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Abstract 23	

MicroRNAs (miRNAs) are key mediators of post-transcriptional gene 24	

expression silencing. Although Drosophila has been of critical importance for miRNA 25	

discovery, biogenesis and function, there has been no comprehensive experimental 26	

annotation of functional miRNA target sites. To close this gap, we generated the first 27	

in vivo map of miRNA::mRNA interactions in Drosophila melanogaster, making use 28	

of crosslinked nucleotides in Argonaute (AGO) crosslinking and immunoprecipitation 29	

(CLIP) experiments that enable an unambiguous assignment of miRNAs to AGO 30	

binding sites at much higher signal-to-noise ratio than computational predictions 31	

alone. 32	

Absolute quantification of cellular miRNA levels showed the miRNA pool in 33	

Drosophila cell lines to be more diverse than previously reported. Benchmarking two 34	

different CLIP approaches, we identified a similar predictive potential to 35	

unambiguously assign thousands of miRNA::mRNA pairs from AGO1 interaction 36	

data at unprecedented depth. Quantitative RNA-Seq and subcodon-resolution 37	

ribosomal footprinting data upon AGO1 depletion enabled the determination of 38	

miRNA-mediated effects on target expression and translation. We thus provide the 39	

first comprehensive resource of miRNA target sites as well as their quantitative 40	

functional impact in Drosophila. 41	

 42	
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Introduction 44	

MiRNAs are a class of ~22 nucleotide (nt) long small non-coding regulatory 45	

RNAs, involved in mRNA destabilization and translational control. In most cases, a 46	

miRNA functions as a guide directing AGO proteins via RNA-RNA-recognition to 47	

complementary target sites in the 3’ untranslated region of its target mRNA, where its 48	

repressive function gets exerted via assembly of the RNA-induced silencing complex 49	

(RISC) 1. As miRNAs are predicted to target more than 50 % of all 3’UTRs of protein 50	

coding genes in human 2 and 30% of Drosophila genes (TargetScanFly 6.2), either 51	

as a single miRNA or in combination, they may be the most prevalent negative 52	

regulator of post-transcriptional gene expression.  53	

Historically, Drosophila melanogaster has been an important model organism 54	

to study miRNAs biogenesis and function 3,4. MiRNA gene null flies identified 55	

miRNAs that are critical for fly development as negative regulators of the anti-56	

apoptosis genes hid (bantam) and Drice (miR-14) 5,6. Many fly miRNAs exhibit spatial 57	

and temporal expression patterns and possibly regulation 7–9. Advances in detecting 58	

miRNAs and their systematic annotation 9–12 have led to a current set of 466 mature 59	

D. melanogaster miRNAs 13.  60	

Similar to other model organisms 14, only few fly miRNA deletions exert lethal 61	

phenotypes or strong morphological abnormalities. However, many miRNA have 62	

been found have subtle effects 15,16, which become more pronounced when the 63	

organism is challenged. It remains difficult to describe direct organismic miRNA 64	

effects via individual targets in a quantitative manner. Human tissue culture models 65	

have greatly enhanced our understanding about miRNA function, while our 66	

understanding of fly miRNA function is lagging behind. In Drosophila, a recent 67	

comparative study of small RNAs across 25 cell lines suggested that the miRNA 68	

landscape in non-ovary cell lines showed little diversity and low complexity in terms 69	

of relative expression levels of individual miRNAs, which would argue against fly cell 70	

lines as a good model to study miRNA function 12.  71	
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Although knowledge of mature miRNA sequences alone have enabled to 72	

identify physiologically relevant targets 5,17, computational methods have greatly 73	

contributed to successful miRNA target prediction, especially after recognition of the 74	

miRNA seed region (nt 2-7) 18–21. To date, there is a plethora of computational 75	

miRNA target predictions tools, including popular approaches such as TargetScan, 76	

MIRZA and mirSVR 2,22,23, which leverage conservation, target sequence context 77	

feature information or RNA::RNA hybridization energies and other features to 78	

improve prediction accuracy. Purely computational tools predict miRNA targets sites 79	

across entire 3’UTRs, neglecting cell type specific miRNA expression level and target 80	

site availability, which can lead to numerous and tightly spaced predictions. In vivo 81	

AGO binding information generated from Crosslinking and Immunoprecipitation 82	

(CLIP) followed by sequencing (CLIP-seq or HITSCLIP) methods has been used to 83	

greatly decrease the search space from whole 3’UTRs to about 30-40nt per AGO 84	

footprint 24. AGO footprints do not directly reveal the identity of the miRNA engaged, 85	

and in many cases, multiple possible miRNA seed matches overlap AGO binding 86	

sites. However, additional anchor points, such as the coverage summit 24 but 87	

especially the presence of diagnostic events (DE), rephrase the in vivo prediction 88	

problem to the assignment of the most plausible miRNA::mRNA pair within AGO 89	

footprints. DEs are introduced in the reverse transcription step during library 90	

generation and accumulate directly 5’ upstream of miRNA seed matches. PARCLIP 91	

enriches for abundant nucleotide conversions (i.e. T-to-C) in the sequenced read 25 92	

but requires RNA-labeling with photoactivatable nucleosides (i.e. 4-Thiouridine). For 93	

HITSCLIP, nucleotide deletions have been mostly recognized to exhibit diagnostic 94	

potential 26,27. iCLIP on the other hand enriches for read truncations at the +1 95	

nucleotide position of UV-crosslinked nucleotides 28. Dedicated computational 96	

methods leverage this biochemical, single nucleotide evidence of RBP::RNA 97	

interaction and have improved miRNA target identification to accuracy beyond solely 98	

sequence-based computational methods 29,30. Beyond assigning miRNA seed 99	
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matches in relation to single nucleotide identifiers, chimeric miRNA::mRNA reads 100	

overlapping AGO footprints can be used to unambiguously identify the interacting 101	

miRNA 31–34.  102	

Here we describe the absolute quantification of miRNAs in Drosophila S2 103	

cells and find that miRNA expression landscapes in Drosophila cell lines are more 104	

complex than previously reported, owing to recent technological progress in small 105	

RNA cloning. We applied both HITSCLIP and PARCLIP to endogenous AGO1 106	

protein, improving critical steps in the library cloning procedure, and we compared 107	

the predictive potential of single nucleotide diagnostic events (DEs) to assign ‘true’ 108	

miRNA::mRNA interactions. Making use of these features, we provide the first 109	

comprehensive transcriptome-wide map of miRNA target sites in fly. Using 110	

quantitative RNA-seq and sub-codon resolution ribosomal footprinting data in 111	

response to AGO1-depletion, we further functionally evaluated and validated different 112	

types of seed matches, confirming canonical miRNA functions. We suggest that fly 113	

cell lines are suitable models to study miRNA function and provide a fully quantitative 114	

resource with comprehensive transcriptome-wide miRNA binding sites and functional 115	

readouts.  116	

  117	
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Results 118	

miRNA expression complexity in Drosophila S2 cells is greater than previously 119	

reported. 120	

 In order to understand whether the low miRNA diversity previously 121	

observed in Drosophila cells 12 is indeed due to a low complexity in cell-type specific 122	

miRNA expression or in part due to miRNA detection limitations at that time, we 123	

generated new small RNA libraries for Drosophila S2 cells using adapters with 124	

randomized ends. Fixed adapter sequences had been identified as one of the major 125	

sources of miRNA quantification biases in small RNA sequencing experiments 35,36. 126	

