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Abstract 

Personality traits offer considerable insight into the biological basis of individual differences. 1 

However, existing approaches toward understanding personality across species rely on 2 

subjective criteria and limited sets of behavioral readouts, resulting in noisy and often 3 

inconsistent outcomes. Here, we introduce a mathematical framework for studying individual 4 

differences along dimensions with maximum consistency and discriminative power. We validate 5 

this framework in mice, using data from a system for high-throughput longitudinal monitoring of 6 

group-housed mice that yields a variety of readouts from all across an individual’s behavioral 7 

repertoire. We describe a set of stable traits that capture variability in behavior and gene 8 

expression in the brain, allowing for better informed mechanistic investigations into the biology 9 

of individual differences.     10 
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Introduction 11 

Individual differences are a hallmark of living organisms and central to our understanding of 12 

normal behavior and psychopathology. In humans, consistencies in emotional and behavioral 13 

expression have been extensively investigated and categorized by psychologists within the 14 

framework of personality traits1,2. In other species, however, the understanding of individual 15 

differences and the biological processes that underlie them has been hindered by the absence 16 

of a strong conceptual foundation behind the trait creation process and the lack of 17 

comprehensive behavioral screening paradigms. 18 

Here we propose to resolve these issues using a computational framework for capturing and 19 

describing the space of individual behavioral expression by reducing diverse longitudinal 20 

behavioral data to trait-like dimensions. Personality traits can be thought of as having two crucial 21 

characteristics: (1) they capture and represent a continuous gradient of differences between 22 

individuals of the same species and (2) they tend to be stable for individuals over time. Thus, a 23 

mathematical formulation of a trait informed directly by these properties would be a dimension 24 

that captures the maximum behavioral variability between individuals while maintaining 25 

minimum variability within individuals over time. We use the term Identity Domains (IDs) to 26 

describe such traits obtained from decomposing a high-dimensional space of the measured 27 

behaviors. Conceptually similar to principal component analysis, which identifies the directions 28 

of maximum variability, our linear discriminant analysis (LDA) decomposition-based approach 29 

seeks the dimensions with maximal discriminative power and stability by maximizing the 30 

between- to within-individual variability ratio (Figure 1a). We validate this framework in mice, one 31 

of the most commonly used model organisms in neuroscience and psychiatry research, and a 32 

species that readily allows for exploration of the biological underpinnings of individual 33 

differences.   34 
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Results 35 

The Social Box paradigm 36 

In order to assess the broadest variety of ethologically relevant voluntary mouse behaviors, we 37 

used a long-term “Social Box” living paradigm, wherein mice are housed in an enriched, semi-38 

naturalistic environment in groups of four and monitored over multiple days 3,4 (Figure 1b-d, 39 

Supplementary Movie 1). Automatic location tracking of individuals allowed high-throughput 40 

behavioral data collection with readouts consisting of both individual (e.g., locomotion, 41 

exploration, foraging patterns) and social (e.g., approaches, contacts, chases) behaviors. A total 42 

of 60 features per mouse, per 12-hour active phase was collected (Supplementary Figure 1a). We 43 

initially monitored 42 groups of four outbred male mice (a total of 168 animals) left undisturbed 44 

over a period of at least four days. 45 

Linear Discriminant Analysis 46 

An initial analysis of the readouts from this dataset revealed a subset of behaviors that, in 47 

themselves, were discriminating between and/or stable within individuals (Supplementary Figure 48 

1b), suggesting that the Social Box paradigm could capture some of the information necessary 49 

for building IDs. We thus proceeded to train our algorithm on this dataset. Our analysis yielded 50 

four significant IDs that passed the threshold of less than 5% average overlap between 51 

individuals (Supplementary Figure 2, ID5 – the first dimension below this threshold is shown for 52 

comparison). The dimensions produced this way were uncorrelated, though not necessarily 53 

orthogonal, resulting in four IDs each spanning a very different behavioral subspace (Figure 2a).  54 

To test the replicability of the four IDs, we used a separate dataset composed of control mouse 55 

measurements (n = 208) in Social Boxes with a different layout (Supplementary Figure 3a), which 56 

yielded only a subset of the current behavioral readouts (37 different readouts per mouse per 57 

active phase). The scores on the top four IDs obtained from this dataset correlated strongly with 58 

the respective original scores (Supplementary Figure 3b). The strength of this relationship 59 

decreased steeply at ID5. We were thus able to replicate the initial ID structure on an independent 60 

dataset despite the differences in setup and readouts. 61 
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IDs are stable over time, developmental stages, and social context 62 

Having established our model, we proceeded to experimentally validate the IDs. To assess the 63 

stability of ID scores over time, we first tested their self-similarity from an average of the first four 64 

days of the experimental period to the 5th day (Supplementary Figure 4). All IDs fulfilled this 65 

criterion. We then tested their stability over developmental time, by assessing juvenile mice (8 66 

groups, 4-5 weeks old) in the social arenas. The same mice were tested again as adults (15-16 67 

weeks old). Individual scores on IDs 1-3 were stable over this prolonged period of time (Figure 68 

2b, Supplementary Figure 5), indicating that IDs assigned to juveniles captured individual 69 

differences that remained stable across developmental stages.     70 

A major reason for the usefulness of behavioral traits over specific behaviors is that traits more 71 

closely approximate the intrinsic properties of an individual and are therefore more robust  72 

 

Figure 1. From behavior to personality. (a) The task of finding stable and discriminative trait-like dimensions can be 
formulated as an optimization problem. We used Linear discriminant analysis (LDA) to reduce the multidimensional 
behavioral space by creating dimensions that maximize the ratio of inter- to intra-subject variability. (b) Groups of four 
male mice, marked for tracking purposes with dyes of 4 different colors, were housed in an enriched environment 
where they could move and interact freely over multiple days. All of their movements were automatically tracked. Each 
arena contained a closed nest, 2 feeders, 2 water bottles, 2 ramps, an open shelter, and a S-shaped separation wall in 
the center. (c) Movement ethograms and (d) social ethograms for 2 representative groups of mice show intra-individual 
consistencies and inter-individual variability. 
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against manipulations of the social environment. Mice from 16 groups (64 individuals) that had 73 

been assigned ID scores based on the four-day baseline testing were then shuffled into new  74 

