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Abstract 

Cortical activity is organised across multiple spatial and temporal scales. Most research on the dynamics 
of neuronal spiking is concerned with timescales of 1 ms  ̶  1 s, and little is known about spiking 
dynamics on timescales of tens of seconds and minutes. Here, we used frequency domain analyses to 
study the structure of individual neurons’ spiking activity and its coupling to local population rate and 
to arousal level across frequencies ranging from 0.01 to 100 Hz. In mouse medial prefrontal cortex 
(mPFC), the spiking dynamics of individual neurons could be quantitatively captured by a combination 
of interspike interval and firing rate power spectrum distributions. The relative strength of coherence 
with local population often differed across timescales: a neuron strongly coupled to population rate on 
fast timescales could be weakly coupled on slow timescales, and vice versa. On slow but not fast 
timescales, a substantial proportion of neurons showed firing anti-correlated with the population. 
Infraslow firing rate changes were largely determined by arousal rather than by local factors, which 
could explain the timescale dependence of population coupling strength of individual neurons. These 
observations demonstrate how individual neurons simultaneously partake in fast local dynamics, and 
slow brain-wide dynamics, extending our understanding of infraslow cortical activity beyond the 
mesoscale resolution of fMRI studies. 
 

Introduction 

A single action potential lasts about a millisecond, and a second suffices for a vast range of sensory-
motor and cognitive behaviours, such as recognising pictures and sounds, getting up or sitting down, or 
recalling a memory. Accordingly, most neurophysiological research has focused on sub-second 
timescales. However, several neural processes occur over much longer timescales (Huk et al., 2018). 
Transitions between sleep and wakefulness and between different stages of sleep occur on timescales 
of minutes and hours (Weber and Dan, 2016; Lecci et al., 2017; Meisel et al., 2017). During 
wakefulness, changes in arousal can span tens of seconds and minutes, yet they affect performance in 
sub-second behavioural tasks (Harris and Thiele, 2011; Palva and Palva, 2012; McGinley et al., 2015). 
Dynamics on slower timescales has been revealed by resting-state fMRI (Raichle, 2015), which infers 
neural activity from the (slow) changes in blood supply to different areas of the brain. However, fMRI 
monitoring of neural activity is limited to the so called infraslow range of 0.01 – 1 Hz. Furthermore, 
both fMRI and other approaches to study mesoscale infraslow cortical dynamics – such as  electro- and 
magneto-encephalography (EEG, ECoG, LFP, MEG, e.g. see Popa et al., 2009; Palva and Palva, 2012; 
Mitra et al., 2018), and intrinsic and voltage-sensitive fluorescent-protein or dye imaging in 
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experimental animals (White et al., 2011; Chan et al., 2015; Kraft et al., 2017) – cannot characterise 
individual neurons’ relationships to infraslow activity. 

The relationship of individual neurons to infraslow brain dynamics, and the relationship between a 
neuron’s coupling to infraslow and fast dynamics, is thus poorly understood. For example, how much 
can the firing rate of an individual neuron change over tens of seconds and minutes, and how can these 
slow dynamics be summarised quantitatively? To what extent are slow changes in firing rate correlated 
among neurons, and what is the structure of these slow correlations? To what extent are a neuron’s 
relationships to slow and fast firing rate fluctuations similar, and might they be driven by the same 
underlying mechanisms?  

Here we addressed these questions by analysing multi-hour recordings of neuronal populations in 
mouse medial prefrontal cortex (mPFC), performed using chronically implanted high-density silicon 
probes. We found that neuronal spike trains have  power spectral density (PSD), and that PSD in 
combination with interspike interval (ISI) distribution suffices for an accurate quantitative model of 
single neuron spiking dynamics on both fast and slow timescales. Coupling between individual neurons 
and the population was timescale-dependent, with many neurons strongly coupled to population rate on 
fast timescales but weakly coupled on slow timescales, or vice versa. Furthermore, on slow but not fast 
timescales, neurons’ phase preference with respect to the population rate was bimodal. Finally, in 
frequencies  0.1 Hz population rate was highly correlated with arousal as reflected by the pupil area. 
These results suggest that dynamics on fast and infraslow timescales are distinct processes, and likely 
regulated by distinct mechanisms at the single neuron level.  

Results 

To examine the intrinsic spiking dynamics of single cortical neurons on timescales extending to tens of 
seconds and minutes we used chronically implanted multisite silicon probes (Okun et al., 2016; Jun et 
al., 2017) to record the activity of neuronal populations in the frontal cortex. The recordings lasted 1.5-
3 h in head-fixed mice, standing or sitting in a plastic tube, and 4-8 h in freely behaving mice residing 
in their home cage. The recordings were performed with 16- and 32-channel Neuronexus probes in six 
animals and with 374-channel Neuropixels probes in two additional animals. 

Single neurons show dynamics at multiple timescales 

On fast timescales the spiking dynamics of cortical neurons can be summarised by the interspike interval 
(ISI) distribution. The characteristic irregular firing of cortical neurons results in ISIs varying by several 
orders of magnitude (Softky and Koch, 1993), with some neurons also exhibiting ISI histogram peaks 
indicating rhythmicity at particular frequencies (Figure 1a).  

A neuron’s ISI distribution was not on its own sufficient to account for the structure of its spike train at 
long timescales. Indeed, visual inspection shows that cortical firing rates typically fluctuate on 
timescales of minutes or more (Figure 1b), longer than almost all ISIs of neurons with firing rates ≥ 1 
spike/s. Synthetic spike trains created by randomly reshuffling the original ISIs did not have this slow 
timescale dynamics (Figure 1c). The discrepancy between actual and ISI-shuffled data could be 
summarised by the spike count Fano factor: the variance divided by the mean of spike counts in bins of 
prescribed temporal duration (Figure 1d). For bins of short duration (1-100 ms), Fano factors were 
close to 1, and the Fano factors of the original and shuffled data were similar. However for bins of 1   ̶   
100 s, the Fano factors of actual data were several-fold higher. Across all analysed neurons (n = 775), 
the Fano factor of the number of spikes in 1024 ms bins was 1.6 times higher in the actual data compared 
to ISI-shuffled trains, and with 16384 ms bins it was 4.8 times higher (for a summary across all bin 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 18, 2018. ; https://doi.org/10.1101/395251doi: bioRxiv preprint 

https://doi.org/10.1101/395251
http://creativecommons.org/licenses/by-nc/4.0/


 
3 

 

sizes see the error of ISI model in Figure 2e, below). These results demonstrate the major contribution 
of slow dynamics to spiking variability in the cortex. 