Comparing mature miRNA sequences from both public and in-house S2 cell small 127	

RNA sequencing libraries (smRNA-seq) we found that miRNA expression values 128	

were more evenly distributed in samples generated using randomized adapter ends 129	

(Fig. 1A and Fig. S1A). While bantam-3p alone made up ~60% of normalized miRNA 130	

reads in public smRNA-seq samples, it accounted for about ~25% miRNA reads in 131	

our new samples. Other miRNAs, such as miR-14-3p and miR-7-5p, were detected 132	

at higher frequencies. These discrepancies are likely a result of miRNA detection 133	

differences between small RNA library cloning kits rather than differences in primary 134	

miRNA expression, as normalized RNA-seq coverage was unchanged between 135	

public and in-house RNA-seq libraries (Fig. 1B). Accordingly, we found that the read 136	

sequence composition at 5’ and 3’ read ends in public samples was noticeably 137	

skewed, possibly as a consequence of non-randomized adapter ends and 138	

concomitant pronounced ligation biases (Supplemental Fig. S1B). A noticeable 139	

proportion of small RNA reads from modENCODE- as well as newly generated 140	

samples aligned to common Drosophila viral genomes. Those reads likely represent 141	

21nt long virus-derived siRNA and are unlikely to interfere with AGO1-mediated 142	

miRNA function (Supplemental note S1). 143	

 144	
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	145	

Figure 1 - miRNA expression in Drosophila S2 cells is more complex than previously 146	
reported. A) miRNA quantification in publicly available and in-house smRNA-seq samples. 147	
miRNA annotated reads were normalized to reads per million (RPM). (Left) Barplot 148	
representing the mean RPM across replicates and sorted by in-house RPM. (Right) 149	
Cumulative miRNA RPM distribution of top 100 detected and RMP-ranked miRNAs. The solid 150	
line represents the mean across libraries, shades represent the standard deviation. B) 151	
Genome browser shot showing miR-14 and miR-7 reads and their respective RNAseq 152	
coverage at miRNA loci of representative libraries normalized to total library size. C) 153	
Quantitative miRNA northern blot for miR-184-3p, miR-14-3p and miR-7-5p, including their 154	
experimentally determined cpc. 2S rRNA served as a loading control for total RNA samples. 155	
D) Ranked distribution of fitted cpc values. Y-axis is in log10-scale. 156	

 157	

Quantitative northern blot experiments confirmed that the previously lowly 158	

detected miR-14-3p was robustly detectable in S2 cells (Fig. 1C). We calculated 159	

miRNA copies per cell (cpc) for three miRNAs (miR-184-3p ~36,600 cpc; miR-14-3p 160	

~10,150 cpc; miR-7-5p ~620 cpc) and estimated cpc for all detected miRNA in 161	

smRNA-seq samples (Fig. 1D, supplemental table S1). Two miRNAs (miR-184-3p 162	

and bantam-3p) were present in more than 10,000 cpc and ~30 miRNAs at more 163	

than 100 cpc.  Taken together, miRNA expression levels in Drosophila S2 cells are 164	

more diverse than previously reported as a consequence of detection limitations. 165	

 166	

 167	

 168	

 169	
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AGO1 HITS- and PARCLIP footprints harbor a similar set of single nucleotide DEs 170	

To identify targets of the detected miRNAs, we performed two HITSCLIP 37 171	

and two PARCLIP 25 experiments for endogenous AGO1 in S2 cells (Supplemental 172	

Fig. S2A and S2B). We updated individual library preparation steps and performed 173	

both CLIP-methods under similar conditions to be able to compare both approaches. 174	

Importantly, we replaced the RNase-T1 digestion with RNase-I digestion, which has 175	

no reported nucleotide cleavage bias, and again used 5’ and 3’ adapters with 176	

randomized ends to improve adapter ligation and help to efficiently remove PCR 177	

duplicates and, in part, sequencing errors. We sequenced all AGO1-CLIP amplicons 178	

close to estimated saturation resulting in 15,337,489 uniquely mapping reads 179	

(Supplemental Fig. S2C - S2E). Compared to human AGO2 PARCLIP libraries, we 180	

observed higher relative 3’UTR read density in fly cells (Supplemental Fig. S2F). This 181	

difference may be owed to a combination of higher density of predicted miRNA target 182	

sites in fly 3’UTRs compared to human 3’UTRs 38 and possibly differences in 183	

sequencing coverage. As instructive example, we confirmed all five originally 184	

predicted plus two additional bantam binding sites in the hid 3’UTR with AGO binding 185	

information from HITSCLIP and PARCLIP samples (Supplemental Fig. S2G) 5. 186	

Although harboring in total 45 predicted conserved and non-conserved 7/8mer seed 187	

matches for all detected miRNAs, only the predicted bantam seed matches were 188	

supported by the CLIP data.  189	

The combination of AGO binding information and miRNA expression levels 190	

was highly effective to pinpoint the small set of actively engaged miRNA target sites 191	

from a large compendium of computationally determined candidates (Fig. 2A and 192	

2B). We analyzed all CLIP data (both HITS- and PAR-CLIP) in the same framework 193	

for more comparability (see methods). First, we examined whether both CLIP 194	

methods would identify a similar set of AGO1 binding sites. Irreproducible discovery 195	

rate analysis indicated that both HITSCLIP and both PARCLIP replicates were 196	

characterized by high peak reproducibility, while reproducibility between both CLIP 197	
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methods was less pronounced (Supplemental Fig. S2H). We pooled both HITSCLIP 198	

and both PARCLIP replicates and selected the n top peaks as indicated by an IDR < 199	

0.25 (HITSCLIP n=8,971; PARCLIP n=11,667, supplemental tables S2 and S3) 200	

(Supplemental Fig. S2H). For both CLIP methods, 3’UTR annotating peaks were 201	

enriched relative to the number of peaks expected by chance (Supplemental Fig. 202	

S2I). IDR-selected AGO1 binding site positions were uniformly distributed within 203	