 

Figure 2. Testing the Identity Domains (IDs). (a) Running linear discriminant analysis (LDA) on the 60-
dimensional behavioral space resulted in four significant IDs. The IDs are uncorrelated between 
themselves and are represented by multiple overlapping behaviors (showing 13 representative 
behaviors out of the 60, see Supplementary Figure 9). The width of connecting lines reflects the 
strength of the correlation (red – positive, blue – negative). (b)  ID scores of mice as juveniles (4-5 weeks 
old) remained significantly stable at adulthood (15-16 weeks old) for the first three IDs. (c) ID scores of 
mice before and after being mixed into new social groups. Mice were significantly self-similar in their 
scores on IDs 1 through 4 across changing social environments. This relationship did not hold for ID5.   
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groups, such that no mouse had ever been exposed to any of its new group members and re-75 

introduced to new arenas for another day of measurements (Supplementary Figure 6). For adult 76 

male mice, this is a dramatic and stressful manipulation causing significant changes in many of  77 

the behavioral readouts, especially those related to general locomotion and aggression. Despite 78 

these changes, the scores for IDs 1 through 4, but not ID5, remained significantly self-similar to 79 

their baseline state (Figure 2c). We additionally compared our model against PCA run on the same 80 

dataset. In this analysis only two out of the four top four principal components remain stable 81 

after this manipulation (Supplementary Figure 7a-c). Thus, mice tended to maintain the  82 

distinguishing individual characteristics captured by IDs despite substantial changes to the social 83 

environment.  84 

IDs combine information from a variety of standard behavioral tests 85 

Having established that four IDs were stable over time and across social context, we set out to 86 

assess their ability to predict a range of standard behaviors typically measured in classical mouse 87 

behavioral paradigms. To this end, we submitted mice with known ID scores to a battery of 88 

established behavioral assays (Figure 3a-b). ID scores contained a significant portion of the 89 

information collected from classical tests (Figure 3a). The pattern of correlations between the 90 

various tests and ID scores additionally suggests that IDs represent complex entities that could 91 

not be fully captured without comprehensive behavioral screening. Moreover, these 92 

relationships contribute to the notion that IDs carry information about the hidden factors that 93 

are co-modulated across an animal’s behavioral repertoire. For example, ID1 was correlated with 94 

a measure of dominance in the social hierarchy (David’s score, Figure 5b) and also with features 95 

of locomotion in the open field test and memory recall in the object recognition test. All of these 96 

behavioral readouts appear to be expressions of a common underlying trait. 97 
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Figure 3. Identity Domains (IDs) are reflected in multiple standard behavioral tests. (a) ID scores predict 
multiple readouts across standard tests (two-tailed Pearson correlation statistic). Moreover, some 
standard test readouts are related to multiple IDs. The strength of each correlation is represented by 
the size of the squares (red – positive, blue – negative). (b) Variance explained by ID scores in standard 
behavioral assays. IDs 1-4 explain significantly more variance in “classical” behavioral test readouts than 
random sets of 4 from IDs 5-59.  
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IDs capture transcriptomic variance in the brain 98 

A major advantage of animal models is the ability to mechanistically investigate the link between 99 

brain and behavior. While the contributions of brain-transcriptomic differences to human 100 

personality traits remain largely unexplored due to major technical difficulties in performing such 101 

studies, mouse ID scores may prove a useful proxy. To assess whether ID scores captured 102 

transcriptomic variance in the brain, we performed bulk RNA-sequencing in mice that had been 103 

profiled in the Social Box (n = 32). For each individual, we sequenced three brain regions (Figure 104 

4): the basolateral amygdala (BLA), the insular cortex (INS), and the medial prefrontal cortex (PFC), 105 

yielding a total list of 13,073 genes jointly detectable in all three regions.  For each region, we 106 

assessed the average variance explained across the gene set by all four IDs and compared it 107 

against a distribution derived from shuffling the ID scores across individuals. Strikingly, in all 108 

three regions, the IDs performed significantly better in their true configuration than would be 109 

expected by chance, suggesting that ID score assignment is close to optimal with regard to their 110 

association with gene expression.  111 
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IDs discriminate between genotypes 112 

Next, we tested the ability of IDs to capture and discriminate between individuals with known 113 

genetically driven differences in behavioral tendencies. For this purpose, we used the high- 114 

versus normal-anxiety (HAB/NAB) model, wherein mice are selectively bred over multiple 115 

generations for different levels of anxiety-like behavior on the Elevated Plus Maze test5  116 

(Supplementary Figure 8a). We monitored heterogeneous groups composed of one HAB and 117 

 

Figure 4.  Identity Domains (IDs)  carry information on gene expression in the brain. (a) RNA-sequencing 
results from the basolateral amygdala, insular, and medial prefrontal cortices of mice collected after 
baseline behavioral assessment. Plotted are the distributions of mean R-squared values for 200 models 
with four shuffled IDs as predictors. ID scores explain significant amounts of variance in the 
transcriptome (permutation test). (b) The relative contributions of each ID to the transcriptomic variance 
explained in each region. (c) Numbers of genes showing differential expression per ID after multiple 
testing correction. (d) Expression of one representative gene from each region plotted against individual 
scores on the ID with which it was associated.  
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three NAB individuals each in the Social Box and assigned ID scores to them. We were able to 118 

show that ID scores have considerable power in discriminating between the genotypes (Figure 119 

