts, supervised 
PLS-DA was used. PLS-DA shows clear separation of healthy donors from disease 
donors, and minimal overlap between early and late OA donors (Fig. 1). By examining 
VIP scores, we found metabolite features that contribute the most to distinguishing 
between cohorts and are strong candidates for potential metabolite biomarkers 
(Supplemental Table 1).  

Volcano plot analysis examined pairwise differences using both significance and 
fold changes (Fig. 1). 188 metabolite features were significantly different between 
healthy and early OA SF with 162 lower and 26 higher in early OA. 64 metabolite 
features were significantly different between healthy and late OA SF, with 39 lower and 
25 higher in abundance. Within OA, 191 metabolite features were significantly different 
between early and late stage disease, with 9 lower and 182 higher in late stage disease. 
To infer metabolic activity, significantly different metabolite features were enriched using 
mummichog’s pathway analysis (Supplemental Table 2) presented below. 

 

[Suggested location for Figure 1] 

 

Co-Regulated Metabolites Map to Differentially Regulated Metabolic Pathways 

with Disease 

Early and late OA profiles were distinct from healthy SF (Fig. 2). Unsupervised 
HCA of healthy and diseased SF showed that the early and late OA profiles were more 
similar to one another than healthy SF (Supplemental Fig. 1). From the clustering, six 
groups of co-regulated metabolites were identified based on consistency of clustered 
distance and assessed for enriched pathways associated with stage of OA. 
(Supplemental Table 3).  

 

[Suggested location for Figure 2] 

 

Cluster 1 contained 38 metabolite features that decreased throughout disease 
progression. These mapped to 14 of the previously identified enriched pathways 
(Supplemental Table 2) including amino acid metabolism (glycine, serine, alanine, 
threonine, lysine, arginine, and proline), the urea cycle, phosphatidylinositol phosphate 
metabolism, the carnitine shuttle, vitamin metabolism (B5 and C), and porphyrin 
metabolism (Supplemental Table 3).  
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Cluster 2 contained 135 metabolite features that decreased in OA compared to 
healthy SF. These metabolite features mapped to 20 enriched pathways including 
vitamin metabolism (E, C, B3, and B6), phosphatidylinositol phosphate metabolism, 
glutathione metabolism, leukotriene metabolism, butanoate metabolism, amino acid 
metabolism (similar to cluster 1 with the addition of tryptophan and histidine 
metabolism), and the carnitine shuttle (Supplemental Table 3).  

Cluster 3 contained 188 metabolite features lowest in early OA compared to 
healthy and late OA. These mapped to 14 enriched pathways including porphyrin 
metabolism, galactose metabolism, fructose and mannose metabolism, vitamin 
metabolism (B5, B3, E), methionine and cysteine metabolism, N-glycan degradation, 
glycerophospholipid metabolism, and leukotriene metabolism (Supplemental Table 3).  

Clusters 4-6 contained metabolism features higher in abundance in OA cohorts. 
Cluster 4 contained 64 metabolite features highest in late OA. These metabolite features 
mapped to 8 enriched pathways including keratan sulfate degradation, N-glycan 
degradation, fructose and mannose metabolism, leukotriene metabolism, and butanoate 
metabolism (Supplemental Table 3).  

Cluster 5 contained 177 metabolite features with the greatest abundance in early 
and late OA SF. These mapped to 36 enriched pathways including amino acid 
metabolism (histidine, glycine, serine, alanine, threonine, tyrosine, glutamate, aspartate, 
valine, leucine, isoleucine, aspartate, asparagine, lysine, and tryptophan) urea cycle, 
keratan sulfate degradation, fatty acid metabolism, glycerophospholipid and 
glycosphingolipid metabolism, the TCA cycle, N-glycan metabolism, glutathione 
metabolism, tryptophan metabolism, and vitamin C metabolism (Supplemental Table 3).  