3’UTRs, which is different from miRNA seed matches in human and in line with 204	

previous findings 39 (Supplemental Fig. S2J). 205	

 206	

	207	

Figure 2 - AGO1 HITSCLIP and PARCLIP diagnostic event comparison. A) Genome 208	
browser shot of the Drosophila gene mbt, depicting AGO1 HITSCLIP (blue) and PARCLIP 209	
(red) coverage tracks along its 3’UTR as well as 27way PhastCons scores (green). Blue and 210	
red bars indicate IDR-selected peak calls. Below, 7mer and 8mer seed matches for all miRNA 211	
in TargetScan 6.2 (conserved and non-conserved families), conserved miRNA (predicted 212	
conserved targets) and top59 CLIP-enriched miRNA (see supplemental Fig. S1A) are 213	
indicated. (y-axis shows the number of detected CLIP reads). B) Similar to A, genome 214	
browser shot of HITSCLIP and PARCLIP peak in mbt 3’UTR including alignments. Red 215	
squares in individual read alignments indicate T-to-C mismatches to the dm6 reference. Red 216	
bars within coverage tracks indicates the T-to-C conversion proportion at nucleotide 217	
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resolution. Below, 7mer/8mer seed matches of CLIP-enriched miRNAs are indicated. C) 218	
Percentages of diagnostic events relative to all uniquely aligning reads. D) Results according 219	
to supplemental Fig. S2L. Scatterplot of mean distance to miRNA start (x-axis) relative to its 220	
effect size (y-axis).  E) T-to-C conversion example according to D). Density of T-to-C 221	
conversion positional maxima relative to unique 7mer or 8mer matches in top 3000 IDR-222	
selected 3’UTR peaks. 223	

 224	

AGO footprints do not directly reveal which miRNA was bound. Several 225	

reports have exploited single nucleotide diagnostic events (DE) introduced during 226	

library preparation as additional anchor points within the AGO binding site, which 227	

give higher resolution information about direct RBP::RNA contacts. For AGO 228	

PARCLIP, T-to-C conversions have been found to be diagnostic to infer miRNA seed 229	

matches 3’ downstream 25. For AGO HITSCLIP, nucleotide deletions were the most 230	

recognized DE relative to miRNA seed matches 26,27. We found that PARCLIP peaks 231	

showed strong positional enrichment of T-to-C conversions, which is also observed 232	

in HITSCLIP peaks but to a lesser extent (Fig. 2B cf. 40. 233	

We used the randomized adapter ends to filter aligned sequencing reads with 234	

mismatches to the reference genome to distinguish DE introduced at crosslinked 235	

nucleotides during reverse transcription from sequencing errors. After filtering, T-to-C 236	

conversions accumulated towards the middle of mapped reads for both PARCLIP 237	

and HITSCLIP samples (Supplemental Fig. S2K), in contrast to previous reports for 238	

mouse AGO2 CLIP 26. In AGO1 PARCLIP, more than 80% filtered uniquely aligning 239	

reads harbored T-to-C conversions (Fig. 2C). In AGO1 HITSCLIP data, we detected 240	

more reads with T-to-C conversions (1.6%) than reads harboring T-deletions 241	

(0.83%).  242	

In order to evaluate the diagnostic potential of all possible nucleotide 243	

conversions and deletions, we evaluated the top 3000 3’UTR peaks in detail (Fig. 2D 244	

and S2L; see methods). For both, PARCLIP and HITSCLIP T-to-C conversions 245	

preferentially peaked 5’ proximal to unique 7- and 8-mer seed matches within AGO1 246	

footprints (Fig. 2E).  Although PARCLIP T-to-C conversions were by far more 247	
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abundant, the less frequent conversions in HITSCLIP can nevertheless indicate 248	

crosslinked nucleotide 5’ proximal to seed matches. In PARCLIP, not only T-to-C 249	

conversion, but also T-to-A, T-to-G conversions and T-deletions occur closer to seed 250	

matches than expected by chance (Fig. 2D and S2M). In HITSCLIP, T-to-C, T-to-A 251	

conversions and T-deletions showed similar preference. (Fig. 2D and S2M). About 252	

80% of the top 3000 AGO1 HITSCLIP 3’UTR peaks contained at least one T-to-C 253	

conversion, while T-deletions occurred in less than 25% and showed slightly less 254	

diagnostic potential. For both AGO1 PARCLIP and HITSCLIP, crosslinked 255	

nucleotides are best indicated by T-to-V conversions and T-deletions, though at 256	

different frequencies. 257	

 258	

T-centric DEs enable efficient miRNA target site prediction in PAR- and HITSCLIP  259	

To assess the impact of T-to-V conversions together with T-deletions, we 260	

used microMUMMIE 29, a hidden Markov model that integrates CLIP binding profiles 261	

and their DEs with sequence matches to predict miRNA seed matches within AGO1 262	

binding sites. For both CLIP methods we chose peaks with at least 2 DEs (hereafter 263	

referred to as cluster 41). In AGO1 PARCLIP almost all IDR-selected 3’UTR peaks 264	

contain at least 2 T-to-C conversions (n=3740/3890 3’utr peaks). In AGO1 HITSCLIP 265	

more than 50% (n=1661/3086 3’utr peaks) of the IDR-selected 3’UTR peaks were 266	

clusters based on T-to-V or T-del DE, while T-to-C conversions accounted for more 267	

clusters than T-deletions (Fig. 3A).  268	

 269	
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	270	

Figure 3 - microMUMMIE assigned miRNA seed matches on PARCLIP and HITSCLIP. A) 271	
Proportion of IDR-selected peaks forming clusters (≥ 2 DE per 3’UTR peak) depending on 272	
individual or combined DEs. B) SNR estimate for HISTCLIP and PARCLIP derived DE signal 273	
for miRNA seed match predictions given the top 30 CLIP-enriched miRNA relative to 30 274	
shuffled decoy miRNA. In each case, the top 1500 clusters were used. The results are 275	
depicted as mean across 100 individual shuffling experiments, with error bars representing 276	
SEM. Individual triangles indicate changes in chosen microMUMMIE variance levels. Squares 277	
show basic 7mer-A1, 7mer-m8 or 8mer-A1 matches anywhere within clusters. X-axis depicts 278	
sensitivity. Coverage = inferred single nucleotide peak summit position. C) Similar to B) but 279	
depicting specificity vs. sensitivity. D) UCSC 27way PhastCons scores relative to the inferred 280	
crosslinked nucleotides for Clusters with miRNA seed match (at microMUMMIE variance 281	
0.01; Viterbi mode) prediction or a random nucleotide within the same peak. 282	

 283	

We ran microMUMMIE on the top 1500 PARCLIP clusters harboring T-to-C 284	

conversions and predicted miRNA seed matches for the miRNAs that were detected 285	

in CLIP samples relative to same number of decoy miRNAs (see methods). CLIP 286	

samples showed a clear bimodal miRNA read distribution, suggesting that the top 59 287	

miRNAs are actively engaged in AGO1-RISC complexes (referred to as 288	

comprehensive miRNA set) (Supplemental Fig. S1A). We found that a smaller set of 289	

top 30 detected miRNAs had the best trade-off maintaining high signal-to-noise ratio 290	

(SNR), while maintaining almost maximal sensitivity (referred to as high-confidence 291	

miRNA set) (Supplemental Fig. S3A and S3B). Comparing the predictive potential of 292	