 

Figure 1. Fast and slow timescale dynamics of individual cortical neurons. (a) ISI distribution of five 

simultaneously recorded example neurons in mPFC of an awake, head-fixed mouse. (b) Firing rate 

(smoothed with 8 s FWHM Gaussian) over the course of the recording for the neurons in a. (c) Firing 

rate of ISI-shuffled spike trains (cf. b). (d) Fano factors of spike counts using bins of 10-3 - 102 s for 

original (colour) and ISI-shuffled (grey) spike trains. 

Although the ISI distribution could not alone capture the infraslow portion of a cell’s spiking dynamics, 
the combination of ISI distribution and spike train power spectral density (PSD) together provided a 
good approximation. Because our recordings lasted several hours, we were able to compute power 
spectra down to very low frequencies, where they typically showed a large peak, indicative of infraslow 
dynamics (Figure 2a). We devised an algorithm that generates synthetic spike trains with pre-specified 
PSD and ISI distributions (see Methods). The slow-timescale firing dynamics of these synthetic spike 
trains was visually similar to the original data (compare Figure 2b with Figure 1b) and closely matched 
the observed Fano factors over multiple timescales (Figure 2c), as expected from the analytical 
relationship between Fano factor and autocorrelation of a stationary spike train (Teich et al., 1997). The 
full model was better than models that used either PSD or ISI distribution independently (Figure 2d). 
At slow timescales (e.g. 1 minute; Figure 2e), Fano factors predicted from PSD alone are significantly 
closer to the actual values than ISI-based predictions, but still not as accurate as the full model. For fast 
timescales (e.g. 100 ms), ISIs predict spike count accurately, but the PSD alone is insufficient (Figure 
2e). The full model respects both constraints, and as a result provides predictions that are significantly 
better than either ISI distribution or PSD alone (Figure 2d-e).  

Cortical neurons are diverse in their intrinsic dynamics. This diversity is well characterised at short 
timescales by differences in spike regularity (Maimon and Assad, 2009) and by the differing propensity 
of neurons to emit complex-spike bursts (McCormick et al., 1985; de Kock and Sakmann, 2008), but 
dynamical diversity at slow timescales is largely unexplored. To address this question, we observed that 
the PSD of most neurons had power-law profile over the 0.01 – 1 Hz range, with the exponent 
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significantly different between neurons (Figure S1a). Fitting spike train power with a  
function over 0.01-1 Hz revealed that the power-law exponent  covered a range of 0.39±0.19 (mean 
and standard deviation for n = 775 neurons), and was conserved when fit separately for the first and 
second halves of each recording (Figure 2f; R2 = 0.69 overall; median R2 of individual recordings = 
0.63; P < 0.05 in each recording). The power law exponent was unrelated to mean firing rate and weakly 
related to bursting (Figure S1b-d). We conclude that cortical neurons are diverse in the strength of their 
infraslow firing rate fluctuations, and that the structure of these fluctuations can be summarised, to first 
approximation, by the PSD slope . 

 

Figure 2. Modelling spiking dynamics on fast and slow timescales. (a) PSD of the original (colour) and 

ISI-shuffled (grey) spike trains for the five example neurons shown in Figure 1. (b) Firing rate of 

synthetic spike trains constructed by requiring that their ISI distribution and PSD match the original 

data (cf. Figure 1b-c). (c) Fano factors of spike counts using bins of 10-3 - 102 s: the plots for original 

data (colour) and for synthetic spike trains (black) closely match (cf. Figure 1d). (d) Observed and 

predicted spike count Fano factors for 65 s bins for the entire dataset (775 neurons). Predictions were 

based on ISI distribution only (grey), on PSD only (cyan), or on the full model in which both constraints 

apply (black). (e) Relative error (in %) of predicting the observed Fano factors for bins of 10-3-102 s for 

the three models, averaged over all neurons. Diamonds mark values for 65 s bin, shown in d. Shaded 

area shows the standard error. (f) The PSD of each neuron was fit with a  function in the 

range 0.01-1 Hz. The power-law exponent β is specific to each neuron, which is demonstrated by the 

fact that the values estimated separately in two halves of the recording closely match (R2 = 0.69, P < 

10-100). 

Population coupling strength is unrelated at fast and slow timescales 

To understand how the slow dynamics of individual neurons was related to that of the entire population, 
we started by considering how individual neurons are related to the population rate – the summed rate 
of all spikes detected on the probe. At short timescales, neurons vary continuously in the strength of 
their coupling with population rate (Okun et al., 2015). To characterise the relation of neurons to the 
population across multiple timescales, we extended this analysis into the frequency domain. Analysis 
in frequency domain does not suffer from the inherent ambiguity of time domain analysis, where 
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correlations computed using a time bin of a specific duration reflect co-modulation not just on the scale 
of the bin, but also on all slower timescales (Brody, 1999). 

The PSD of population rate had  profile, similar to the profile of PSDs of single neuron spike trains. 
However, in all frequencies < 1 Hz, the population rate PSD was several fold higher than the sum of 
PSDs of all the individual spike trains that together comprise the population rate (Figure 3a, Figure 
S2). As the PSDs of independent neurons would add linearly, this result indicates that infraslow 
fluctuations in firing rates of neurons were correlated in all these frequencies. To estimate the coherence 
between population rate and spike trains of specific neurons, we considered the former as a continuous 
function of time, and computed its ‘rate adjusted coherence’ (Aoi et al., 2015) with the spike train of 
each neuron, which accounts for differences in mean firing rate between neurons (Figure S3a-b; see 
Methods). To verify that this method provided a reliable measure, we estimated coherence separately 
on two halves of single recordings, obtaining similar estimates for coherence on both slow and fast 
timescales for most neurons (for 0.1 and 10 Hz, correspondingly: overall R2 = 0.63 and 0.75, median 
R2 of individual recordings = 0.59 and 0.61, P < 0.05 in 19/26 and 22/26 recordings; Figure 3b-c, see 
also Figure S6). 

 

Figure 3. Frequency-resolved population coupling. (a) Top: PSD of population rate and sum of PSDs 

of individual spike trains comprising the population rate, in an example recording. Bottom: the ratio 

between the two, indicating that the former is several-fold higher. (b) Top: Distribution of rate 

adjusted coherence with population rate at an example slow timescale frequency (0.1 Hz) across all 

neurons. Some neurons have no significant coherence (“non-signif.”). Bottom: rate adjusted 

coherence with population rate at 0.1 Hz, evaluated separately in first and second halves of the 

recordings, R2 = 0.63 (P < 10-100). (c) Same format as b, for fast time scale example frequency (10 Hz), 
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R2 = 0.75 (P < 10-100). (d) Top: Time domain correlation between spike trains of three example 

simultaneously recorded neurons and the population rate, on slow and fast time scales (scale bar: 

median amplitude of the correlation across all neurons in the recording). Bottom: Rate adjusted 

coherence of each example neuron with population rate. (e) Two example simultaneously recorded 

neurons, where one (red) has high coherence with the population in low frequencies and low 

coherence in high frequencies, whereas the other neuron (green) exhibits the opposite behaviour. 