Cluster 6 contained 60 metabolite features highest in abundance in early OA.  
These mapped to 33 enriched pathways included glycolysis and gluconeogenesis, the 
pentose phosphate pathway, sialic acid metabolism, N-glycan degradation, keratan 
sulfate degradation, tryptophan metabolism, glutathione metabolism, and vitamin B3 
metabolism (Supplemental Table 3). 

 

Unsupervised Clustering Suggests OA Phenotypes within Early and Late OA 

To examine OA phenotypes, early and late OA were further analyzed by 
unsupervised HCA. In early OA, this revealed two clusters of donors, E1 and E2, 
containing 33 and 22 donors, respectively (Fig. 3A). There were 379 metabolite features 
differentially expressed between phenotypes E1 and E2 (FDR-corrected p<0.05). HCA 
of late OA also showed two distinct clusters of donors, L1 and L2, that may be 
representative of late OA phenotypes (Fig. 4A). 11 donors clustered in phenotype L1, 
and 6 donors clustered in phenotype L2. There were 187 differentially expressed 
metabolite features between phenotypes L1 and L2 (FDR-corrected p<0.05).  

PCA, an unsupervised method, was used to examine the separation between 
potential phenotypes. Plotting the PCA scores of early OA donors shows the separation 
between phenotypes, with PC1 and PC2 accounting for 27.1% of the overall variance 
(Fig. 3B). Separation of late OA donors into two distinct phenotypes is also supported by 
PCA, with PC1 and PC2 associated with 35.8% of the overall variance (Fig. 4B). PLS-
DA, a supervised method, further supports distinct phenotypes within early and late OA 
as indicated by separation between E1 and E2 donors and L1 and L2 donors (Fig. 3C, 
4C). Taken together, HCA, PCA, and PLS-DA support four distinct subgroups of donors 
in early and late stage disease that may be representative of metabolic OA phenotypes. 
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[Suggested location for Figures 3 and 4] 

 

Distinct pathways were represented in the various phenotypes as determined by 
analyzing differentially expressed metabolites for enriched pathways. Volcano plot 
analysis found 254 metabolite features differentially expressed between the early OA 
phenotypes and 158 metabolite features differentially expressed between late OA 
phenotypes (Fig. 3D, 4D). Enrichment analysis was then employed to map differentially 
expressed metabolite features to pathways (Tables 2-3).  

A subgroup of donors at each stage of OA (E2 and L2) exhibited evidence of 
glycosaminoglycan degradation and structural deterioration. E2 was associated with 25 
significantly enriched pathways, including glycosaminoglycan degradation, sialic acid 
and N-glycan metabolism, tryptophan metabolism, and ascorbate metabolism (Table 2). 
L2 was associated with 4 significantly enriched pathways including keratan sulfate and 
N-glycan degradation, sialic acid metabolism, and galactose metabolism (Table 3). 

The remaining OA phenotypes, E1 and L1, were associated with increased 
inflammation. Phenotype E1 was associated 14 significantly enriched pathways 
including metabolism of butanoate and leukotrienes—both of which play a role in 
inflammation (Table 2). L1 was associated with 30 significantly enriched pathways 
including arachidonic acid metabolism and leukotriene metabolism (Table 3). Phenotype 
L1 was also associated with glutathione metabolism, which may be suggestive of altered 
levels of oxidative stress (Table 3).  

 

[Suggested location for Tables 2 and 3] 

 

Confounding variables 

We evaluated if differences in metabolomic profiles between healthy, early, and 
late OA were associated with age, sex, or BMI as possible covariates (Table 1). The 
ages and BMI of the healthy, early, and late OA cohorts were calculated and analyzed 
by Student’s t-test. Male:female ratios were analyzed by logistic regression and chi-
squared tests.  There were significant differences in ages between healthy, early, and 
late OA comparisons with early OA younger than late OA (p<0.05). However, there was 
little to no evidence of differences in BMI or male:female ratios (p>0.05). Therefore, any 
differences noted between cohorts besides being due to the presence or absence of OA 
may be associated with aging.  

