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Abstract

Signaling pathways and gene regulatory networks (GRNs) play a central role in the signal trans-
duction and regulation of biochemical processes occurring within the cellular environment. Under-
standing their mechanisms and dynamics is of major interest in various areas of life sciences and
biological sciences. For example controlling stem cell fate decision requires a comprehension of the
dynamical behavior of the networks involved in stem cell differentiation and pluripotency mainte-
nance. In addition to analytical mathematical methods which are applicable for small or medium
sized systems, there are many computational approaches to model and analyze the behavior of larger
systems. However, from a dynamical point of view, modeling a combination of signaling pathways
and GRNs present several challenges. Indeed, in addition to being of large dimensionality, these
systems have specific dynamical features. Among the most commonly encountered is that the signal
transduction controlled by the signaling pathways occurs at a different time scale than the transcrip-
tion and translation processes. Also, stochasticity is known to strongly impact the regulation of gene
expression. In this paper, we describe a simple implementation of an optimized version of the Gille-
spie algorithm for simulating relatively large biological networks which include delayed reactions.
The implementation presented herein comes with a script for automatically generating the different
data structures and source files of the algorithm using standardized input files.

Keywords: signaling pathway, chemical reactions, gene regulatory network, kinetic model, binary
tree, dependency graph, delay, stochastic simulation, Gillespie algorithm.

Code availability: The Fortran90 implementation of the code and the R script described here as well
as the tutorial with practical instructions are stored on the following github repository qvhaelen/
typhon

1 Introduction

Using the new proteomic [1] and genomic data available, it is possible to study the organization of the
cellular environment and its components [2, 3]. A current challenge concerns the elaboration of a com-
prehensive view of how these different components interact together. This includes the understanding
of protein-protein interactions and gene regulation taken separately as well as the interactions between
the proteosome and the transcriptome. This is not a trivial task because proteomic and transcriptomic
data are obtained by different well defined experimental protocols. Studies are undertaken to establish
dynamical links between these two types of data and although many questions remain unanswered, re-
cent encouraging results have been obtained for example about the relationships between mRNA and
protein concentrations [4, 5, 6, 7]. It is well-known that considering the complexity of the interactions
taking place within the cellular environment, gaining an accurate understanding of the cellular biochem-
ical processes requires a systemic approach where the cell is considered as a complex dynamical system
[8]. Within this framework, it is possible to build a systemic description of the biological processes in
terms of their functional and dynamical properties [9, 10]. From a practical point of view, a systemic
approach is also necessary to understand how a local dysfunction of a small set of molecules affecting a
restricted number of defined epigenetic [11] and metabolic processes [12, 13] may propagate to all parts
of the cell leading to a progressive disruption of the general homeostasis [14]. The studies performed
so far provide an interesting picture of how the cellular components are organized as dynamical motifs
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and cycles [15, 16]. These dynamical motifs communicate together to achieve specific tasks. Inside the
nucleus for example, the transcription factors interact together forming structured dynamical patterns
called gene regulatory networks. These networks control and modulate genes expression via promoter
silencing but supplementary mechanisms such as mRNA splicing [17, 18], chromatin remodeling [19]
and epigenetic changes also intervene. Epigenetic modifications are a set of elaborate dynamical adap-
tations of the structure of the chromatin [20, 21] which contribute significantly to the regulation of gene
transcription [22, 23, 24, 25].

Understanding and controlling the interaction between external perturbation, signal transduction and
biological response is especially important within the field of stem cell research which focuses on un-
derstanding the two main mechanisms forming the backbone of stem cell fate decision, i.e., Cellular
differentiation and pluripotency maintenance. Observations show that pluripotency state maintenance is
a function of the external environment and input received. A dynamical balance between environmental
clues and cell signals is required to preserve the self-renewal and tissue regenerative capacity of stem
cells. Stem cell commitment and differentiation into a specific cell lineage is induced by modifying this
dynamical balance with new external perturbations in order to activate or inhibit specific sets of signaling
pathways which transmit external inputs to the core of trasnscription factor (TF) networks. Indeed, it is
now experimentally established that pluripotency maintenance is essentially under the control of tran-
scription factors [26, 27, 28] which act as master regulators of highly connected transcription networks
[29, 30, 31, 32]. These TFs are continually attempting to specify differentiation to their own lineage
of interest. This is the main reason why direct external intervention, through activation or inhibition of
one or several signaling pathways is required to reinforce the pluripotent state or to drive differentiation
[33, 34, 35]. Thus, the pluripotency state could be considered as a metastable state. The maintenance
of the pluripotency state being a function of the external environment, any realistic dynamical descrip-
tion should include the cellular components responsible for processing this external signal. The TF core
network being localized inside the nucleus, it receives this external signal through a second network of
signaling pathways located inside the cytoplasmic compartment. Thus, it is essential to integrate The
TF network and the signaling pathways within a single framework [36]. The behavior of the resulting
extended regulatory networks can be better understood when defined as a complex dynamical system [8].