DEs between both CLIP methods using the high-confidence miRNA set, 293	

miRNA::mRNA pairs were assigned with higher SNR at lower sensitivity values in 294	
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AGO1 PARCLIP-derived clusters as compared to HITSCLIP-derived clusters (Fig. 295	

3B and 3C; Fig S3C and S3D). HITSCLIP clusters may thus harbor a higher 296	

proportion of true positive miRNA seed matches compared to PARCLIP, but the high 297	

density of PARCLIP-derived DEs has a higher predictive value. In all cases, using 298	

DEs within the top 3’UTR clusters were more predictive of real miRNA seed matches 299	

than using the position of the peak summit (coverage midpoint) (Fig. 3B/3C and Fig. 300	

S3C/S3D). While combining T-to-V or T-del DEs helped in the case of HITSCLIP, 301	

PARCLIP clusters did show similar SNR and sensitivity using T-to-C conversions 302	

only. For both methods, we found a similarly strong increase of PhastCons 303	

conservation scores relative the inferred crosslinked (Fig. 3D and S3E). In summary, 304	

we predicted miRNA seed matches for AGO1 PARCLIP and HITSCLIP clusters at 305	

comparable SNRs. However, DEs were detectable as a function of sequencing 306	

depth, and their prevalence is much lower especially in AGO1 HITSCLIP peaks with 307	

lower coverage. 308	

 309	

Canonical miRNA binding sites function via 3’UTRs targeting 310	

To confirm miRNA function, we knocked down AGO1 expression using 311	

double-stranded RNA (dsRNA) mediated gene silencing and performed mRNA 312	

sequencing and ribosomal footprinting relative to control treatments (Supplemental 313	

Fig. S4A and Fig. S4B). We calculated mRNA expression changes, changes in 314	

ribosomal footprinting, and translational efficiency (Supplemental table S4). We 315	

assessed whether identified AGO1 binding sites in different regions of mRNAs had 316	

similar effects. For IDR-selected peaks in both CLIP-methods we found that 317	

repression alleviation upon AGO1-depletion was strongest for genes bound in 318	

3’UTRs (Supplemental Fig. S4C). Changes in RNA levels and ribosomal footprinting 319	

data were concordant for the majority of AGO1-bound targets (Supplemental Fig. 320	

S4D). It has been suggested previously that AGO-binding-dependent translational 321	

repression precedes RNA degradation 42 and that AGO-binding in coding regions 322	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 22, 2018. ; https://doi.org/10.1101/395335doi: bioRxiv preprint 

https://doi.org/10.1101/395335


	 14	

may specifically influence target gene translational efficiency 43. In our data, only a 323	

small subset of AGO1 targets bound in their 3’UTR were characterized by additional 324	

changes in translational efficiency that were not explained by mRNA abundance 325	

changes (Supplemental Fig. S4C). We also did not observe strong changes in 326	

translational efficiency for genes targeted in coding regions relative to genes without 327	

AGO1 binding sites. However, our data was derived from 72h dsRNA knock-down 328	

and thus may not be well suited to address preceding changes in translational 329	

efficiency. 330	

As expression changes were most pronounced for 3’UTR bound AGO1 331	

targets, we focused on providing a reference miRNA target site annotation to binding 332	

sites in this annotation category. Since miRNA seed match prediction on PARCLIP 333	

T-to-C conversions had the best SNR, and DE prevalence was much higher than in 334	

AGO1 HITSCLIP, we reanalyzed the PARCLIP data using the PARCLIP-tailored 335	

peak caller PARalyzer 41 (Supplemental tables S5-S7). First, in order to explain as 336	

many AGO1 3’UTR clusters as possible, we pooled both PARCLIP samples and 337	

predicted miRNA seed matches for the 59 CLIP-enriched miRNAs (referred to as 338	

comprehensive miRNA target site map; Supplemental table S8). Similar to previous 339	

studies, not all AGO1 binding sites can be explained by a canonical miRNA seed 340	

match. In addition to spurious non-functional interactions in genomic cross-linking 341	

data sets, this fraction may consist at least partially of AGO1-binding sites without 342	

canonical miRNA seed match that may still be able to function (bulge sites, 3’ 343	

compensatory sites, center sites, etc. 44–46. However, the prevalence of such sites is 344	

still largely unclear, and we found that target gene expression of genes with clusters 345	

lacking canonical seed matches was not noticeably different from non-targeted 346	

genes (Supplemental Fig. S4E). Furthermore, slight changes could be also explained 347	

by canonical seed matches of miRNAs not included in the comprehensive miRNA 348	

set, as well as targeting in other transcript regions. 349	
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For lower ranked clusters of the pooled AGO1 PARCLIP data sets, prediction 350	

certainty was gradually reduced (Supplemental Fig. S4F). In order to arrive at a high-351	

confidence miRNA target site map, we predicted miRNA seed matches for the top 30 352	

CLIP-enriched miRNA that showed good sensitivity, while maintaining high SNR on 353	

the IDR-selected peaks (referred to as high-confidence miRNA target site map; 354	

Supplemental table S10). Here, we predicted miRNA seed matches on both AGO1 355	

PARCLIP samples separately and kept reproducible miRNA seed match predictions. 356	

The gold standard comprises 5026 miRNA seed match predictions on 2601 357	

expressed genes (Fig. 4A). These reproducible predictions showed stronger target 358	

repression alleviation upon AGO1 knockdown than genes with non-reproducible 359	

target sites as part of the comprehensive miRNA target site set (Supplemental Fig. 360	

S4G).  361	

 362	
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	363	

Figure 4 - Functional evaluation of canonical miRNA seed match predictions. A) 364	
Heatmap showing positional miRNA prediction prevalence relative to the identified 365	
crosslinked nucleotide for the top 30 CLIP-enriched miRNAs within PARalyzer-derived 3’UTR 366	
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clusters. Only miRNA seed match prediction reproducible in both AGO1 PARCLIP replicates 367	
were considered. miRNAs are ranked by the number of predicted targets. The proportion of 368	
seed match types is shown on the right. On the left, the medians of steady state target 369	
expression levels (TPM), log2 fold changes of dsAGO1 vs. dsGFP treated samples for TE, 370	
RiboFP and mRNA-seq are shown for all miRNA targeted genes, followed by the mean 371	
miRNA RPM expression levels in public and in-house smRNA-seq as well as CLIP data sets. 372	
Results shown were derived at microMUMMIE variance 0.01 using viterbi mode.  B) 373	
Cumulative distribution of mRNA-seq, RiboFP and TE log2 fold changes for genes with 1, 2, 374	
3, 4 or more than 4 reproducible miRNA seed match predictions relative to genes without 375	
reproducible predictions. P value was calculated in a two-sided Kolmogorov-Smirnov test 376	
versus genes without reproducible miRNA seed match predictions. C) Similar as in B) but 377	
isolating genes with exactly one reproducible miRNA seed match prediction stratified by 378	
6mer, 7mer or 8mer binding mode. D) Similar as in C) but depicting log2 fold changes for 379	
individual miRNAs (miR-184-3p, miR-14-3p and miR-7-5p compared to three other miRNAs 380	
with the most miRNA predictions). 381	