 

[Suggested location for Table 1] 
 
 
Discussion 

To our knowledge, this is the first study to use LC-MS-based global metabolomic 
profiling of human SF to study OA phenotypes. A single prior study used a targeted 
approach based on 186 metabolites for this same goal and found that acylcarnitine and 
free carnitine levels were significantly different between subgroups [9]. In contrast, the 
global approach used here removes bias by not excluding metabolites a priori. By 
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focusing on all detected metabolites, this study produced a network of pathways 
perturbed with OA. These data provide greater understanding of disease pathogenesis, 
therapeutic targets, and insight for biomarker discovery.  

1362 metabolite features were detected in human SF by LC-MS analysis, and 
global metabolomic profiles were generated for healthy, early OA, and late OA SF.  OA 
was associated with altered extracellular matrix component metabolism (glucosamine 
and galactosamine biosynthesis, ascorbate metabolism, keratin sulfate metabolism, and 
N-glycan metabolism), amino acid metabolism, fatty acid and lipid metabolism 
(glycosphingolipid and glycerophospholipid metabolism, the carnitine shuttle), 
inflammation (leukotriene metabolism), central energy metabolism (glycolysis and 
gluconeogenesis, the TCA cycle), oxidative stress (vitamin E, glutathione metabolism), 
and vitamin metabolism (C, E, B1, B3, B6, and B9).  

 

Structural Deterioration  

Diseased SF exhibited greater evidence of tissue damage compared to healthy 
SF. Keratan sulfate degradation, N-glycan degradation, sialic acid metabolism, and 
ascorbate metabolism were altered with OA. Keratan sulfate, chondroitin sulfate, and 
heparin sulfate are glycosaminoglycans (GAGs) that function as building blocks of 
articular cartilage. Their presence in the SF typically indicates increased cartilage 
turnover [26]. In OA, the articular cartilage is degraded reducing GAG content [27, 28]. 
These data are consistent with both synthesis and degradation of GAGs in the SF of 
both early and late stage donors. OA cartilage also exhibits collagen damage [29]. We 
identified hydroxyproline as a metabolite with the greatest ability in distinguishing early 
from late OA. Sialic acids and N-glycans are also important components of lubricin, a 
mucinous glycoprotein that lines the cartilage surfaces and acts as a lubricant [30]. 
These pathways were perturbed in diseased SF suggesting that the SF function in 
lubrication is compromised. 

 

Vitamin Metabolism and Oxidative Stress  

The physiological significance of vitamins E, B5, and C may relate to their roles 
as antioxidants to counteract the increased oxidative stress in the joint during OA [31]. 
Additional results from diseased SF suggest oxidative stress included glutathione 
metabolism. Furthermore, vitamin B3 is also a required cofactor for the production of 
nitric oxide (NO) by NO synthase. NO has been shown to have both catabolic and 
protective effects in OA by modulating a variety of inflammatory and anti-inflammatory 
mediators [32]. Thus, altered vitamin B3 metabolism may drive NO-related changes 
during OA pathogenesis. The altered antioxidant metabolism exhibited in OA SF in this 
study further supports a role for oxidative stress in the development of OA [33]. 

 

Phenotypes of OA in Synovial Fluid from Early and Late Stage Disease 

OA is a heterogeneous disease with varying presentation. Because of this, we 
investigated if distinct metabolic phenotypes existed within OA SF (i.e. early vs. late or 
within each). We identified two distinct phenotypes in early OA—E1 and E2 and two in 
late OA—L1 and L2.  