Layout as in d. (f) Two example simultaneously recorded neurons whose relative strength of 

population coupling switches twice over the frequency range, furthermore one of the neurons (green) 

has a non-monotonic coherence with population. Note that the time domain correlation with 

population rate of both neurons is of equal magnitude on both fast and slow timescales. Layout as in 

d. In c-f coherence values are shown using power function scaling, to make low values visible. In d-f 

shaded areas indicate 95% confidence intervals. 

Coherence analysis revealed widely diverse relationships to population rate, both between neurons, and 
between timescales within individual neurons. In all cases, coherence decayed to zero with increasing 
frequency, owing to the point processes nature of neuronal spike trains (Figure S3c-d; see Methods). 
However the manner of this decay varied greatly between neurons (Figure 3d-f). In some cases the 
relative strength of different neurons’ population coupling was conserved across frequencies (e.g. the 
red neuron in Figure 3d has consistently larger coherence than the green or blue neurons). However, 
simultaneously recorded neurons often showed different rates of coherence decay: in 25% of 
simultaneously recorded pairs each neuron had a significantly stronger coherence in a subset of 
frequencies (Figure 3e-f). Furthermore, some neurons’ coherence with population rate was non-
monotonic (15% of cells, e.g. Figure 3f). On average across neurons, rate adjusted coherence with 
population rate remained < 0.5 in all our recordings, even in frequencies as low as 0.1 - 0.01 Hz (Figure 
3b, Figure S4).  

Phase of population coupling differs across timescales 

Coherence is an indication of a constant phase relationship between two processes. Thus, if a neuron 
has high coherence with population rate at a given frequency, this means it fires at a reliable phase with 
respect to the population – but does not imply that this phase is zero. Phase analysis showed that most 
neurons had a stable phase preference with respect to population rate across halves of the recording on 
both slow and fast timescales (Figure 4a-b, see also Figure S6). It also revealed a major difference 
between phases of population coupling on slow and fast timescales, with out of phase activity several-
fold more likely in the infraslow range (Figure 4a-e). Specifically, at ≥ 10 Hz just 5% of cells had phase 
closer to  than to 0, whereas at ≤ 0.3 Hz this was the case for ≥ 28% of the cells (p <10-28, Z-test for 
equality of two proportions). This however did not completely summarise a neuron’s phase preference: 
even within a mode, there remained significant correlation in a neuron’s precise phase from one half of 
the recording to the other (Figure 4a), and at high frequencies phases also had reliable non-zero values 
across the two halves of the data set (Figure 4b,d). The preferred phase distribution in the infraslow 
frequencies was not symmetric: more neurons had phases between  and  (i.e. leading the 
population rate) than between -  and -  (lagging the population rate, e.g. 16% vs 10% at 0.1 Hz, 
p < 0.001). The fact that neurons show an asymmetric phase distribution relative to their summed 
activity might seem contradictory, but was possible because neurons which lagged the population had 
higher firing rates compared to neurons which led it (4.5 ± 4.8 vs 3.1 ± 4.8 spikes/s, for - to -  
vs  to , p < 0.0001). In contrast to the phase preference of individual cells, the relative phase 
of population rate on different shanks or tetrodes (or on different segments of the Neuropixels probe) 
was close to 0 in all frequencies (Figure S5), suggesting that variations in population coupling phase 
mainly differ within, rather than between local populations. 
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Figure 4. Phase of population-coupling. (a, b) 

Phase evaluated separately in first and second 

halves of the recordings, indicating that it is a 

conserved property for most neurons. 

Average absolute discrepancy between the 

two halves: 0.44±0.43 rad and 0.34±0.39 rad 

(mean and standard deviation for n=582 and 

n=610 neurons with statistically significant 

phase preference at 0.03 Hz and 10 Hz, 

correspondingly). Explained circular variance: 

0.79 and 0.54 (P < 10-16). (c, d) Distribution of 

the preferred phase of firing of individual 

neurons with respect to population rate at 

example frequencies (0.03 and 10 Hz). Some 

neurons have no significant coherence or 

phase preference (“non-signif.”). Grey: 

neurons for which the phase was not 

significantly (i.e. P > 0.05) different from 0. (e) 

Pseudo-colour histogram of phase preference 

with respect to population rate across 0.01 – 

100 Hz. Dashed lines indicate the two example 

frequencies shown in a-d. 

 

 

The phase spectra of individual neurons were diverse, and could show a complex dependence on 
frequency. According to the phase distribution histogram (Figure 4e) one expects to find neurons’ 
phase preference to be close to either 0 or  at infraslow frequencies, and close to 0 at high frequencies. 
While many neurons conformed to this pattern (Figure 5a, Figure S6a), neurons that were anti-
correlated with infraslow population rate differed in the dependence of phase preference on frequency: 
it was discontinuous, with clear subdomains and a drop in coherence in some neurons, but gradual in 
others (Figure 5b-c, Figure S6b-c). We also observed neurons whose phase preference did not fit the 
overall pattern, e.g., having phase preference of ~/2 in infraslow frequencies (Figure 5d, Figure S6d) 
or exhibiting altogether different behaviours (Figure 5e, Figure S6e).  

Phase modulation seemed to occur on logarithmic rather than linear scale (Figure 5c-e). To assess the 
rate of phase changes, we devised two indexes which quantify the linearity and logarithmicity of the 
phases (see Methods). The linearity index is 0 for phase changing on linear scale, and it is positive 
(negative) for phase changing on supra- (sub-) linear scale. Similarly, the logarithmicity index is 0 for 
phase changing on logarithmic scale, and it is positive (negative) for phase changing on supra- (sub-) 
logarithmic scale. We found that phase spectra were overwhelmingly changing sub-linearly (just 4% 
had positive linearity index), whereas the logarithmicity index values were about equally distributed 
around 0 (logarithmicity index of 59% of the neurons was positive, Figure 5f). We conclude that the 
phase between single neuron and population rates predominantly changes on a logarithmic scale with 
frequency.   
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Figure 5. Population coupling phase spectrum. (a) Examples of neurons whose firing has phase 

preference close to 0 with respect to population rate. In the second example the phase is at the same 

time significantly distinct from 0. Top: time domain correlation between the neuron and population 

rate on fast and slow timescale (scale bar: median amplitude of the correlation across all neurons in 

the corresponding recording). Middle: rate adjusted coherence with population rate. Bottom: phase 

spectrum. (b) Examples of neurons with sharp transition between ~0 phase preference in high 

frequencies and ~  phase in infraslow frequencies, dividing the frequency range into two clear 

subdomains. (c) Examples of neurons whose phase preference is close to 0 in high frequencies and 
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gradually becomes close to  in the infraslow frequency range. (d, e) Additional examples of observed 

phase spectra behaviours. Panels b-e use the same format as a, shaded areas in a-e indicate 95% 

confidence intervals, y-axis of coherence plots uses power function scaling, to make low values visible. 