 382	

S2 cell miRNA repertoire manifests terminally differentiated state 383	

The number of predicted targets correlated well with CLIP-derived miRNA 384	

quantification (Pearson correlation coefficient 0.47, p=0.012). Accordingly, we found 385	

(the previously lowly detected and most CLIP-enriched miRNA) miR-14-3p to have 386	

the second-most reproducible miRNA target sites. On the other hand, miR-184-3p 387	

was associated with comparably few targets and did not follow this general 388	

relationship. Yet, those few targets exhibited strong repression alleviation upon 389	

AGO1 knockdown. The number of reproducible miRNA predictions had a strong 390	

cumulative effect (Fig. 4B), which was stronger than differences in miRNA seed 391	

match types (Fig. 4C, S4H). For some miRNAs, miRNA effects indeed increased in 392	

the order of 6mer < 7mer < 8mer (i.e. bantam-3p, miR-184-3p), but we also found 393	

examples of abundant miRNAs showing the opposite relationship (i.e. miR-277-3p). 394	

Individual miRNAs therefore differed from each other in target suppression strength 395	

and mode (Fig. 4D), possibly a sign of miRNA:mRNA target stoichiometry 396	

differences.  397	

Having information about in vivo bound miRNA target sites in S2 cells provides 398	

the unique opportunity to describe the collective miRNA targetome and individual 399	

miRNA modules. We found 1237 being targeted by a combination of at least two 400	

miRNAs, while 1364 genes harbor one single miRNA binding site (Fig 5A, inset). We 401	
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noted that all unique miRNA target sets are larger than any miRNA pair, suggesting 402	

that no larger specific combinatorial target gene sets exist (Fig 5A). To test whether 403	

these rather unique target sets address distinct biological processes, we checked for 404	

the presence of specific gene function (GO) categories. We could identify a group of 405	

strongly enriched GO terms around fly development, morphogenesis, signaling and 406	

cell-to-cell communication (Fig. 5B; Supplemental file S2), processes suggested to 407	

be prime miRNA targets in Drosophila 47. This group showed a very similar 408	

enrichment pattern across most individual miRNA target sets, suggesting a high 409	

overlap in their targeted developmental processes. Indeed, calculating semantic GO-410	

term similarities supports the notion that the majority of miRNA targets share similar 411	

GO-term enrichments (Fig. 5C). 412	
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	413	

Figure 5 - miRNAs in S2 cells collectively target genes involved in development. A) 414	
Overview of S2 miRNA targetome. The inset on the left shows the number of detected genes 415	
with unique (=1) to up to 13 reproducible 3’UTR miRNA binding sites. Upset plot showing all 416	
possible miRNA target overlaps with minimally 4 shared genes (n= 88 combination >= 4 417	
genes). Bar plot on the left indicates the number of all targets per miRNA. The bar plot on top 418	
indicates the size of the unique target set. The largest target gene sets exist for individual 419	
miRNAs. The largest intersect for co-targeting miRNA has a size of 9 targets. The sets are 420	
indicated by red dots, connected by red lines. B) Biological process gene ontology (GOBP) 421	
enrichment for all miRNA targets (all miR: n=2,601), top decile of genes upregulated on 422	
mRNA level upon AGO1-depletion (mRNA), top decile of genes upregulated on ribosomal 423	
footprinting level upon AGO1-depletion (RiboFP), top decile of genes upregulated 424	
Translational efficiency level upon AGO1-depletion (TE; each n=597), and all individual 425	
miRNA target sets, relative to all genes considered during functional analysis previously 426	
(n=5,962). All significantly enriched (p < 0.001; fisher’s exact test; n=501) GO-terms for all 427	
miRNA targets were selected, merged to the corresponding enrichments in all other sets, and 428	
row-wise clustered (distance = maximum, clustering function = ward) after p value -log10-429	
transformation, resulting in two main clusters. miRNAs are sorted by the number of targets. 430	
We did not observe enriched GO terms for individual miRNA target sets, which were not 431	
already covered by enrichments in all miR. (Supplemental file S2). C) Pair-wise GO-term 432	
similarities using GOSemSim (Yu et al. 2010), for the top 100 enriched GOBP terms given p < 433	
0.001 (fisher’s exact test), and clustered (distance = euclidean, clustering = ward).  434	
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Conclusion 435	

 Despite its importance as a model system, the fly community has been 436	

lacking a comprehensive, quantitative, in vivo map of D. melanogaster miRNA 437	

targets. To fill this gap, we describe a resource of cellular miRNA copy numbers, 438	

comprehensive miRNA target sites, as well as functional response data including 439	

ERCC spike-in RNA-seq and matched sub-codon resolution ribosomal footprinting 440	

data utilizing randomized adapters. Here, we focused our efforts on comparing the 441	

miRNA target prediction potential for AGO1 CLIP methods, and the evaluation of 442	

miRNA function. Together, we support that at least Schneider S2 cells lines can 443	

serve as a valuable model to study fly miRNA function.  444	

 We found the expressed miRNA pool to be more diverse than reported. T4 445	

RNA ligases, most commonly used during small RNA cloning, were shown to have 446	

sequence biases and/or nucleic acid secondary structure hindrance in ligating single 447	

stranded RNA or DNA oligos, which can lead to miRNA mis-quantification of multiple 448	

orders of magnitude 35,48–50. Randomizing adapter ends for miRNA cloning can 449	

efficiently reduce those biases, and results showed good agreement between 450	

complementary miRNA quantification methods 36. Beyond overcoming ligation 451	

limitations, randomized adapter ends serve furthermore as unique molecular 452	

identifiers (UMIs), which help to distinguish individual ligation events from 453	

duplications introduced during PCR or sequencing. This is especially critical for low-454	

complexity smRNA-seq libraries, where often thousands of identical reads align to 455	

only a few miRNA loci. Accordingly, we show that this new miRNA expression data is 456	

in better agreement with quantitative Northern blots than previous libraries prepared 457	

without randomized adapter ends. This finding may not be limited to Drosophila S2 458	

cells and plausibly extends to all of the 25 fly cell lines recently profiled for 459	

modENCODE 12. 460	

 For some miRNAs, detected expression levels changed drastically between 461	

public and new smRNA-seq quantification. MiR-14-3p has early on been associated 462	
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with an anti-apoptotic phenotype in fly 6 and since then been implicated in multiple 463	

other regulatory cues 15,51–54. Early smRNA cloning and pyrophosphate sequencing 464	

as well as SOLiD-sequencing already indicated mir-14 to be abundant in S2 cells 9,55, 465	

but in all but one of the public smRNA libraries analyzed mir-14 was significantly 466	

underrepresented as compared to our new smRNA-seq data (Supplemental Fig. 467	

S1A). We found miR-14 levels as one of the most engaged miRNA in AGO1-RNP 468	

complexes, targeting the second most genes following bantam.  469	

While we, and others 25, observed a general correlation of miRNA expression 470	

level and the number of predicted miRNA targets (Fig. 4A), miR-184 did not follow 471	

this trend. We mapped fewer target sites than expected from its expression, and its 472	

target genes were on average more strongly derepressed upon AGO depletion and 473	

showed a relatively strong effect on translational regulation (Fig. 4A and 4D). MiR-474	