Both inflammation and structural degradation are involved in OA.  In early OA, a 
subset of donors (E1) was associated with greater inflammation, while the remaining 
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donors (E2) exhibited evidence of greater structural deterioration. Similarly, in late OA, 
phenotype L1 was associated with inflammation and oxidative stress while L2 was 
associated with structural deterioration products. These data suggest that inflammation 
and degradation may not be as closely correlated as expected. Furthermore, because of 
the close relationship between inflammation and pain [34, 35], the inflammatory 
phenotypes E1 and L1 may be associated with increased pain.   

As in late OA phenotype L1, oxidative stress and inflammation have been 
extensively studied for their role in OA pathogenesis, yet both contribute to OA by 
promoting cartilage degradation [36]. Despite this, phenotype L1 exhibited reduced 
structural deterioration products in the SF compared to L2. This suggests a structural 
damage phenotype at both early and late stage disease, an inflammatory phenotype in 
early OA, and an inflammatory and oxidative stress phenotype at late stage disease. 
Overall, these findings further support the heterogeneous nature of OA and suggest 
stage-dependent phenotypes that may drive differences in symptoms.   

 

Limitations  

This study has limitations and also opens opportunities for future research. First, 
the sample size for this study was relatively small (n=75). Some cohorts, such as healthy 
(grade=0), consisted of only 6 samples, whereas early OA contained 55. With a small 
sample size, it is unlikely that all metabolic phenotypes were represented. Furthermore, 
this sample did not contain complete clinical information. Age and sex were provided for 
all donors, BMI was provided for most, but others lacked cause of death, prior medical 
history, and/or ethnicity. Importantly, age was identified as a potential confounder in this 
study. Age-matching within experimental cohorts would avoid potential confounding by 
age. Targeting specific inflammatory metabolites or degradation products may yield 
further insight into OA phenotypes, and expanded sample sizes may allow detection of 
OA biomarkers.   

 

Conclusions 

This is the first study to generate global metabolomic profiles of early and late OA 
SF and identify OA phenotypes within early and late OA cohorts. The identified 
pathways in early and late OA provide insight into disease progression and provide 
several molecular pathways to further investigate as biomarkers of OA and as targets for 
drug discovery. Furthermore, the identification of specific OA phenotypes supports the 
heterogeneity of disease. Expansion of this study will identify candidate biomarkers of 
early and late OA in human SF and within OA phenotypes.  
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Figures and Legends  

 

Figure 1. Global metabolomes are distinct between cohorts. (A-C) The cumulative 
distribution of metabolites between groups were distinct from one another. KS-tests 
comparing the median metabolite intensity distributions between groups revealed 
significantly (pks<0.01) different metabolomic profiles. Mirrored metabolite distributions 
display differences between groups. (D-F) PLS-DA displayed differences in metabolomic 
profiles of between groups, revealing clear separation between healthy and OA donors 
and some separation between early and late OA donors. The first two components are 
plotted against one another with their contribution to the overall variance. 95% 
confidence ellipses illustrate class separation. (G-I) Volcano plot analysis between 
groups reveal metabolite features upregulated and downregulated by p-value and fold 
change analysis. Dashed lines indicate the p-value threshold of 0.05 (horizontal) and 
fold change threshold of 2 (vertical). The upper right and left quadrants contain 
significant (p<0.05) upregulated and downregulated features with a fold change greater 
than twofold. Metabolite features in the upper right and left quadrants were assessed for 
enriched pathways reported in Supplemental Table 2. 
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Figure 2. Metabolic changes in SF during early and late stage OA. Clustergram of 
median global metabolomic profiles of early and late OA SF normalized to healthy SF 
display patterns of metabolite expression with disease. Arbitrarily selected clusters of co-
regulated metabolite features are boxed in black and enriched for relevant pathways in 
Supplemental Table 3. 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2018. ; https://doi.org/10.1101/395020doi: bioRxiv preprint 

https://doi.org/10.1101/395020


 