(f) Logarithmicity index vs linearity index (see Methods) of the longest continuous interval of the phase 

spectrum of each neuron. 

The logarithmic rate of phase preference change implies that phase in nearby frequencies is similar. In 
other words, when only a small range of frequencies is considered (e.g. on linear scale), the phase is 
approximately constant, and thus to a first approximation single cell neuronal dynamics with respect to 
population rate is scale-free. To test this prediction we compared how well constant phase and linear 
phase models fit the phase preference in nearby frequencies (0.1 Hz vs 0.03Hz or 0.32 Hz). The former 
model corresponds to scale-free dynamics, the latter to a lead or lag by a fixed time interval between an 
individual neuron and the population rate. As predicted by the logarithmic rate of phase change, the 
constant phase model fit the data substantially better than the linear model (Figure S7).  

Infraslow dynamics correlates with pupil diameter 

Head-fixed mice, such as those we recorded here, show fluctuations in alertness levels over time. To 
address the degree to which the infraslow dynamics we observed could relate to alertness, we monitored 
the animals’ pupil area in a subset of head-fixed recordings (Figure 6a). At 0.03 Hz, 65% (350/541) of 
the neurons were significantly coherent with the pupil area signal, and the magnitude of this coherence 
was consistent when estimated from separate halves of the recording (Figure 6b; P < 0.01 in 10/13 
recordings, the median percentage of variance in one half of the data explained by the other half across 
recordings: 41%). Phase preferences were similarly stable, and the phase distribution had two clear 
peaks ~  rad apart (Figure 6c), consistent with the existence of two populations positively and 
negatively coupled to arousal (Stringer et al., 2018).  

Next we considered how individual neurons’ coupling to the pupil and to the local population rate are 
related. Visual inspection of population rate and the pupil area signals suggested the two are similar in 
the infraslow range (Figure 6a), which was confirmed by coherency analysis showing that the two 
signals were highly coherent in frequencies ≤ 0.1 Hz (Figure 6d). Correspondingly, individual neurons’ 
coherence with pupil area closely matched their coherence with population rate (Figure 6e). Phases 
with respect to the population rate and the pupil area were also closely matched; a consistent gap 
between the two (which at 0.03 Hz constituted 0.78±0.51 rad) indicates that neuronal spiking preceded 
the pupil signal (Figure 6f). Importantly, we observed no relationship between coherence with 
population rate on fast timescales and coherence with the pupil signal (P = 0.85, Figure 6g; P > 0.2 in 
each individual recording, Spearman correlation) and no relationship between the phases (P = 0.31, 
Figure 6h, P > 0.17 in each individual recording, circular correlation; also see Figure S8). This 
observation is consistent with the idea that population coupling on slow timescales is controlled by 
separate mechanisms from the local synaptic inputs driving fast timescale population coupling. 
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Figure 6. Global origin of infraslow dynamics. (a) Population rate, pupil area and spiking activity of 

example neurons during 1000 s portion of a recording. For presentation purposes only, signals were 

low-pass filtered below 0.05 Hz and z-scored, vertical scale bar is 5 standard deviations. (b, c) 

Magnitude (rate adjusted) and phase of coherency of individual neurons (n = 350, from 13 recordings) 

with pupil area signal, separately estimated from two halves of each recording, shown for an example 

frequency of 0.03 Hz. In b, R2 = 0.42 (P < 10-50). In c, average absolute discrepancy between the two 

halves: 0.34±0.35 rad, 0.88 explained circular variance (P < 10-16). Coloured dots represent the example 

neurons shown in a. (d) Coherence between population rate and pupil area, in individual recordings 

(grey, n = 13 recordings in 5 animals) and in their average (black). (e, f) Top: Distribution of coherency 

magnitude (rate adjusted) and phase of individual neurons’ spiking with respect to the pupil area 

signal at 0.03 Hz. Bottom: magnitude and phase of coherency of individual neurons with pupil area vs 

their coherency with population rate. R2 = 0.67 (P < 10-90) in e, 0.85 explained circular variance (P <  

10-16) in f. (g, h) Coherence (phase) of individual neurons to pupil signal on slow timescale (0.03 Hz) 

and their coherence (phase) to population rate on fast timescale (10 Hz) are uncorrelated (P = 0.85, 

Spearman correlation in g, P = 0.31, circular correlation in h). 

Discussion 

We used frequency domain analysis to examine the activity of neuronal populations in medial prefrontal 
cortex (mPFC) across frequencies spanning four orders of magnitude (0.01 – 100 Hz). Our findings 
point to a fundamental difference between fast and infraslow timescale cortical dynamics. The strength 
of a neuron’s population coupling at fast and slow timescales was unrelated; furthermore, at fast 
timescales nearly all neurons fired at preferred phases close to 0 relative to population rate, whereas at 
slow timescales the phase distribution was bimodal, with preferred phases of ~30% of the neurons closer 
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to . Population coupling in infraslow, but not fast frequencies reflected coupling to brain-wide arousal 
signal (pupil area). While these general rules held for most neurons, a great diversity of fine-detailed 
behaviours was seen within local populations, for example regarding the slow-timescale dynamics as 
captured by a neuron’s power spectrum, and the way its coherence depended on frequency. 

The difference between population coupling at fast and slow timescales likely indicates different 
mechanisms driving these types of coupling. Fast timescale dynamics reflects local synaptic activity 
(Haider and McCormick, 2009), and the fast-timescale population coupling of individual neurons is 
correlated with the number of the local synaptic connections they receive (Okun et al., 2015). In 
contrast, infraslow dynamics correlates with global, brain-wide phenomena related to arousal, which 
are controlled at least in part by neuromodulatory inputs (McGinley et al., 2015; Reimer et al., 2016); 
a similar mechanism has been suggested for the global component of resting state fMRI measurements 
(Scholvinck et al., 2010; Wong et al., 2013; Turchi et al., 2018). The fact that a neuron’s population 
coupling on fast and slow timescales were uncorrelated therefore suggests that the degree to which a 
neuron’s firing is controlled by global brain states is unrelated to its local connectivity; for instance, a 
neuron weakly affected by neuromodulatory tone could still be strongly wired into the local network. 
The hypothesis that fast and slow population coupling arise through different mechanisms is also 
supported by observations of neurons whose phase with population rate had discontinuous subdomains 
in high and low frequencies, and by the fact that only slow-timescale population coupling phases were 
bimodal. The latter observation is consistent with prior results: while neurons with weak fast-timescale 
population coupling were previously described, there are very few with negative fast-timescale coupling 
(Okun et al., 2015). However, neurons that couple negatively as well as positively to arousal have been 
reported at least in visual cortex (Vinck et al., 2015; Stringer et al., 2018).  