184 has been previously found to be required for embryonic axis formation and has 475	

an age dependent effect on female germline development 15,56. It has also been 476	

found responsive to high-sucrose treatment in fly and mouse as well as in diabetic 477	

mouse models 57,58, suggesting a conserved response mechanism. In both cases, the 478	

miR-184 levels are reported to drop quickly and strongly upon treatment and disease 479	

state, while miRNA expression changes are known to be normally modest. The quick 480	

drop suggests a short miRNA half-life. Given a high miRNA:mRNA target ratio in S2 481	

cells, effective target regulation would require strong changes in miRNA levels. It 482	

seems therefore tempting to speculate that miR-184 shows common strong 483	

regulation as a result of high miR-184::target mRNA ratios in fly and mouse.  484	

 AGO binding information greatly enhances accuracy in assigning the 485	

miRNA:mRNA gene pairs 24,25, as the search space for short miRNA seed matches is 486	

reduced dramatically from whole 3’UTRs to AGO footprints. If ambiguity remains, 487	

single nucleotide diagnostic events can be used for assigning the right miRNA 26–30. 488	

DEs are known for all three major CLIP protocols (PARCLIP, HITSCLIP, iCLIP) but it 489	

has so far been unclear how the diagnostic potential of CLIP-type specific DEs 490	
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compare. In agreement with previous reports, we found T-nucleotide DEs 491	

(conversions and deletions) for miRNA seed matches located 3’-downstream for both 492	

HITSCLIP and PARCLIP 40, but these DEs (especially T-to-C conversions) were 493	

much more abundant in PARCLIP. Contrary to previous reports 26, HITSCLIP T-to-C 494	

conversions showed higher diagnostic potential than T-deletions, due to multiple 495	

possible reasons: A) The original study used less stringent mapping parameters 496	

(~75% of reads contain conversions), possibly shadowing a lower fraction of 497	

informative diagnostic events. B) Mapping of short reads including mismatches 498	

remains specifically challenging and differs across aligners 59, and the ~19x smaller 499	

fly genome (dm6 vs. mm10) implies higher mapping confidence. C) Our use of 500	

randomized UMI adapter ends enabled us to identify and remove sequencing errors 501	

from aligned reads. A similar approach has been used for AGO iCLIP samples 34. 502	

Overall, we found the combination of HITSCLIP T-to-V conversions and T-deletions 503	

to lead to competitive SNR, sensitivity and specificity to predict miRNA seed 504	

matches, but only for the top 1500 peaks. Given that only 2.5 % (1 in 40 reads) of 505	

uniquely aligned reads contain such DE, only peaks with substantial coverage can be 506	

used for this analysis, while this limitation does not exist in PARCLIP. For HITSCLIP 507	

peaks without DEs, the coverage mid-point could still act as anchor point 24, but with 508	

lower SNR 29. Importantly, our observations can be leveraged for in vivo endogenous 509	

AGO1 CLIP experiments, where the 4SU incorporation of 4SU into transcripts may 510	

be difficult or impossible.  511	

We increased the count of experimentally supported miRNA target sites in D. 512	

melanogaster from currently 12 (Diana TarBase v7.0 60) and 150 (miRTarBase 7.0 513	

61), respectively, to more than 5000 reproducible sites. It is possible that miRNA 514	

targeting follows slightly different rules in different clades. For example, in C. elegans 515	

additional miRNA targeting modes were found to be more conserved than expected 516	

by chance (6mer-A1 and 8mer-1U) 38. Moreover, miRNA seed matches in fly do not 517	

occur preferentially towards 3’UTR start and end 39,62, which is supported by our 518	
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AGO1 binding data and possibly a consequence of drastically shorter 3’UTR length 519	

in flies 38. As 3’UTRs can undergo extensive lengthening for example in the fly 520	

nervous system and thus increase cis-regulatory 3’UTR space 63,64, this picture may 521	

depend on the tissue or for individual miRNAs. Furthermore, local AU-content was 522	

found to be predictive for miRNA target sites in human 2, but the 3’UTR AU-content is 523	

higher in fly and thus may be less predictive. Beyond facilitating a quantitative model 524	

of miRNA targeting in fly, our comprehensive target map is thus an excellent starting 525	

point to improve Drosophila target prediction.  526	
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Methods 527	

miRNA quantification 528	

For miRNA quantification, we considered AGO CLIP and smallRNA-seq 529	

alignments after the step of multimapper removal. This was chosen for two main 530	

reasons: 1) miRNA harbor large proportions of untemplated 3’-end modification 531	

resulting in mis-matches towards read-ends that do not result from sequencing or 532	

adapter trimming errors. 2) Public smallRNA-seq libraries (Supplemental file S1) 533	

were generated without introducing UMIs, which are required for UMI-based 534	

sequencing error removal.  535	

Reads annotating to mature miRNA were quantified and normalized to reads 536	

per million (RPM) by dividing by the total number of miRNA-annotating reads and 537	

multiplication with 1*106. CLIP-enriched miRNAs were identified fitting a two-538	

component mixture model 65 to the log10-transformed and RPM-normalized miRNA 539	

counts as a mean across CLIP libraries. 540	

To infer copies per cell (cpc) for all miRNA detected, we first fit a linear 541	

regression model to the experimentally determined cpc and in-house smallRNA-seq 542	

derived mean RPM after log-transformation. The resulting model was used to predict 543	

cpc for all detected miRNA. 544	

Experimentally determined miRNA cpc values fitted better with miRNA reads 545	

per million (RPM) derived from in-house smRNA-seq libraries (R-squared = 0.999, 546	

p=0.0013, residual std. er. = 52.4), than with public data sets (R-squared = 0.95, 547	

p=0.14, residual std. er. = 5810). Accordingly, fitted cpc values for all miRNA were 548	

more coherent with in-house smRNA-seq derived RPM (in-house - R-squared = 549	

0.989, residual std. er. = 3030; public - R-squared = 0.932, residual std. er. = 11600). 550	

 551	

HITSCLIP and PARCLIP of endogenous AGO1 protein 552	

AGO1 HITSCLIP and PARCLIP experiments were performed in biological 553	

replicates, originally described in 25 with the following changes. Buffers were used 554	
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from 66. For AGO1 PARCLIP, culturing medium was supplemented with 400 µM 4-555	