5c, Supplementary Figure 7b).  120 

Personality Space 121 

An important benefit that comes with having a known space of individual expression is the ability 122 

to search that space for points of biological interest, which may represent behavioral 123 

specializations. Using Pareto Task Inference, we found that ID1 and ID2 span a behavioral 124 

continuum on a triangle bounded by three personality archetypes (Figure 5a). Such a 125 

configuration can be interpreted as a tradeoff between 3 distinct evolutionary specializations, as 126 

previously shown for features of animal morphology6 and C. elegans locomotion7. Analogous 127 

archetypes were found in the replication dataset.  128 
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Figure 5. Personality space. (a) The personality space captured by the first two IDs forms a triangle with 
three archetypes at its corners. These archetypes may correspond to three behavioral strategies that mice 
exhibit in nature: commensal, non-commensal (ultra-dominant), and subordinate. The ID scores of each 
individual are represented by a trapezoid with scores on each day marking the four corners (a triangle is 
depicted if the fourth point falls inside the shape). Thus, the size of each trapezoid reflects the stability of 
ID scores for each individual over time (smaller means more stable). (b) ID1 scores predict social 
dominance levels (David’s Scores), calculated based on the number and directionality of aggressive 
interactions (p <10-47). (c) Mice selectively bred for high and normal anxiety-like behavior levels (HAB/NAB) 
mice were assessed using the IDs. A significant genotype effect was detected by ID1 and ID4. The Pareto 
space reveals that HAB mice tend to be more subordinate (upper panel).  
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Discussion 129 

Personality is a complex entity that reflects stable individual differences and, in so doing, maps 130 

the space of phenotypic variability. Here we show that IDs provide a bias-free surrogate measure 131 

of personality obtained directly from behavioral data. IDs show considerable stability over time, 132 

developmental stages, and across social contexts. They allow quantitative exploration of 133 

personality differences in organisms in which such analyses were previously inaccessible. By 134 

drawing on consistent inter-individual differences, IDs capture the essence of personality, thus 135 

offering access to a biologically meaningful and evolutionarily relevant meta-behavioral  136 
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Methods 

Animals 

All animal experiments were approved by the Animal Care and Use Committees of either the 137 

Government of Upper Bavaria (Munich, Germany) or the Weizmann Institute of Science (Rehovot, 138 

Israel). 139 

Male CD-1 (ICR) mice aged 8 to 12 weeks during the assessment were used for all experiments 140 

with the exception of the high- vs. normal anxiety-like behavior animals (HAB/NABs, see below). 141 

The animals were housed in an SPF facility in temperature-controlled rooms under standard 142 

conditions with a 12h light/dark cycle (lights on at 8 am). After weaning, the animals were housed 143 

in groups of four non-siblings per cage. At around 7-8 weeks of age, the mice were transferred 144 

to the behavioral testing rooms and painted. All animals were housed in temperature-controlled 145 

environment with food and water available ad libidum.  146 

Painting 

The fur of each mouse was painted to enable identification by automatic video tracking. Painting 147 

was carried out under mild isoflurane anesthesia using commercially available semi-permanent 148 

hair dyes of three colors: Pillarbox Red, Voodoo Blue, and Sunshine (Tish & Snooky's NYC Inc., 149 

New York). A fourth, green hue, was achieved by mixing the latter two dyes. The dyes were 150 

applied using a paint brush. Excess color was removed from the animal’s fur with tissues. The 151 

period under anesthesia was typically no longer than 10 min.  152 

Mice were single-housed for several hours after painting and subsequently reunited with their 153 

cage mates. A minimum of 3 days of recovery/habituation was allowed following this procedure 154 

before the mice could be introduced into the social arenas.  155 

Social box setup 

Mice were studied in a specialized arena designed for automated tracking of individual and group 156 

behavior. Each arena housed a group of four male mice. The arena consisted of an open 60 x 60 157 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/395111doi: bioRxiv preprint 

https://doi.org/10.1101/395111


 

 

15 

cm box and included the following objects: covered nest, open shelter, S-shaped wall, two water 158 

bottles, two feeders, and two elevated ramps. Food and water were available ad libitum. During 159 

the dark phase (12 hours) arenas were illuminated at 2 lux and during the light phase (12 hours) 160 

at 200 lux using LED lights. A color sensitive camera (Manta G-235C from Allied-Vision) was placed 161 

1 m above the arena and recorded the mice during the dark phase. Mouse trajectories were 162 

automatically tracked offline using specially written software in Matlab (Mathworks Inc.).  163 

In order to validate the identity domains (IDs) and ensure repeatability, we also computed the ID 164 

scores for mice which were recorded in arenas of a different design3. These alternative arenas 165 

were 75 x 50 cm and included a covered nest, closed shelter (which is smaller than the nest, and 166 

has only one entry), two elevated ramps, two feeders, a single water bottle, an elevated block 167 

that is away from the walls, and a Z-wall. 168 

Identification and classification of interactions between mice 

We automatically identified and classified interactions between mice as events in which the 169 

distance between two mice (d) was less than 10 cm.  We then used the movement direction of 170 

one mouse relative to another mouse (𝜃) to identify the nature of the contact for either of the 171 

mice. If for mouse A, the projection of the direction of its movement relative to mouse B was 172 

small enough (|tan(𝜃) ⋅ 2𝑑| < Θ-,𝑓𝑜𝑟		 −
4
5
< 𝜃 < 4

5
) then it was considered as moving towards B; if 173 

|tan(𝜃) ⋅ 2𝑑| < Θ5	𝑓𝑜𝑟	
4
5
< 𝜃 < 6

5
𝜋  it was moving away from it; otherwise it was assumed idle with 174 

respect to the other mouse (Θ- and Θ5were found by optimization).   175 

To classify aggressive and non-aggressive contacts, we first used a hidden Markov model8 to 176 

identify post-contact behaviors in which mouse A was moving towards B, and B was moving away 177 

from A (A was following B). We then used 500 manually labeled events to learn statistical 178 

classifiers of aggressive and non-aggressive post-contact behavior. For each event, we estimated 179 

a range of parameters, including individual and relative speed, distance, etc. and optimized a 180 

quadratic discriminant classifier9, a k-nearest neighbor algorithm based on these parameters, 181 

and a decision-tree classifier, that used these parameters at each tree intersection10. We found 182 

that for a test set of 1000 events, none of these classifiers were accurate enough individually, but 183 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/395111doi: bioRxiv preprint 

https://doi.org/10.1101/395111


 