Most of our present day knowledge on infraslow cortical dynamics comes from fMRI studies of resting 
state activity (Buckner et al., 2013; Raichle, 2015; Foster et al., 2016). Because fMRI provides a blood-
oxygen-level dependent (BOLD) signal rather than a direct measure of neural activity, it is limited to 
measurements on infraslow timescales. Multiple studies have shown that the BOLD signal correlates 
with population rate (Logothetis et al., 2001; Ma et al., 2016; Mateo et al., 2017), although 
disagreements on the BOLD signal’s interpretation remain (e.g. see Winder et al., 2017). Our study 
provides an account of how individual neurons’ activities combine to produce infraslow fluctuations in 
population rate, and hence in BOLD (to the extent the two are correlated). The low-frequency power of 
the population rate was 2-5 times larger than it would be if cells were independent of each other (Figure 
3a, Figure S2). Because the recorded populations were spread over hundreds of micrometres, this 
increase would likely have been even higher if the recorded populations were concentrated in a smaller 
volume. The contribution of single neuron activity to the mesoscale signal is limited in two ways. First, 
for majority of neurons their coherence with population rate remained relatively low (typically between 
0.2 and 0.4) even in the 0.01 – 0.1 Hz range of frequencies (Figure S4), and for some neurons coherence 
in this range was found to be even lower than for higher frequencies (e.g. Figure 3f). Second, the 
infraslow fluctuations in firing rate of many neurons were partially or completely out of phase with the 
population (Figure 4). A potential caveat with linking the present work to resting state fMRI studies is 
the degree to which the activity we observed is in the pure resting state regime (Logothetis et al., 2009; 
Winder et al., 2017). While it is possible to find short intervals during which a mouse does not move, 
this is not the case for intervals longer than a few seconds (e.g., typically mice move their eyes every 
5-10 seconds). Thus our results should not be viewed as describing pure spontaneous activity (an ideal 
which is impossible to achieve in practice for infraslow timescales in awake subjects), but pertain to the 
actual cortical dynamics which is partially driven by intrinsic behaviours. 
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At the single neuron level, power spectral analysis was consistent with scale-free dynamics in the 
infraslow frequency range (Figure 2a, Figure S1). Such dynamics is typical of neuronal activity on 
various spatial scales, from fMRI measurements to ion channels, and elsewhere in biology, e.g., 
organisation of heart beats (Bassingthwaighte et al., 1994). Similar spectra have been reported for 
retinal and thalamic cells recorded in anaesthetised cats (Teich et al., 1997), and more recently in resting 
humans (Nir et al., 2008), with a mean power-law exponent of 0.45, close to the 0.39 value observed 
here (Figure 2f, Figure S1b). For an intuitive interpretation of this value consider that for a signal with 
power spectrum proportional to , 66% of the total power slower than any chosen frequency  is 
concentrated in frequencies . As a result of these slow changes in firing rate of individual 
neurons, their spike count variance in minute bins was on average ~10-fold higher than what fast-
timescale spiking dynamics alone (i.e. the ISI model) would predict (Figure 2e). The interpretation and 
causes of such scale-free dynamics are controversial. One suggestion is that scale-free behaviour could 
be caused by single-cell intrinsic mechanisms such as firing rate adaptation (Marom, 2010; Xu and 
Barak, 2017), which can result in a frequency-independent lead of ~0.2 rad of the output spiking over 
sinusoidal input currents with periods < 1 Hz (Lundstrom et al., 2008; Pozzorini et al., 2013). These 
effects can build up across more complex networks: for example, when rat whiskers were stimulated 
by white noise on top of which sinusoidal modulation with 0.3 – 0.03 Hz frequency was added, barrel 
cortex neurons preceded the sinusoidal stimulus envelope by ~0.8 rad on average, while thalamic 
neurons were leading by less than half as much (Lundstrom et al., 2010). An alternative, recently 
proposed possibility is that infraslow firing rate fluctuations are driven by slow changes in ion 
concentrations (Krishnan et al., 2018), whereas our data suggests that brain-wide neuromodulatory 
inputs have a major role in this phenomenon. While the contribution of each of these mechanisms 
remains to be elucidated, it is likely that their effect on cortical dynamics is particularly complex on 
intermediate timescales (~1 Hz) where they interact with fast-timescale local synaptic activity. 

Materials and methods 

Electrophysiological recordings 

All experimental procedures were conducted according to the UK Animals (Scientific Procedures) Act 
1986 (Amendment Regulations 2012). Experiments were performed at University College London 
(UCL) under personal and project licenses released by the Home Office following institutional ethics 
review. Adult C57BL/6 mice of both sexes were used. 

The experimental procedures for chronically implanting Neuronexus and Neuropixels probes were 
previously described in (Okun et al., 2016; Jun et al., 2017). Briefly, in an initial surgery under 
isoflurane anaesthesia animals were implanted with a custom built head-plate. Following full recovery 
and acclimatisation to head-fixation, probe implantation was performed under isoflurane anaesthesia. 
The probes were implanted through a craniectomy above medial prefrontal cortex (0.5 lateral and 1.8 
anterior to bregma). Neuronexus probes (A2x2-tet with CM16LP connector package and Buzsaki32 
with CM32 connector package) were lowered 1.7mm, placing the recording sites in the prelimbic cortex 
(PrL). Neuropixels probes were lowered ~3.5mm (so that the most superficial of the 374 recording sites 
remained outside of the brain, while the deepest sites were ~3.5mm inside the brain; the recording sites 
were thus placed in the cingulate, prelimbic, and infralimbic cortices). The probes were oriented 
approximately parallel to the cortical layers, 0.5mm lateral offset of the insertion point relative to the 
midline implied that the probes resided in cortical layers 5 and 6 (which was also confirmed 
histologically).  
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Recordings were performed over the course of several months following the probe implantation. For 
head-fixed recording, mice were placed inside a plastic tube where they could comfortably sit or stand. 
The recordings lasted 1.5-3 h. In animals implanted with Neuronexus probes, recordings were 
performed using OpenEphys (www.open-ephys.org) recording system (Siegle et al., 2017). Mice with 
a Neuropixels probe were recorded using SpikeGLX system (github.com/billkarsh/SpikeGLX) 
developed at Janelia Farm. (Some of the mice were trained and recorded in a behavioural task which 
the animals would perform for water reward; the data analysed here is from recordings of ongoing 
activity in separate sessions without behaviour, performed on days when the animals were not water 
deprived). 