Thiouridine (4-SU) (SIGMA #T4509) 17 hours overnight before harvest. 4-SU 556	

incorporation was determined to be approximately half as efficient as in HEK293T 557	

cells determined by thiol-specific biotinylation dot-blot assays as described previously 558	

67. Semi-adherent cells were scraped and washed in ice-cold PBS prior to 254 nm or 559	

365 nm UV-irradiation (400 mJ/cm2), respectively. Liquid cell pellets were snap 560	

frozen in liquid nitrogen and stored at -80°C until further usage. For library 561	

preparation, cells were thawed on ice and quickly lysed in NP40 lysis buffer (50 mM 562	

Tris–HCl pH 7.4, 100 mM NaCl, 1 % Igepal CA-630 (NP40), 0.1 % SDS, 0.5 % 563	

sodium deoxycholate, Complete Protease Inhibitor to a final concentration of 2x, 564	

RNAsin 40 U/ml lysis buffer; 1 ml lysis buffer per approximately 0.3*109 cells, 1.2*109 565	

to 1.3*109 cells in total per sample). After treatment with RNaseI (1:333 v/v or 566	

300 U/ml lysate for HITSCLIP and 1:400 v/v or 250 U/ml lysate for PARCLIP 567	

samples, because of slight concentration differences between lysate; TurboDNase 568	

(4 U/ml) for 3 min at 37 °C and 1100 rpm, immunoprecipitation (IP) was carried out 569	

with polyclonal AGO1 (Abcam #ab5070, 20 µg per sample) coated magnetic protein 570	

A dynabeads (Life Technologies #10002D)(100 µl) on spin-cleared cell extracts for 571	

2 hrs at 4 ºC. 572	

After IP, CLIP samples were stringently washed three times with high salt 573	

buffer (50 mM Tris–HCl, pH 7.4, 0.666 M NaCl, 1mM EDTA, 1% Igepal CA-630 574	

(NP40), 0.1% SDS, 0.5% sodium deoxycholate), followed by PNK-buffer washes. 575	

Samples were radioactively 5’end-labelled with γ-32P-ATP including a subsequent 576	

addition of 1 µl high-molar ATP to the reaction for efficient 5’end phosphorylation. 577	

The crosslinked protein-RNA complexes were resolved on a 4-12 % Bis-Tris-578	

Polyacrylamid gel. The SDS-PAGE gel was transferred to a nitrocellulose membrane 579	

and the protein-RNA complexes migrating at an expected molecular weight were 580	

excised. RNA was isolated by Proteinase K treatment and phenol-chloroform 581	

extraction, ligated to 3’ adapter and 5’ adapter (Supplemental file S1), reverse 582	
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transcribed using Superscript III (Life Technologies #18080044), PCR-amplified 583	

(PCR cycles: HITSCLIP 20 cycles; PARCLIP 19 cycles), and gel-purified. Note, after 584	

the 3’Adpater ligation step, each AGO1 sample was split into approximately 19-24 nt 585	

(miRNA fraction) and 24-35nt (target fraction) long fragments, cloned, amplified and 586	

sequenced separately. The amplicons were sequenced single-end as a multiplexed 587	

pool on HiSeq2000 (Illumina) with 51 cycles. 588	

 589	

CLIP and smallRNA library processing 590	

For AGO1 HITSCLIP and PARCLIP libraries, sequencing reads from 19-24 nt 591	

and 24-35 nt fraction were combined before processing. For all fly CLIP libraries we 592	

quality-filtered reads using the fastx-tool kit [ -q 10 -p 95 ] 593	

(http://hannonlab.cshl.edu/fastx_toolkit/), and adapter-trimmed using cutadapt v1.8 68 594	

[ --overlap=3; -m 24 ] (Supplemental file S1), discarding untrimmed reads. Reads 595	

were collapsed (duplicate removal) still including the 4 randomized nucleotides at 596	

both ends of the sequencing read. Randomized adapter ends got trimmed after read 597	

collapsing and added to the read identifier for further usage and treated as unique 598	

molecular identifiers (UMIs). As the smaller fly genome allowed higher mapping 599	

rates, we required minimally 16 nt read length. rRNA mapping reads were removed 600	

prior to aligning to the fly genome. We filtered multimapping reads and only kept the 601	

best alignment of a read if the second best alignment had more than one mismatch 602	

more than the best alignment. SmallRNA samples were processed accordingly. If no 603	

randomized adapter ends (UMIs) were present, we did not apply PCR duplicate 604	

removal. miRNA quantification on CLIP libraries was done after this processing step. 605	

Further, we filtered out all reads with mismatches relative to the genome in the first 606	

and last two nucleotides. Next, we removed reads with mismatches relative to the 607	

genome reference which were likely introduced during sequencing and thus 608	

represent sequencing errors and not diagnostic events. For this, we grouped 609	

alignments based on genomic coordinates (Chr, start, end, strand) and UMIs. In the 610	
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case where alignments shared all coordinates and harbored the same UMI, while 611	

differing from each other and/or the reference sequence, we sorted by copy number 612	

(retained from read collapsing) and removed reads with relative lower copy number 613	

and higher mismatch prevalence to the local high copy number reference read.  614	

For the comparative CLIP analysis we called peaks using Piranha v1.2.1 69 [ -615	

s -b 20 -a 0.95 -v ]. To work around Piranha’s assumption that the smaller genomic 616	

coordinate is the read start irrespective of the strand, we called peaks on the read 617	

midpoints. For spliced reads, the read midpoint was assigned to the part of the read 618	

with the more extensive exon overlap. Peak reproducibility was estimated using 619	

Irreproducible Discovery Rate (IDR) 70 on the peak read counts with an overlap ratio 620	

of 0.1. For AGO1 CLIP libraries, we chose an IDR < 0.25 for reproducing peaks 621	

between CLIP replicates and selected the top n peaks  (HITSCLIP pooled n=8,971; 622	

PARCLIP pooled n=11,667).  623	

AGO1 PARCLIP data was additionally processed using PARalyzer 41 624	

embedded in the PARpipe wrapper pipeline (https://github.com/ohlerlab/PARpipe) as 625	

described before 71. In brief, pre-processing included the steps of adapter trimming, 626	

PCR duplicate removal as described above. Randomized adapter nucleotides were 627	

trimmed using Flexbar (Dodt et al., 2012). Here, reads were mapped using bowtie 628	

requiring minimally 20nt read length. Removal of rRNA reads, sequencing errors and 629	

multimapper were not applied here but left to the pipelines default setting. For group 630	

and cluster calling, PARalyzer v1.5 parameter setting were set to default except 631	

requiring minimally five unique reads to initiate a group call, while neglecting PCR-632	

duplicate information. PARalyzer-generated clusters were filtered for T-to-C 633	

conversion specificity of at least 0.6 and higher.  634	

 635	

Determination of diagnostic event positional preferences 636	

The top 3000 3’UTR annotated IDR-selected Piranha peaks were selected for 637	

both, AGO1 HITSCLIP and PARCLIP and extended on either side by 5 nt. Within 638	
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peak sequences, we searched for miRNA seed matches (7mer-A1, 7mer-m8 or 639	