 

16 

that a combined approach in which we labeled an event as ‘aggressive’ if any of the classifiers 184 

labeled it as such – gave ~80% detection with 0.5% false alarms.  185 

 186 

David’s score for dominance 

We used the Normalized David’s score in order to assign each individual with a continuous 187 

measure of its social rank11. David’s score assumes a linear hierarchy where each pair from the 188 

group includes a more and a less dominant individual. The score is based on the measure of the 189 

fraction of interactions in which mouse 𝑖 chased mouse 𝑗 relative to the total number of agonistic 190 

interactions, which we denote as 𝑃;<. David's score of each individual is the sum 191 

𝐷𝑆; = 𝑤; +	𝑤5; −	𝑙; − 	𝑙5;  192 

where 𝑤; = ∑ 𝑃;<<D;  is the sum of the fraction of times that mouse 𝑖 has "won" (i.e., was the 193 

chaser), and 𝑤5; = ∑ 𝑤<𝑃;<<D;  is a similar sum weighted by the 𝑤<  of the other mice, while 𝑙; =194 

∑ 𝑃<;<D;  is the sum of the fractions of "losses" (escapes), and accordingly 𝑙5; = ∑ 𝑤<𝑃<;<D;  is its 195 

weighted sum. The score is then normalized to be between 0 and N-1 (where N is the number of 196 

subjects, which equals 4 in our case) by using the following formula: 197 

𝑁𝑜𝑟𝑚𝐷𝑆 =
1
𝑁H𝐷𝑆 +

𝑁(𝑁 − 1)
2 I. 198 

Linear discriminant analysis 

Linear discriminant analysis (LDA) is a method for finding a linear separator between two classes, 199 

or in its more general definition finding a subspace that best separates between multiple 200 

classes9,12,13 . This subspace is obtained by finding a projection 𝑊 which minimizes the Fisher-Rao 201 

discriminant defined as 202 

𝑊 = 𝑎𝑟𝑔𝑚𝑎𝑥
OP

𝑡𝑟 RO
P STUOP

OP STVOP
W. 203 
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This solution to this optimization problem can be found by reformulating it using a Lagrange 204 

multiplier  as 205 

ℒ(𝑊) = 𝑊Y𝛴[𝑊 − 𝜆(𝑊Y𝛴]𝑊 − 1) 206 

and solving  207 

0 = _
_O

ℒ(𝑊) = 2𝛴[𝑊 + 2𝜆𝛴]𝑊. 208 

The solution to this equation is obtained by finding the top eigenvectors of 𝛴]`-𝛴[. 209 

Fisher-Rao discriminant 

The Fisher-Rao discriminant is used to measure how distinct two or more classes of samples are. 210 

The separation between classes is defined as the ratio of the variability between the classes  211 

to the variability within the classes  212 

𝐷ab = 𝑡𝑟 RTU
TV
W = 𝑡𝑟 c∑ de(fe`f)(fe`f)Sg

ehi

∑ Rjk`fekWRjk`fekW
Sl

khi

m, 213 

where 𝜇 is the global mean, 𝜇ok  is the mean of the class associated with the 𝑖’th sample 𝑥;, 𝑛o is 214 

the number of samples in class 𝑐, 𝑛 = ∑ 𝑛oo  is the total number of data samples, 𝐶 is the number 215 

of classes, and tr(… ) is the trace function. The larger this ratio, the better the discriminability of 216 

the classes. Note that the sum of the within- and between-variability is proportional to the total 217 

covariance of the data ( ) 218 

𝛴 = TUuTV
d`-

. 219 

Identity domains 

Personality cannot be measured directly but it can be inferred from the behavior. We used the 220 

measured behavior of the mice for each of the four days they spent in the Social Box. The 221 

normalized measured behaviors of mouse 𝑚 on day 𝑑 are denoted by a vector 𝑥v,_ of dimension 222 
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60 (the number of behaviors; explanation of the normalization procedure follows). The ID 𝐼v 223 

defines a distribution on the behavior space in the following way 224 

𝑥v,_ = 𝐴	𝐼v + 𝜀 225 

where 𝐴 is a matrix linking the IDs to the behaviors, and ε is a distribution term (or noise due to 226 

variability or external factors). In order to estimate the IDs, we need to reverse this equation and 227 

find a 𝑊 that would give us 228 

𝐼v = 𝑊(𝑥v,_ + 𝜀) 229 

Note that since 𝐴 is not usually square 𝑊 is not simply a reversal of 𝐴. 230 

In order to find 𝑊, which in turn would give us the IDs, we used LDA. Here the variability-within 231 

is defined as the variability of the same individual mouse on different days, or 232 

𝛴] = { {|𝑥v,_ −{ 𝑥v,_}
~

_}�-
� |𝑥v,_ −{ 𝑥v,_}

~

_}�-
�
Y~

_�-

�

v�-

 233 

where 𝑀 is the total number of mice (𝑀=168), and 𝐷 is the total number of days (𝐷=4). 234 

Accordingly, the variability-within is the variability between mice or 235 

𝛴[ = 𝐷 ⋅ ∑ �∑ 𝑥v,_~
_�- − 𝜇��∑ 𝑥v,_~

_�- − 𝜇�Y�
v�- . 236 

The link between the behavior and the IDs is obtained in the same way as in the classical LDA by 237 

solving 238 

𝑊 = 𝑎𝑟𝑔𝑚𝑎𝑥
OP

𝑡𝑟 RO
P STUOP

OP STVOP
W. 239 

Once we have W, we can also find A by solving it as a linear regression problem of the form 240 