Recordings in freely behaving animals implanted with Neuronexus probes lasted 4-8 h. Mice were 
briefly head-fixed to allow attaching the amplifier head-stage to the probe and then released into their 
home cage, where they were free to engage in any activity of their choice, while being monitored to 
make sure that the thin cable leading from the amplifier to the OpenEphys box was not entangled.  

Spike sorting and drift contamination  

Spike sorting of Neuropixels recordings was performed using Kilosort software (Pachitariu et al., 2016), 
with manual curation performed using phy (github.com/cortex-lab/KiloSort and 
github.com/kwikteam/phy). Spike sorting of Neuronexus probe recordings was performed similarly, or 
using SpikeDetekt, KlustaKwik and Klustaviewa software suite (Rossant et al., 2016).  

We have evaluated the quality of spike sorted units using isolation distance metric (Schmitzer-Torbert 
et al., 2005) and by quantifying the contamination of the refractory periods of the spike 
autocorrelograms, which was expressed as proportion of the number of spikes in the first 2 ms of the 
autocorrelogram relative to the autocorrelogram asymptote (Harris et al., 2000). We have limited the 
analysis to units with isolation distance > 20 and refractory period contamination < 0.2. Our analyses 
yielded quantitatively similar results when more (and less) stringent criteria were applied. 

A possible concern is that our results, instead of reflecting the properties of actual infraslow fluctuations 
in the firing rates of cortical neuronal populations, are dominated by contamination introduced by 
unstable recordings. Such concern is not unique to the present work, and was raised in the past regarding 
estimation of pairwise correlations, e.g., (Ecker et al., 2010). Here, Neuropixels recordings provided an 
unprecedented opportunity to detect and monitor drifts, as the recording sites span a contiguous stretch 
of > 3mm. For spikes detected simultaneously on several contacts, we have computed the vertical 
location of the ‘centre of mass’ of the spike, according to the relative amplitude of the spike waveform 
on each contact. Changes in these locations over time, particularly for high-amplitude spikes, reveal 
potential drifts. In the example shown in Figure S9, multiple drift events are visually apparent. In each 
event, the vertical location of high-amplitude spikes at one particular neighbourhood of the probe drift 
~10 µm upwards over the course of ~5 s, and over the next ~20-40 s return to their original location. 
Similar drift pattern occurs ~200 µm further down the shank (Figure S9b), which is a strong indication 
that these two drifts are produced by a vertical movement of the probe with respect to cortical tissue, 
rather than any other cause. In fact, drifts were simultaneously observed at > 10 locations across the top 
800 µm of the probe. Drifts were not observed when vertical location of low-amplitude spikes was 
considered. This is consistent with the idea that a vertical movement has a much larger impact on the 
waveforms of high-amplitude spikes originating in neurons abutting the probe compared to the low-
amplitude spike waveforms of neurons that are more (horizontally) distant.  

In the example recording, drifts of high-amplitude spikes were not observed on contacts deeper than 
~800 µm (Figure S9b). In recordings from this mouse, all data originating from the top 1 mm was 
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excluded from the analyses. No similar drifts were observed in Neuropixels recordings from the second 
animal. In recordings performed with Neuronexus probes, the recording sites were located only at the 
bottom 200 µm of probes which were lowered 1.7 mm into the brain, thus to the extent that drifts of 
Neuropixels and Neuronexus probes are similar, we do not expect to find vertical drifts in these 
recordings (since the recording sites were not covering a contiguous interval, the above drift analysis 
cannot be repeated for Neuronexus recordings).  

An additional observation suggesting that our results are not driven by drifts concerns the relationship 
between amplitude of the different units and their phase preference. If drifts introduce a strong bias into 
our estimation of phase with respect to population rate, then there might exist some consistent 
relationship between the phase and spike waveform amplitude of the different units, because drift bias 
is expected to be stronger for units close to the probe and having high-amplitude spike waveforms. 
However, no significant correlation between phase and spike amplitude was found in our data. We 
conclude that drift is an important caveat that has the potential to bias measurements of spiking activity 
obtained with extracellular probes, however in view of the control analyses explained above, we believe 
that the phenomena described here are not due to such drifts.  

Pupil tracking  

Pupil area was tracked as previously described in (Burgess et al., 2017). Briefly, a camera (DMK 
21BU04.H or DMK 23U618, The Imaging Source) with a zoom lens (ThorLabs MVL7000) was 
focused on one of the eyes of the animal. The eye was illuminated by an infrared LED (SLS-0208A, 
Mightex). Videos of the eye were acquired at ≥ 30 Hz. In each video frame, excluding frames with 
blinks, an ellipse was fit to the pupil image, and pupil area was estimated based on this fit. 

Single spike train analysis and modelling 

Power spectral density (PSD) of individual spike trains (Figure 2a) was estimated using 
mtspectrumsegpb function of Chronux toolbox (Mitra and Bokil, 2007) (chronux.org). PSD in 

different frequencies was estimated by breaking the entire recording into segments of appropriate 
length, and averaging across them. Specifically, segments for estimating PSD in frequency  Hz had 
length of at least  and at most  seconds. For frequencies < 0.01 Hz the spectrum of the entire 
recording was computed using mtspectrumpb function without breaking it into segments. For 

presentation purposes only it was further smoothed using Matlab’s smooth function. 

The spike train model which captures both the fast and slow timescale dynamics of cortical spiking 
relies on both ISI distribution and PSD of spike trains (Figure 2). The goal of the model is to generate 
synthetic spike trains satisfying both types of constraints simultaneously. Let  denote the observed ISI 
distribution of a spike train. For modelling,  was represented by a histogram with logarithmically 
spaced bins of all the observed ISIs (32 bins were used to describe ISIs, from 1 ms up to 200 s). Instead 
of using the PSD of the spike train itself, the model uses the PSD of the underlying continuous firing 
rate intensity, which we denote by  (the two are closely related but distinct, as will be explained in 
more detail later). For modelling,  was represented by the power of a continuous signal obtained by 
convolving the observed spike train with a 50 ms FWHM Gaussian (50 parameters were used to 
represent ). With  and  as its inputs (82 parameters in total), the goal of the model is to generate a 
synthetic spike train whose ISI distribution and PSD are as close as possible to the original spike train. 
An intermediate step towards this final goal is constructing a continuous firing rate intensity signal  
for the synthetic spike train. However, we start by constructing a different firing rate intensity signal, 

, by sampling ISIs from  and convolving the resulting spike train with a 50ms FWHM Gaussian. 
Typically  will have much less power in the infraslow frequencies than what is required. Thus, the 
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first constraint which  must satisfy is to have power . A straightforward way to generate a signal 
with a given PSD (using inverse Fast Fourier transform) produces a signal whose values are normally 
distributed with 0 mean, which is inappropriate for a firing rate intensity function. To work our way 
around this problem, we require the distribution of values of  to match the distribution of values of 

. We used an iterative algorithm of (Schreiber and Schmitz, 1996) to generate  given the 
constraints on its power and distribution of values. Once  was generated, we sample a spike train 

 using  as a time dependent firing intensity signal. In the final step the ISIs of the spike train are 
adjusted to have the desired distribution . Specifically, we convert the sequence of ISIs in  into a 
sequence of ISI ranks, by replacing each ISI with its rank among all the ISIs of . We build the final 
output spike train  by sampling from  the same number of ISIs found in  and rearranging them 
according to the sequence of ranks from , i.e., the ISI rank sequences of  and of  match.  