8mer-A1) for the 20 most abundant miRNA in CLIP and 1000 times the same 640	

number of dinucleotide-shuffled miRNA using the TargetScan.pl script v6.1 72. 641	

Shuffled decoy miRNAs were generated using uShuffle 73 on mature miRNA 642	

sequence and rejecting decoy sequences if they overlapped an non-shuffled 643	

(referred to as true) miRNA seed within the top 20 miRNAs. We selected peaks with 644	

exactly one seed match. Individual diagnostic event (DE) tracks at single nucleotide 645	

resolution (i.e. all T-to-C conversion) were isolated from the CLIP alignment files and 646	

mapped relative to true miRNA or decoy miRNA seed matches in a window of  ±25 nt 647	

from the genomic miRNA seed match start. For each window around a miRNA seed 648	

match the position with maximal DE occurrence was determined. 649	

For each DE, we calculated the mean distance of maximal occurrence to the 650	

seed match start across all windows for true miRNAs and shuffled miRNAs sets. 651	

Similarly, we calculated the ratio of 1/Gini-coefficient to determine positional 652	

enrichments with variable distance to miRNA seed match starts. Empirical 653	

significance was assigned with p < 0.01, if less than one percent of the 1000 654	

individual shuffle experiments yielded lower mean distance or higher 1/Gini values 655	

than the true miRNAs. The effect size was calculated forming the ratio of the sample 656	

median of all mean distances generated by shuffling experiments and mean distance 657	

for true miRNAs.  658	

 659	

microMUMMIE signal-to-noise, sensitivity and specificity estimation  660	

 miRNA target prediction evaluation was conducted in three scenarios: 1) To 661	

assess the optimal number of miRNA to query. 2) To compare microRNA target 662	

prediction between AGO1 HITSCLIP and PARCLIP. 3) To evaluate miRNA target 663	

prediction with respect to the relative rank of miRNA clusters. In each experiment, 664	

microMUMMIE was used without the option of including TargetScan-provided branch 665	

length scores shown to improve prediction accuracy in human 29. Branch length 666	
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score cut-offs for a dm6-based multiple sequence alignment have not been 667	

determined in a same way yet. Available branch length score cut-offs for a dm3-668	

based 12way multiple sequence alignments, did not improve prediction SNR. 669	

To evaluate miRNA target prediction between AGO1 HITSCLIP and 670	

PARCLIP we isolated DE for T-to-C conversions or the combination of T-to-A, T-to-C 671	

and T-to-G conversions as well as T-deletions (referred to as T-to-V+T-del) from fully 672	

filtered alignment files. Peaks with at least two diagnostic events were considered as 673	

clusters. Cluster boundaries were refined by trimming its edges if coverage dropped 674	

below 5 reads. As described in the PARalyzer method 41 we applied kernel density 675	

smoothing to the DEs within each cluster. Similarly, we determined the coverage 676	

summit. Like this, large parts of PARalyzer, including its output formats (distribution 677	

files storing smoothed DE information) were implemented in R relying Bioconductor 678	

packages 74. For the top 1500 3’UTR clusters (width/read count) in AGO1 HITSCLIP 679	

and PARCLIP, we estimated the miRNA seed match prediction accuracy using 680	

microMUMMIE, as described in the microMUMMIE methods 29. In brief, we ran 681	

microMUMMIE using the top n CLIP-enriched miRNA plus the same number of 682	

dinucleotide-shuffled decoy miRNA. Shuffling was done using uShuffle 73. Decoy 683	

miRNAs were rejected, if their seed nucleotides 3-7 were overlapping with any true 684	

miRNA nucleotide 3-7 sequence to avoid 6mer overlaps. Only miRNA seed match 685	

predictions overlapping input clusters were retained. Predictions overlapping several 686	

transcript isoforms or miRNA seed family members were collapsed to single genomic 687	

coordinates. The signal-to-noise ratio (SNR) describes the number of true miRNA 688	

seed match predictions divided by the number of decoy miRNA seed match 689	

predictions. Sensitivity is defined as number of clusters with at least on true miRNA 690	

seed match prediction, while specificity is defined as the ratio of true miRNA seed 691	

match predictions divided by the number of all (true and decoy miRNA) predictions. 692	

We ran microMUMMIE in viterbi mode and without conservation at 10 variance levels 693	

(var = 1.5, 1, 0.75, 0.5, 0.25, 0.2, 0.15, 0.1, 0.01, 0.005), depicting the mean SNR, 694	
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sensitivity and specificity with its standard error of the mean (SEM) for 100 individual 695	

shuffling and training experiments. Branch lengths scores calculated for the dm6-696	

centric 27-way multiple sequence alignment provided by UCSC did not improve 697	

microMUMMIE predictions, most likely as suitable branch length score cut-offs were 698	

not available. 699	

Similarly, we estimated miRNA target prediction for AGO1 PARCLIP libraries 700	

processed with PARalyzer. Clusters were ranked as described above and binned 701	

into groups of 1000 clusters, before calculating SNR, sensitivity and specificity for 702	

each bin separately.  703	

For a conservative and comprehensive set of miRNA target site predictions 704	

microMUMMIE was run on PARalyzer-derived 3’UTR clusters from both AGO1 705	

PARCLIP libraries separately and only reproducible predictions were retained. 706	

MicroMUMMIE was run at 6 different stringency levels (variance var = 0.5, 0.25, 0.2, 707	

0.15, 0.1 and 0.01).  708	

 709	

Further detailed method descriptions can be found in supplemental methods. 710	

  711	
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Supplemental data contains tables for:  712	

table S1 miRNA quantification 
table S2 AGO1 HITSCLIP IDR-selected peaks 
table S3 AGO1 PARCLIP IDR-selected peaks 
table S4 Xtail results [ dsRNA AGO1-low / dsRNA GFP] 
table S5 PARalyzer-Cluster on AGO1 PARCLIP R1 sample 
table S6 PARalyzer-Cluster on AGO1 PARCLIP R2 sample 
table S7 PARalyzer-Cluster on pooled AGO1 PARCLIP samples 
table S8 Comprehensive miRNA target set (pooled PARCLIP; top59 miRNA; 3'utr) 
table S9 MiRNA target set (reproducible PARCLIP R1/R2; top59 miRNA; 3'utr) 
table S10 High-confidence miRNA target set (reproducible PARCLIP R1/R2; top30 

miRNA; 3'utr) 
table S11 MiRNA target set (reproducible PARCLIP R1/R2; top30 miRNA; cds) 
table S12 MiRNA target set (reproducible PARCLIP R1/R2; top30 miRNA; 5'utr) 

 713	

Supplemental file S1 summarizes RNA and DNA oligos, processed data sets 714	

and ERDN/SQRC smallRNA spike-in. Supplemental file S2 contains GO-term 715	

enrichments. 716	
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