𝑥v,_ = 𝐴	𝐼v + 𝜀 241 

In order to avoid batch effects and drifts of the data we used quantile normalization on each 242 

behavior for each batch on each day separately. We quantile-normalized the data to have a 243 
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normal distribution by computing the quantile of each sample and then computing the inverse 244 

of the normal cumulative distribution function (also known as the ‘probit’ function). If two or more 245 

samples were identical prior to the normalization they were all assigned the same value after 246 

normalization. 247 

Pareto optimality 

In order to survive and reproduce, animals are constantly confronted with tasks such as finding 248 

food or evading predators. Often there is a tradeoff between tasks, so that the success of an 249 

animal in one task has to come at the expense of its performance on another. Recent work has 250 

shown that the best phenotypes are the weighted average of archetypes, which are phenotypes 251 

that specialize in one task6,14. These phenotypes can either be morphological, as for the beak 252 

sizes of ground finches, or behavioral phenotypes. 253 

The shape of the phenotype space is determined by the number of archetypes, or the number 254 

of tasks the animal faces: In case of two archetypes, optimal phenotypes would fall on the line 255 

connecting the two archetypes, while if there are three archetypes, the phenotypes would be 256 

contained inside a triangle, and so on.  257 

One direct outcome of this theory is that looking at the whole phenotype space makes it possible 258 

to deduce the location of the archetypes and thereby the different biological challenges that an 259 

animal faces. The positions of the archetypes are found using a hyperspectral un-mixing 260 

algorithm. The data is first centered to have zero mean, and then projected using principal 261 

component analysis into a subspace with dimension n – 1 (where n is the number of archetypes). 262 

Then an un-mixing algorithm is used in order to fit an n vertices polytope that best fits the data. 263 

Here we used minimal volume simplex analysis (MVSA), which is suitable for relatively small 264 

datasets since it does not allow for outliers. The analysis was performed in Matlab using the 265 

Pareto Task Inference (ParTI) package. 266 
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Social box behavioral readouts 

We collected a total of 60 different readouts for each mouse on each day. Due to the linearity of 267 

LDA, some of the behaviors we measured were computed with several different normalizations. 268 

The most common normalizations we used were: the total time in the arena (12 hours; 269 

abbreviated total), the time outside the nest (outside), and for interactions the total number of 270 

contacts (contacts). 271 

Pairwise: 

• Time outside [1]: Fraction of time that the mouse spends outside of the nest. 272 

Normalizations: Total time (%). 273 

• Frequency of visits outside [2]: The rate at which the mouse exits the nest. Normalizations: 274 

Total time (1/hour). 275 

• Foraging correlation [3]: The correlation between the times that the mouse is outside the 276 

nest and the times that another mouse is outside the nest, averaged over all mice. For 277 

example, the foraging correlation between two mice would equal one if the mouse is 278 

always outside the nest when the other mouse is outside, and also enters the nest 279 

whenever the other mouse enters the nest. The correlation would be -1 whenever the 280 

mouse is outside, the other mouse is inside the nest. Normalizations: [3] none (au). 281 

• Contact rate [4, 5]: Number of contacts the mouse had.  A contact is defined as two mice 282 

being less than 10 cm apart while both are outside the nest. Normalizations: [4] Total time 283 

(1/hour), [5] Time outside (1/hour). 284 

• Time in contact [6]: Fraction of time that a mouse is in contact with other mice while 285 

outside the nest. Normalizations: [6] Time outside (1/hour). 286 

• Median\Mean contact duration [7, 8]: Median or mean duration of contacts. The contact 287 

duration does not include the times when the mouse approached, moved away from, or 288 

chased the other mouse. Normalizations: [7, 8] none (sec) 289 

• Follow [12, 18, 24]: A follow is a contact that ended with one mouse going after another 290 

mouse until disengagement. Follows can be either aggressive (chases) or non-aggressive. 291 
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Normalizations: [12] Number of contacts (au), [18] Time outside (1/hour), [24] Total time 292 

(1/hour). 293 

• Being-followed [13, 19, 25]: Number of times a mouse is followed at the end of a contact. 294 

It can be either in an aggressive (chases) or non-aggressive manner. Normalizations: [13] 295 

Number of contacts (au), [19] Time outside (1/hour), [25] Total time (1/hour). 296 

• Chase [10, 16, 22]: Chases are interactions that ended with the mouse pursuing another 297 

mouse in an aggressive manner. Aggressiveness was determined using a classifier that 298 

was trained on labeled samples (see methods). Normalizations: [10] Number of contacts 299 

(au), [16] Time outside (1/hour), [22] Total time (1/hour). 300 

• Escape [11, 17, 23]: Number of time that the mouse was aggressively chased by another 301 

mouse. Normalizations: [11] Number of contacts (au), [17] Time outside (1/hour), [23] 302 

Total time (1/hour). 303 

• Non-aggressive follow [14, 20, 26]: Number of times the mouse has followed another 304 

mouse at the end of a contact in a non-aggressive way. Normalizations: [14] Number of 305 

contacts (au), [20] Time outside (1/hour), [26] Total time (1/hour). 306 

• Non-aggressively being-followed [15, 21, 27]: Number of times the mouse was followed 307 

by another mouse at the end of a contact in a non-aggressive way. Normalizations: [15] 308 

Number of contacts (au), [21] Time outside (1/hour), [27] Total time (1/hour) 309 

• Approach [28, 29, 30, 31, 32]: An approach is a directed movement of the mouse towards 310 

another mouse that ends in contact. Not all interactions necessarily start with an 311 

approach, while others might start mutually with both mice approaching each other. 312 

Normalizations: [28] none (au), [29] Time outside (1/hour), [31] Number of contacts (au), 313 

[32] total (1/hour), [30] Time outside with one or more mice (1/hour). 314 

• Being-approached [33, 34, 35]: Number of times the mouse was approached by another 315 

mouse. Normalizations: [33] Number of contacts (au), [34] Time outside (1/hour), [35] 316 

none (au). 317 

• Approach-escape [36]: Fraction of contacts in which the mouse initiated the contact and 318 

ended up being chased. Normalizations: [36] Number of aggressive contacts (au). 319 

• Difference between approaches and chases [9]: The total number of chases is subtracted 320 

from the total number of approaches. Normalizations: [9] none (au). 321 
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Individual: 

• ROI exploration [37, 38]: Quantifies the amount of exploration the mouse is doing. 322 

Measured as the entropy of the probability of being in each of the 10 regions-of-interest 323 