When the model is used to generate an output without an explicit constraint on  (i.e. only    input is 
provided), it implicitly assumes  has an exponential distribution, with an additional constraint 
forbidding ISIs < 2ms (representing a hard refractory period).   

Time domain population coupling on fast and slow timescales 

Time domain correlation between spike trains of single neurons and the population rate (Figure 3b-d) 
was computed as previously described in (Okun et al., 2015). Specifically, we computed the inner 
product between the vectors representing the population rate and single unit spike train at different lags 
(using Matlab’s xcorr), and normalised it by the number of spikes of the single neuron. For fast 

timescale correlation, the vectors were at 1 ms resolution, and the single neuron spike train was 
smoothed with Gaussian of 12 ms halfwidth. For slow timescale correlation, the vectors were at 1 s 
resolution. In both cases the baseline (average values 800 – 1000 ms away from zero lag for fast 
timescale correlation, and average values 12 – 20 s away from zero lag for slow timescale correlation) 
were subtracted. 

Coherence analysis 

For analysing the relationship between spike trains of individual units and population rate, the latter 
was obtained by summing all the spikes detected on all the shanks/tetrodes barring the one on which 
the single unit was recorded. For Neuropixels recordings, where the entire probe consists of one shank 
(with 374 recording sites over ~3.5 mm) this approach was not applicable. Instead, for each unit we 
have performed our analyses with population rate based on all spikes on the probe (except for those of 
the unit itself) and with population rate based only on spikes from recording sites > 60 µm away from 
the location of the single unit. All results were almost identical for both conditions. The population rate 
typically was > 100 spikes/s. 

Coherence between population rate or pupil area and individual units was estimated, together with its 
confidence interval, using coherencysegpb function of the Chronux toolbox (estimating coherency 

using coherencysegcpb where population rate was considered a continuous signal rather than spike 

count produced identical results). As in the case of PSD estimation, coherence in different frequencies 
was estimated by breaking the entire recording into segments of appropriate length for each frequency. 

Unlike the more familiar case of coherence between a pair of continuous processes, coherence between 
a continuous process and a point process (such as a spike train of a neuron) depends on the PSD and 
the rate of the latter. This (mathematically unavoidable) fact has two implications. First, the  profile 
of firing rate PSD implies that coherence of the spike train with population rate falls with frequency, 
even when coherence between the underlying firing rate intensity and the population rate does not. 
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Second, because coherence depends on the rate of the spike train, two neurons whose firing rate 
intensities are exactly proportional but unequal do not have the same coherence with population rate. 
To account for this second issue of rate dependence, we use a correction factor to produce a coherence 
which reflects a firing rate of 1 spike/s, rather than the actual firing rate of the neuron.  

More formally, let  be a continuous process,  a point process such as a spike train of a single 
neuron, and  the intensity of the spike train, i.e., we assume that  is a doubly-stochastic Poisson 
process with conditional intensity . It holds that 

   (1) 

where  and   denote the coherence between  and  or ,  is the mean rate of ,  

and  is the power spectrum of  (Aoi et al., 2015). From the above equation it is clear that two 
spike trains with proportional but unequal rate intensities (i.e. if  where ) will 
have different values for coherence. This is not desirable, therefore instead of reporting the coherence 
between a spike train and the population rate, we report ‘rate adjusted coherence’ which reflects the 
coherence that would have been measured if the neuron had a firing rate of 1 spike/s, i.e., if its firing 
intensity was  instead of , see Figure S3a-b for an example. We use a correction factor of 

, as derived in (Aoi et al., 2015), to obtain the rate adjusted coherence. The 

PSD of the spike train, used for the correction was estimated as described above. 

The rate adjusted coherence still depends on the PSD of the spike train of the single unit. For instance, 
it is possible to have two intensity functions  and  with equal means of 1 spike/s, and equal 
coherence with , but with different power spectra. In this case, equation (1) implies that if  and 

 are spike trains sampled according to  and , then 
� �

 even though 

� �
. Here, we did not attempt to remove this dependence, which would have required 

an accurate estimate of . In practice,  cannot be directly inferred from  because the 
assumption that  is a doubly-stochastic Poisson process with intensity  does not hold. For 
example, the existence of refractory period in  reduces the power in all low frequencies in  
(Bair et al., 1994; Rivlin-Etzion et al., 2006). Furthermore, the spiking of actual neurons is driven by 
changes in the subthreshold membrane potential  which is rather distinct from , as exemplified 
in Figure S3. Of note, this discussion primarily applies to high frequencies, whereas in low frequencies 
 is significantly lower than  (or ) and thus the discrepancy between  and  

is minor (see Equation 1). 

To compare the strength of population coupling of two simultaneously recorded neurons across all 
timescales, we have compared their rate adjusted coherences in the following 9 frequencies: 0.01, 0.03, 
0.1, 0.32, 1, 3.2, 10, 32 and 100 Hz. If the null hypothesis that first neuron has higher rate adjusted 
coherence in these 9 frequencies could be rejected at p ≤ 0.001 (after using Bonferroni correction for 
performing 9 comparisons), and the reverse null hypothesis could also be rejected with p ≤ 0.001, the 
two were considered as (a positive) example of a simultaneously recorded pair of neurons where neither 
neuron dominated the other across all frequencies. 

Phase analysis 

Phase of spiking of single units with respect to population rate or pupil area was estimated using the 
same Chronux toolbox functions used to estimate the coherence (see above). As in the case of PSD 
estimation, coherence in different frequencies was estimated by breaking the entire recording into 
segments of appropriate length for each frequency. After the phase in each segment was estimated, 
circular mean and standard deviation were computed. If the distribution of phases (across the segments) 
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had no statistically significant (at p ≤ 0.05) mean, no phase was assigned (e.g. the non-significant 
neurons in the histogram in Figure 4a). 

All phases are specified with respect to the population rate, e.g., a phase of  means that the single 
unit lags behind the population rate, whereas a phase of  means that the unit leads it. 