Figure 3. Phenotypes in early OA synovial fluid. (A) Unsupervised HCA of all early OA 
donors. Two clusters of donors were identified and labeled as phenotype E1 (red) and 
phenotype E2 (blue). E1 contained 33 donors and E2 contained 22. Line length 
represents Euclidean distances between donors and clusters. (B) Unsupervised PCA of 
all early OA donors reveals separation of early OA phenotypes. The first two 
components are associated with 27.1% of the variation between phenotypes. (E1=red; 
E2=blue). (C) Supervised PLS-DA further illustrated the separation between phenotypes 
(E1=red; E2=blue) with PC1 and PC2 accounting for 24.3% of the variance. (D) Volcano 
plot visualization of differentially regulated metabolite features by Student’s t-test 
significance and fold change analysis (E1:E2). The p-value threshold is represented by 
the horizontal dashed line (FDR-corrected p<0.05), and the vertical lines represent the 
fold change threshold (greater than twofold change). Metabolite features in the upper 
right and left quadrants (p<0.05 and greater than twofold change) were enriched for 
relevant pathways reported in Table 3, with the full list of perturbed pathways in 
Supplemental Table 2.  
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Figure 4. Phenotypes in late OA synovial fluid. (A) Unsupervised HCA of all late OA 
donors. Two clusters of donors were identified and labeled as phenotype L1 (red) and 
phenotype L2 (blue). L1 contained 11 donors, and L2 contained 6 donors. Line length 
represents Euclidean distances between donors and clusters. (B) Unsupervised PCA of 
all early OA donors reveals separation of early OA phenotypes. The first two PCs are 
associated with 35.8% of the variation between phenotypes. (L1=red; L2=blue). (C) 
Supervised PLS-DA further illustrated the separation between phenotypes (L1=red; 
L2=blue), with component 1 and component 2 accounting for 34% of the overall 
variance. (D) Volcano plot visualization of differentially regulated metabolite features by 
Student’s t-test significance and fold change analysis (L1:L2). The p-value threshold is 
represented by the horizontal dashed line (FDR-corrected p<0.05) and the vertical lines 
represent the fold change threshold (greater than twofold change). Metabolite features in 
the upper right and left quadrants were assessed for enriched pathways reported in 
Table 4.6.  
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Supplemental Figure 1. Distinct global metabolomic profiles of healthy, early OA, and 
late OA SF. Clustergram of median global metabolomic profiles of healthy, early OA, and 
late OA SF displays patterns of metabolite expression. HCA illustrates that early and late 
OA SF were more similar than healthy SF.  
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Tables and Captions 

 

Table 1. Descriptive statistics for donor population. Descriptive statistics of donor 
population for each cohort including age, sex (as male % population), and BMI. All 
means are reported as mean +/- standard error. BMI was unavailable for some donors 
(BMI=body mass index). 

Cohorts Healthy Early OA 
Phenotype 

E1 
Phenotype 

E2 
Late OA 

Phenotyp
e L1 

Phenotyp
e L2 

Age 
35 ± 

4.796 
55.47 ± 
2.163 

56.45 ± 
2.781  

54 ± 3.496  
68.53 ± 
3.868 

66 ± 4.637  
78.88 ± 
4.006  

Sex (% 
male) 