(ROIs). Mice that spend the same amount of time in all regions will get the highest score, 324 

while mice that spend all their time in a single ROI will be scored zero. When normalized 325 

to the time outside, the computation of the entropy differed also by ignoring the 326 

probability of being inside the nest. Normalizations: [37] none (bits), [38] Time outside 327 

(bits/hour). 328 

• Grid exploration [59]: Quantifies the amount of exploration the mouse is doing. 329 

Analogously to ‘ROI Exploration’, grid exploration was determined using entropy, 330 

however, instead of looking at the ROIs, we divided the arena into a 6x6 grid (10 cm by 10 331 

cm; a total of 36 possible locations). Normalizations: [59] none (bits). 332 

• Predictability [60]: Measures how predictable the paths that the mouse takes as the 333 

mutual information between its current and previous location in the arena. For that, the 334 

arena was divided into a 6x6 grid (10 cm by 10 cm; a total of 36 possible locations), and 335 

for each cell we computed the probabilities of it moving to any of the adjacent cells. 336 

Normalizations: [60] none (bits). 337 

• Distance [58]: The total distance traveled by the mouse while outside the nest. To smooth 338 

the tracking, the mice locations were sampled once every second. Normalizations: [58] 339 

none (m). 340 

• Median\Mean speed [54, 55]: Median or mean speed while outside the nest. To smooth 341 

the computation of the speed, the locations of mice were sampled once every second. 342 

Normalizations: [54, 55] none (m/sec). 343 

• Tangential velocity [56]: The tangential component of the speed, or the part of speed 344 

perpendicular to the previous direction of movement. Normalizations: [56] none (m/sec). 345 

• Angular velocity [57]: The rate of change in the direction of the mouse. Normalizations: 346 

[57] none (rad/sec). 347 

• Food or water [39, 40]: Time spent next to the feeders or water bottles. Normalizations: 348 

[39] Total time (au), [40] Time outside (au) 349 
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• Food [41]: Time spent next to the feeders.  Normalizations: [41] Time outside (au). 350 

• Water [42]: Time spent next to the water bottles.  Normalizations: [42] Time outside (au). 351 

• Feeder preference [43]: Time spent in the feeder adjacent to the nest (feeder 1) relative 352 

to the further-away feeder (feeder 2). Normalizations: [43] none (au). 353 

• Water preference [44]: Time spent near the water bottle adjacent to the nest (water 1) 354 

relative to the further-away water bottle (water 2). Normalizations: [44] none (au). 355 

• Elevated area [45, 46]: Time spent on an elevated object in the arena: ramps or block (in 356 

the other arena setting). Normalizations: [45] Total time (au), [46] Time outside (au). 357 

• Open area [47]: Time spent in the open area (outside of the nest and any of the ROIs). 358 

Normalizations: [47] Time outside (au). 359 

• Shelter [48]: Time spent in the shelter, which is a box closed only on its sides. 360 

Normalizations: [48] Time outside (au). 361 

• Ramps [49]: Time spent on the elevated ramps. Normalizations: [49] outside (au). 362 

• S-wall [50]: Time spent in the S-wall. Normalizations: [50] Time outside (au). 363 

• Distance from walls [51]: Average distance from the walls while in the open area. 364 

Normalizations: [51] none (cm). 365 

• Distance from nest [52]: Average distance from the nest (while outside of the nest). 366 

Normalizations: [52] none (cm). 367 

• Alone outside [53]: Fraction of time the mouse is outside while all other mice are in the 368 

nest. Normalizations: [53] Total time (au). 369 

Standard behavioral assays 

All behavioral tests were performed several days after the social arena assessment in the same 370 

test room in two batches of 8 groups each using two different test sequences. During this time, 371 

the mice were housed in their original groups.  372 

Timeline 1 consisted of the open field (OF)/novel object recognition (NOR) test, social preference 373 

test (SPT), and dark-light transfer (DaLi) test. Timeline 2 consisted of the OF/NOR, followed by the 374 

elevated plus maze (EPM), DaLi, SPT, and forced swim (FST) tests. In both cases, each test was 375 

followed by a minimum of 48 hours of rest. 376 
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Open field and novel object recognition tests 

The OF and NOR tests were performed in 60 x 60 cm boxes under minimal illumination (2-3 lux) 377 

in three sessions. Each animal was introduced to the arena for 5 min, then briefly removed and 378 

reintroduced for 5 more minutes to the same arena, now with two identical objects placed at 379 

predetermined locations. Finally, each animal was reintroduced to the arena after a 4 h delay for 380 

5 minutes with one of the two identical objects replaced by a novel one15. Object preference was 381 

calculated as the novel/familiar object ratio, while the discrimination index was calculated as the 382 

ratio of preference to phase 2 total exploration time.   383 

Dark-light transfer and elevated plus-maze tests 

Anxiety-like behaviors were assessed using the DaLi or EPM tests performed in standard 384 

behavioral apparatuses. The illumination of the light sections of each apparatus was set at 200 385 

lux and the duration of both tests was set to 5 min.  386 

Forced swim test 

Behavioral despair was measured using the FST. Each animal was placed in a 2 L transparent 387 

beaker filled halfway with room-temperature water for 6 min. Floating, swimming, and struggling 388 

times were manually scored by experienced observers. 389 

Social preference test 

The SPT was performed under low illumination (2 lux) over three sessions in a three-chamber 390 

apparatus. This consisted of a middle chamber connected to two chambers on each side by a 391 

door. An empty metal grid cone was placed in the center of each of the two side-chambers. 392 