Linearity and logarithmicity indexes  

For a continuous, non-constant function  defined on an interval  ( ), consider the 
following expression: 

 

where  denotes the total variation of  on the interval . We define the linearity index 
of  as the value of this expression for . Similarly, the logarithmicity index is the 

expression’s value for . The rationale for these two definitions is that for a function changing 
on a linear scale, total variation in the first and second halves of  is expected to be of comparable 
magnitude. Thus, linearity index is close to 0 for functions changing on linear scale (the function itself 
does not have to be linear, e.g.,  on any sufficiently long interval), positive for supra-linear 
functions, and negative for sub-linear functions. On the other hand, for a function changing on a 

logarithmic scale, the total variation in  and   intervals is expected to be of comparable 

magnitude, thus its logarithmicity index would be close to 0 (while its linearity index would be 
negative). 

For empirically measured , total variation is contaminated by measurement noise. To avoid this 
problem, and relying on the fact that phase functions were either monotonic or had just a few extremum 
points (typical examples shown in Figure 5), we used the following expression instead of the one given 
above: 

 

 denotes the diameter of the set  (except for cases when  wraps 
around , this is equal to ). For each neuron, expression (2) was evaluated using 
the longest continuous interval of frequencies over which phase was well-defined (i.e., it had no 
frequencies in which coherency with population rate was not statistically significant). Neurons for 
which such interval spanned less than an order of magnitude were excluded from the analysis. 
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Supplementary figures 

 

Figure S1. Power-law behaviour of infraslow power spectrum of spiking in cortical neurons. (a) The 

spike train power spectrum in the 0.01 – 1 Hz range was fitted with  function. The fit for the 

five example neurons from Figure 1 is shown by a dashed line. (b) Power-law exponent shows no 

relationship to mean firing rate of the neurons, except for neurons with very low firing rate (where  

is low owing to estimation bias, equally present in simulated data). For neurons with mean firing rate 

≥ 0.3 spikes/s the correlation with  was low and insignificant: 0.03, P = 0.39 (Spearman correlation). 

(c) Power-law exponent is weakly correlated with burstiness (the ratio between the peak and baseline 

of a neuron’s autocorrelogram), r = -0.23, P < 10-9 (Spearman correlation).  (d) Distribution of the 

power-law exponent value across all the analysed neurons. 
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Figure S2. Increase in population rate PSD produced by neuronal 

coherence. The ratio between PSD of population rate and sum of PSDs 

of the firing rates of individual neurons that constitute it, averaged 

across all recordings (n = 26), at 0.03, 0.1 and 0.3 Hz. In these 

frequencies PSD of population rate was on average 3-4 times higher 

than what it would have been if the firing rates of the neurons were 

uncorrelated. 

 

 

 

Figure S3. Estimating coherence with spike trains. (a) Spike trains with rates of 0.5, 2 and 8 spikes/s, 

and conditional intensity of , where  controlled firing rate and  was an artificial signal 

with  power, were generated. The coherence of the three spike trains with  depends on their 

firing rate, although the coherence of their underlying intensity with  is 1 in all three cases. (b) 

The rate adjusted coherence of the spike trains in a is similar. (c,d) Rate adjusted coherence, 

demonstrated in b, relies on the mathematical formalism of a doubly stochastic Poisson process, 

which does not apply to actual neurons where spikes are driven by membrane potential ( ) 

fluctuations, and the spike generation mechanism is to a large extent reliable (Mainen and Sejnowski, 

1995). Yet, even for actual neurons one could think of a continuous firing rate  that gives rise to 

the observed spike train. To a first approximation such  is  transformed through a static non-

linearity (determined by the spiking mechanism), as demonstrated by a synthetic example in c. Such 

transformation implies that coherence between any other signal  and  (we will denote it by 

) deviates markedly from  (the coherence between  and ). In fact, one can 

show that in this case , where  and 

 denote the PSD of  and . In the example in c,d, a pair of artificial signals  and 

 have a constant coherence of 0.7 across all frequencies, whereas the coherence between  
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and  , derived from  via static nonlinearity, is no longer constant but falls with frequency, 

which is explained by the square root of the ratio between PSDs of  and . 

 

 

Figure S4. Average frequency-resolved population coupling. 

The value of rate adjusted coherence with population rate 

averaged across all neurons in each recording (grey points), 

and its median across all recordings (black). 

 

 

 

 

 

 

 

 

Figure S5. Phase between multiunit activity (MUA) on different shanks or tetrodes in the same 

recording. Phase between MUA signals is shown for 0.03 and 10 Hz for all pairs of shanks/tetrodes. 

Unlike phase distribution between population rate and individual neurons, the distribution of phases 

between MUA signals is unimodal in both infraslow and high frequencies (cf. Figure 4c-d). 
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Figure S6. Population coupling phase spectrum. For each example neuron in Figure 5, time domain 

correlation between the neuron and population rate on fast and slow timescale (top), and its 

coherence (middle) and phase (bottom) with respect to population rate were evaluated in each half 

of the recording separately. The values in the two halves closely overlap. 
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Figure S7. Comparison of linear phase and constant phase models. (a) Phase at 0.1 Hz vs phase at 

0.32 Hz. Red dashed line indicates identity, corresponding to constant phase model, with R2 = 0.23. 

Linear phase model is shown by blue dashed line, with R2 < 0. (b) Phase at 0.1 Hz vs phase at 0.03 Hz. 

The dashed lines show the two models as in a. For constant phase model R2 = 0.28, for linear phase 

model R2 = 0.17. In a, b the comparison was limited to neurons whose phase at 0.1 Hz was sufficiently 

close to 0 (specifically, within 1 rad; using other intervals produced similar results). 

 

 

Figure S8. Infraslow pupil coupling vs fast population rate coupling of individual neurons. (a) No 

significant relationship between fast timescale phase and coherence with pupil (P = 0.77). (b) A 

significant correlation between phase with pupil at 0.03 Hz and coherence with population rate at 10 

Hz (P < 0.001), where neurons anti-correlated with the pupil are more coherent with population rate 

on fast timescales. This might be due to sub-classes of cortical neurons differing in their fast and slow 

timescale population coupling properties. 
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Figure S9. Drift detection in Neuropixels probe recordings. (a) Vertical position of each high-

amplitude spike detected over 800 s in the top 1.4mm of a Neurpixels probe (the figure looks similar 

for the rest of the recording, which was omitted) in an example recording. (b-d) Three locations on 

the probe (highlighted in a), shown with a higher spatial resolution. In b, c drifts of 10-15 μm are clearly 

visible. The drift events are tens of seconds in duration and occur simultaneously at both locations. 

Drifts are not present at the third location shown in d, ~1 mm further down the probe. 
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