57.14% 52.73% 54.55% 50% 41.18% 27.27% 66.67% 

BMI 
24.2 ± 
2.524  

27.82 ± 
0.9789 

28 ± 1.249  
27.56 ± 
1.613  

29.26 ± 
3.447 

31.89 ± 
4.646  

25.57 ± 
5.223  
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Table 2. Perturbed pathways in early OA phenotypes. Pathway enrichment of significant 
metabolite features upregulated and downregulated (p<0.05; greater than twofold 
change) with early OA phenotypes in Fig. 4.5F volcano plot analysis comparing 
phenotype E1 to phenotype E2 (E1:E2 fold change ratio). Significant metabolite features 
greater in abundance in the upper right quadrant of the volcano plot (higher in E1 
compared to E2) in Fig. 3D were enriched to reveal corresponding upregulated 
pathways. Significant metabolite features reduced in abundance in the upper left 
quadrant of the volcano plot (lower in E1 compared to E2) in Fig. 3D were enriched to 
reveal corresponding downregulated pathways. Pathways are reported with the total 
metabolites in the pathway, the total detected metabolites in the pathway, and total 
significant (by volcano plot analysis) metabolites within that pathway. Only pathways 
with an FDR-corrected p-value less than 0.05 are reported. The full list of pathways 
identified in Fig. 3D volcano plot is reported in Supplemental Table 2. 

Downregulated in Early OA Phenotype E1 (Upregulated in Phenotype E2) 

 

Total Detected Significant P-value 

Phosphatidylinositol phosphate metabolism 59 21 10 0.00031787 

Chondroitin sulfate degradation 37 6 4 0.00046556 

Heparan sulfate degradation 34 6 4 0.00046556 

Glycosphingolipid biosynthesis - ganglioseries 62 7 4 0.00058063 

Galactose metabolism 41 29 9 0.00066311 

Hexose phosphorylation 20 16 6 0.0006945 

Glycosphingolipid biosynthesis - globoseries 16 4 3 0.00070358 

N-Glycan Degradation 16 5 3 0.0010502 

N-Glycan biosynthesis 48 11 4 0.0018166 

Hyaluronan Metabolism 8 2 2 0.001875 

Fructose and mannose metabolism 33 21 6 0.001927 

Urea cycle/amino group metabolism 85 39 9 0.0031932 

Keratan sulfate degradation 68 4 2 0.0068439 

Sialic acid metabolism 107 21 5 0.0068821 

Glycosphingolipid metabolism 67 16 4 0.0082138 

Vitamin B9 (folate) metabolism 33 11 3 0.010679 

Starch and Sucrose Metabolism 33 11 3 0.010679 

Alanine and Aspartate Metabolism 30 17 4 0.010787 

Tryptophan metabolism 94 39 7 0.024073 

Selenoamino acid metabolism 35 14 3 0.025485 

Amino sugars metabolism 69 21 4 0.027862 

Xenobiotics metabolism 110 34 6 0.029208 

Histidine metabolism 33 15 3 0.032525 

Porphyrin metabolism 43 15 3 0.032525 

Ascorbate (Vitamin C) and Aldarate Metabolism 29 9 2 0.046412 

Upregulated in Early OA Phenotype E1 (Downregulated in Phenotype E2) 

  Total Detected Significant P-value 
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Butanoate metabolism 34 19 3 0.0012595 

Purine metabolism 80 38 4 0.0022534 

Glutamate metabolism 15 10 2 0.0027626 

Methionine and cysteine metabolism 94 30 3 0.0051311 

Leukotriene metabolism 92 16 2 0.0078615 

Lysine metabolism 52 19 2 0.011907 

Tryptophan metabolism 94 39 3 0.012978 

Valine, leucine and isoleucine degradation 65 20 2 0.013498 

Amino sugars metabolism 69 21 2 0.015211 

Bile acid biosynthesis 82 27 2 0.028037 

Arginine and Proline Metabolism 45 28 2 0.03058 

Galactose metabolism 41 29 2 0.033231 

Pyrimidine metabolism 70 32 2 0.041794 

Drug metabolism - cytochrome P450 53 34 2 0.04797 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2018. ; https://doi.org/10.1101/395020doi: bioRxiv preprint 