During the first session, the doors to the side chambers were closed and each test mouse was 393 

introduced into the middle chamber and allowed to habituate to it for 5 min. The doors were 394 

subsequently opened and a stimulus CD-1 mouse was placed under one of the metal grid cones, 395 

the other remaining empty, for 10 minutes. Sociability was calculated based on this session as 396 

the ratio of time spent in the chamber with the stimulus mouse to time in the chamber with the 397 

empty cone, weighted by total time spent in both of these chambers. Finally, in a following 10 398 
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min session, a different stimulus mouse was placed under the other cone. Preference for social 399 

novelty was assessed using the ratio of time with novel versus familiar mouse weighted by total 400 

time in either chamber.  401 

Y-maze alternation task 

Working memory was assessed using the Y-maze alternation task. Each mouse was introduced 402 

for 5 min into a Y-shaped three-arm apparatus with distinguishing visual cues on the walls at the 403 

end of each arm. The proportion of spontaneous non-repeated subsequent entries into each of 404 

the three arms (alternations) from the total number of three-arm entries (including repeat 405 

entries) was used as the final readout.  406 

Resident-intruder test 

Aggression toward an unfamiliar intruder mouse was assessed using a resident-intruder 407 

paradigm. For this test, each mouse was single-housed in a fresh type 2 cage. At each time point, 408 

48, 72, and 96 h after single-housing, an intruder C57/BL6 mouse was introduced into the cage. 409 

Latency to first aggressive interaction was assessed by an observer. Each trial was interrupted 410 

after the first overtly aggressive confrontation or after 15 min.  411 

Holeboard exploration test 

Exploratory behavior was measured in the holeboard exploration test. Each mouse was 412 

introduced for 5 min into a 40 x 40 cm arena surrounded by transparent Plexiglas walls with 4 x 413 

4 equally spaced holes on the floor. Number of head dips into any hole as well as number of 414 

rearings during the test interval were assessed by an observer.  415 

RNA-sequencing 

Brains were dissected from animals sacrificed with an overdose of isoflurane and flash-frozen. 416 

Tissue samples were cryopunched using a 1 mm diameter punching tool at Bregma 1.98 mm 417 

(medial prefrontal cortex (PFC), insular cortex (INS), 600 um depth) or an 0.8 mm diameter punch 418 

at Bregma -0.7 mm (basolateral amygdala (BLA), 1000 um depth) according to Paxinos and 419 
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Franklin, 1998. Total RNA was isolated using the miRNeasy micro kit (QIAGEN) after 420 

homogenization by a Bullet Blender (Next Advance). Residual genomic DNA was removed using 421 

the Turbo DNA-free kit (Ambion®, Invitrogen, CA, USA). RNA integrity and absence of DNA was 422 

confirmed by an Agilent RNA ScreenTape (4200 TapeStation, Agilent, eRIN all >7.8) and Qubit DNA 423 

High sensitivity kit, respectively. Sequencing libraries were prepared using the Illumina TruSeq 424 

Stranded Total RNA Library Preparation HT Kit using mammalian RiboZero Gold following the 425 

standard protocol starting from 300 ng (PFC), 500 ng (INS), and 375 ng (BLA) of total RNA using 426 

12 cycles of PCR amplification. Libraries were quality-checked using Bioanalyzer DNA High 427 

Sensitivity chips (Agilent Technologies, St. Louis, MO) and quantified using the KAPA Library 428 

Quantification Kit (KAPA Biosystems, Boston, MA). Sequencing was performed on 6 lanes of an 429 

Illumina HiSeq4000 PE 2x100 (Illumina, San Diego, CA) multiplexing all samples.  430 

Sequencing was performed on a HiSeq4000 generating 100 base pair paired-end reads. Read 431 

quality was checked using FastQC16 and subsequently adapters were trimmed using cutadapt17. 432 

For quantification of transcript expression levels, Kallisto18 was executed using Gencode M11 433 

annotation and collapsed to gene level.   434 

Count data was pre-filtered for low counts at a threshold of ≥ 20 counts per sample in a minimum 435 

of 31 out of 32 samples per region. In addition, the top three most highly expressed genes were 436 

excluded, resulting in a total list of 13,073 genes. Differential gene expression analyses were 437 

performed in DESeq219. Heteroscedasticity in the data was reduced using the DESeq2 regularized 438 

logarithm transformation. The plate row of each sample was identified as a potential batch effect 439 

and corrected for using the limma package20. 440 

The normalized and log-transformed count data was then used as the outcome of a linear model 441 

with either the real or the shuffled ID scores (day 1 in the social box) as predictors (rlog(count) = 442 

ID1 + ID2 + ID3 + ID4 + ε). Total variance explained by the model, as well as the fraction of variance 443 

explained by each individual predictor were estimated using the variancePartition package21. Two 444 

hundred models with shuffled ID scores were run per region to generate a distribution of mean 445 

variance explained across all genes and the model with the real ID scores was tested against this 446 

distribution using a one-sample t-test.  447 
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Code availability 

All the code used in the LDA implementation in MATLAB will be made available upon request. 448 

Likewise, the self-similarity tests implemented in MATLAB, as well as the R code used in the RNA-449 

seq data analysis will be made available upon request.  450 

Data availability 

The datasets generated during and/or analyzed during the current study are available from the 451 

corresponding author on reasonable request. 452 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/395111doi: bioRxiv preprint 

https://doi.org/10.1101/395111


 

 

28 

References 

1. Eysenck & J., H. The structure of human personality. (1953). 453 

2. McCrae, R. R. & Costa, P. J. Personality in adulthood: A five-factor theory perspective. (Guilford 454 

Press, 2002). 455 

3. Shemesh, Y. et al. High-order social interactions in groups of mice. Elife 2, e00759 (2013). 456 

4. Shemesh, Y. et al. Ucn3 and CRF-R2 in the medial amygdala regulate complex social 457 

dynamics. Nat. Neurosci. 19, 1489–1496 (2016). 458 

5. Krömer, S. A. et al. Identification of glyoxalase-I as a protein marker in a mouse model of 459 

extremes in trait anxiety. J. Neurosci. 25, 4375–84 (2005). 460 

6. Shoval, O. et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype 461 

space. Science 336, 1157–60 (2012). 462 

7. Gallagher, T., Bjorness, T., Greene, R., You, Y. J. & Avery, L. The Geometry of Locomotive 463 

Behavioral States in C. elegans. PLoS One 8, (2013). 464 

8. Rabiner, L. R. A tutorial on hidden Markov models and selected applications in speech 465 

recognition. Proc. IEEE 77, 257–286 (1989). 466 

9. Duda, R. O., Hart, P. E. & Stork, D. G. Pattern Classification. (John Wiley & Sons Inc., 2012). 467 

10. Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and regression trees. (CRC 468 

press, 1984). 469 

11. De Vries, H., Stevens, J. M. G. & Vervaecke, H. Measuring and testing the steepness of 470 

dominance hierarchies. Anim. Behav. 71, 585–592 (2006). 471 

12. Rao, C. R. The Utilization of Multiple Measurements in Problems of Biological Classification. 472 

J. R. Stat. Soc. Ser. B 10, 159–203 (1948). 473 

13. Fisher, R. A. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 7, 179–474 

188 (1936). 475 

14. Hart, Y. et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat. 476 

Methods 12, 233–235 (2015). 477 

15. Leger, M. et al. Object recognition test in mice. Nat. Protoc. 8, 2531–2537 (2013). 478 

16. Andrews, S. & others. FastQC: a quality control tool for high throughput sequence data. 479 

(2010). 480 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/395111doi: bioRxiv preprint 

https://doi.org/10.1101/395111


 

 

29 

17. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 481 

EMBnet.journal 17, 10 (2011). 482 

18. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq 483 

quantification. Nat. Biotechnol. 34, 525–527 (2016). 484 

19. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for 485 

RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 486 

20. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and 487 

microarray studies. Nucleic Acids Res. 43, e47–e47 (2015). 488 

21. Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex 489 

gene expression studies. BMC Bioinformatics 17, 483 (2016). 490 

 

Supplementary Information  

Supplementary Figures 1-9 491 

Movie 1: A representative segment from a video recording of the social arenas with a group of 492 

four colored mice. Overlaid on top of the video are illustrations of tracked mouse movements 493 

and the layout and components of the social arena. 494 
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Supplementary Figure 1 

 

Supplementary Figure 1 | Individual differences and consistencies. (a) Behavioral readout structure. 
Hierarchical clustering and cross-correlations of the 60 behavioral readouts. Behavioral readouts tend to cluster 
based on whether they are independent (related to 1 mouse) or pairwise (derived from the locations of 2 mice). 
(b) Some behavioral parameters were consistent within individuals over time (e.g., approaches, chases), while 
some parameters could discriminate between individuals (e.g., mean speed, wall distance; ***p<0.001, 
*p<0.05). 

Supplementary Figure 2 

 

Supplementary Figure 2 | Between-within variability ratio. Identity domain (ID) components ranked by 
their Fisher-Rao coefficient. Four components had a Fisher-Rao-score below 4, indicating a greater 
contribution of between over within-individual variability. 
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Supplementary Figure 3 

 

Supplementary Figure 3 | Validation of the identity domains (IDs) in a second dataset from an 
alternative setup. (a) Alternative social arena (50 x 70 cm) with a different locations and types of objects 
compared to arena shown in Figure 1 (b). (b) IDs 1-4 show intermediate to strong correlations between the 
original and replication datasets.  

 520 

Supplementary Figure 4 

 

Supplementary Figure 4 | Identity domain (ID) stability over a short timescale. IDs were stable over 
experimental time, such that average ID scores for experimental days 1 through 4 could predict the 
corresponding scores for each animal on day 5.  
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Supplementary Figure 5 

 

Supplementary Figure 5 | Change over time with respect to self or others. ID stability during aging was 
tested by comparing the ID scores of individuals measured once juveniles (4-5 weeks old) and once more 
during adulthood (15-16 weeks old). Depicted here are change in ID scores relative to one’s own initial score 
versus relative to the scores of all other individuals. Points in the shaded region represent greater individual 
changes, whereas points in the unshaded region represent changes that were larger relative to other individuals 
than to oneself. 
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Supplementary Figure 6 

 

Supplementary Figure 6 | Group shuffle diagram. Mice were observed in the social boxes over 4 days and 
re-grouped on day 5 such that no mouse was familiar with any of its new conspecifics (n = 64, 16 groups).   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/395111doi: bioRxiv preprint 

https://doi.org/10.1101/395111


 

 

35 

Supplementary Figure 7 
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Supplementary Figure 7 | Principal components analysis (PCA) on the initial set of behaviors. In order 
to compare how LDA performs relative to better-known and more commonly used dimension reduction 
method, PCA was performed on the same initial dataset as used to generate the IDs. (a) The percent variance 
of the behavioral data explained by each principal component (PC). (b) Correlations between scores on each 
PC and an abbreviated list of behavioral readouts. (c) The stability of PC scores was tested as with the IDs 
before and after mixing the mouse groups such that all individuals were unfamiliar to one another. Only the 
first principal component remained stable after the mix. (d) Scores on the first four PCs were used as predictors 
of transcriptomic variance in RNA-sequencing data from three different brain regions. This analysis directly 
mimicked the equivalent analysis performed using the four IDs (PC scores from day 1, 200 shuffled PC score 
sets). The top four PCs did not carry more overall transcriptomic information than would be expected by 
chance.   
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Supplementary Figure 8 
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Supplementary Figure 8 | High-anxiety (HAB) versus normal-anxiety (NAB) mouse model. (a) Selective 
breeding for high versus normal anxiety-like behavior levels (HAB/NAB) was performed for over > 40 
generations starting with outbred CD-1 mice5. Selection was based on results of the Elevated Plus Maze test 
(% time in the open arm). After the animals of each respective genotype were weaned, they were mixed into 
groups of three NABs and one HAB each. (b) The power of the identity domain (ID) scores to detect genotype 
was tested directly using the area under the receiver operating characteristic curve of a model predicting 
genotype based on IDs 1-4. The area under the curve of this model was compared against a distribution created 
based on 200 trials with shuffled ID scores. 
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Supplementary Figure 9 

 

Supplementary Figure 9 | Correlations between identity domains (IDs) and their contributing 
behavioral readouts. The readouts are separated into individual (based on the movements of a single mouse) 
and pairwise (based on the movements of a mouse and one more of its group members).  
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