https://doi.org/10.1101/395020


Table 3. Perturbed pathways in late OA phenotypes. Pathway enrichment of significant 
metabolite features upregulated and downregulated p<0.05; greater than twofold 
change) with late OA phenotypes in Fig. 4D volcano plot analysis comparing phenotype 
L1 to phenotype L2 (L1:L2 fold change ratio). Significant metabolite features greater in 
abundance in the upper right quadrant of the volcano plot (higher in L1 compared to L2) 
in Fig. 4D were enriched to reveal corresponding upregulated pathways. Significant 
metabolite features reduced in abundance in the upper left quadrant of the volcano plot 
(lower in L1 compared to L2) in Fig. 4D were enriched to reveal corresponding 
downregulated pathways. Pathways are reported with the total metabolites in the 
pathway, the total detected metabolites within the pathway, and total significant (by 
volcano plot analysis) metabolites within that pathway. Only pathways with an FDR-
corrected p-value less than 0.05 are reported. The full list of pathways identified in Fig. 
4D volcano plot is reported in Supplemental Table 2. 

Downregulated in Late OA Phenotype L1 (Upregulated in Phenotype L2) 

  Total Detected Significant P-value 

Keratan sulfate degradation 68 4 2 0.019848 

N-Glycan Degradation 16 5 2 0.020384 

Sialic acid metabolism 107 21 2 0.02995 

Galactose metabolism 41 29 2 0.035387 

Upregulated in Late OA Phenotype L1 (Downregulated in Phenotype L2) 

 

Total Detected Significant P-value 

Porphyrin metabolism 43 15 9 0.00013083 

Alanine and Aspartate Metabolism 30 17 7 0.00014903 

Vitamin B9 (folate) metabolism 33 11 5 0.00018086 

Vitamin B3 (nicotinate and nicotinamide) metabolism 28 12 5 0.00020224 

Urea cycle/amino group metabolism 85 39 10 0.00021275 

Glutamate metabolism 15 10 4 0.0003258 

Leukotriene metabolism 92 16 5 0.00037052 

Arginine and Proline Metabolism 45 28 7 0.00039868 

Methionine and cysteine metabolism 94 30 7 0.00053156 

Histidine metabolism 33 15 4 0.001096 

Glutathione Metabolism 19 10 3 0.0016661 

Nitrogen metabolism 6 4 2 0.0020684 

Beta-Alanine metabolism 20 11 3 0.0023048 

Butanoate metabolism 34 19 4 0.003009 

Lysine metabolism 52 19 4 0.003009 

Aspartate and asparagine metabolism 114 62 10 0.0030692 

Valine, leucine and isoleucine degradation 65 20 4 0.0038276 

Phosphatidylinositol phosphate metabolism 59 21 4 0.0048344 

Amino sugars metabolism 69 21 4 0.0048344 

Glycine, serine, alanine and threonine metabolism 88 36 6 0.0049222 

Hexose phosphorylation 20 16 3 0.0094927 
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Squalene and cholesterol biosynthesis 55 10 2 0.020059 

Purine metabolism 80 38 5 0.024465 

Biopterin metabolism 22 11 2 0.025759 

Arachidonic acid metabolism 95 22 3 0.032157 

Vitamin E metabolism 54 12 2 0.032261 

Pyrimidine metabolism 70 32 4 0.035863 

Tyrosine metabolism 160 59 7 0.039574 

Xenobiotics metabolism 110 34 4 0.046425 

Selenoamino acid metabolism 35 14 2 0.047506 

 

 

Supplemental Table 1. Discriminative metabolites identified by PLS-DA for classifying 
SF as healthy, early OA, late OA, phenotype E1, phenotype E2, phenotype L1, or 
phenotype L2. Full list of discriminative metabolite features with VIP scores for the top 
two components for each PLS-DA plot in Figure 1D-F, 3C, and 4C. Potential metabolite 
identities are reported as compound matches using mummichog and the Biocyc pathway 
library.  

 

Supplemental Table 2. Distinct pathways are perturbed between groups. Full pathway 
enrichment of volcano plots in Fig. 1G-I, 3D, and 4.D. Pathways are reported for the 
pathway library, MFN.  

 

Supplemental Table 3. Full list of all pathways identified for each cluster in Fig. 2 
clustergram. 
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