This discussion illustrates the importance of being able to simulate the dynamics of relatively large sys-
tems including those eliciting properties such as stochasticity and multiple scale dynamics. Although
other computational methods such as constraint-based methods or pathway perturbation analysis meth-
ods using pathway maps can handle models of large dimensionality, kinetic-based models are the most
appropriate for a detailed study of the dynamical features of the model [37, 38, 39]. Many works have
been published regarding stochastic kinetic modeling of biological systems. Reviewing those contribu-
tions is outside the scope of this paper. The aim of this work is to shortly describe a stand alone imple-
mentation of an optimized version of the exact Gillespie algorithm. This code comes with a practical
methodology to describe simple kinetic models which can be used as standardized inputs by a specifi-
cally designed R script to automatically generate the source files needed to perform the simulation. The
complete description of the R script and a template of the standardized input files are stored with the
code. In what follows, the mathematical framework to build the kinetic models is shortly described with
a emphasis on the types of reactions allowed. Then, the algorithmic method and the mean features of its
implementation are summarized. This is followed by the discussion of a small case study using a single
signaling pathway as an example.
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2 Definition of the system

2.1 Mathematical formulation

An extended regulatory network is a dynamical system of biochemical components interacting together
through a set of biochemical reactions. In order to allow the easy combination of various pathways to-
gether in a flexible way, the kinetic is described using a scheme based on the law of mass action. It
offers a good mathematical stability and easy systematic interpretation in terms of biological processes.
Considering the nature of the dynamics encountered in signaling cascades and gene regulatory networks,
all reactions are described in terms of elementary processes and other more specific kinetic schemes and
approximations will not be considered.

Formally, when analyzing the dynamics of a biological network, one is concerned with the temporal
evolution of the set of m species1 Xi (i = 1, ...,m) which composes the network. These species react
together through a set of r chemical elementary reactions. The derivation of the dynamics of the network
is based on the law of mass action which states that, for an elementary reaction, that is, a reaction in
which all of the stoichiometric coefficients of the reactants are one, the rate of reaction is proportional to
the product of the concentrations of the reactants [40]. Although the mass action kinetics scheme expands
the dimension of the model, it provides a regularized and simplified mathematical structure. This feature
makes further analysis more tractable. Formally, one defines the stoichiometric matrix Nij = pij − rij
with (i = 1, ...,m) and (j = 1, ..., r) and the reaction rate vector as vj = kj

∏n
s=1X

rsj
s with

(j = 1, ...,m) where the pij term is the stoichiometric coefficient for the i−th species in the j−th reac-
tion if appearing on the right of the reaction arrows, rij if on the left; kj is the forward rate constant [41].
Using N and ~v, the function ~F (~x) is built such that Fi( ~X) =

∑r
j=1 (pij − rij) vj (i = 1, ...,m).

Each Fi( ~X) represents the contribution of the reactions acting on the species Xi.

In our description all the chemical reactions occurring in the extended regulatory network are modeled
using the following elementary reactions2. Association (between two different molecules or between
similar molecules (dimerization)) X1 +X2 → X3, dissociation (giving two identical molecules or two
similar molecules) X3 → X1 +X2 , creation (this reaction mimic the dynamic of molecules for which
no explicit creation pathway is included) ∅ → X , degradation (last step of any degradation process
including lysosomal and proteosomal pathway) X → ∅, direct activation/inhibition (when enzyme can
be neglected, like phosphatase, etc.) X → X∗. Nevertheless, For any chemical process involving
enzymes (E) which can not be ignored we use the Michaelis-Menten scheme:

S + E 
 (ES)→ P + E (1)

Where S is the substrate and P the product of the reaction. We model these three reactions independently
as follows:

S + E
k1−→ (ES) (2)

(ES)
k−1−−→ S + E (3)

(ES)
k2−→ P + E (4)

1The term species must be understood as holding for any molecular component present, even for a short time, inside the
system: a receptor is a species, a ligand is another type of species and the molecule composed by a receptor bound to its ligand
is also another species. A given species and its activated form, i.e. after phosphorylation, are considered as two distinct species.

2As usual each reaction is characterized by a kinetic constant giving the rate of the reaction.
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The parameters appearing in the Michaelis-Menten formula

V0 = Vmax
S

KM + S
(5)

are connected to the rate constants as follows
Vmax = k2ET

ET = E + (ES)

KM = k−1+k2
k1

In general, the reversible chemical reactions are always modeled as a set of separate irreversible forward
reactions. The set of reactions described above is enough to describe any kind of process occurring in
most of the signaling pathways.

The dynamics of GRNs is mainly concerned with the regulation of gene expression [42, 43, 44, 45, 46].
In this work, DNA and ribosome are not explicitly taken into account in the kinetic equations. Ribosome
could be included with a complete description of ribosomal proteins assembly but, as discussed below,
it leads to much more complexity. We propose to model the regulation of gene expression using the
following scheme:

TFcytosol → TFnucleus (6)

TFnucleus → TFcytosol (7)

TFnucleus + DNAfree → DNAfree + mRNAfree-nucleus + TFnucleus (8)

mRNAfree-nucleus → mRNAfree-cytosol (9)

Ribosomefree + mRNAfree-cytosol → Ribosomefree + mRNAfree-cytosol + Proteincytosol (10)

mRNAfree-cytosol → ∅ (11)

Proteincytosol → ∅ (12)

When a gene is repressed by one or several genes binding the promoter site, the effect can be included
using a modification of the transcription rate constant as follows:

k̃l = kl
1

1 +
∑N

i=1 kixi
(13)

Where kl is the non modified transcription rate, N the number of genes that can repress the promoters,
xi the concentration in the nucleus of repressor i and ki the intensity of the repression.

2.2 GRNs and stochasticity

Experimental evidences show that a lot of mechanisms occurring in a cell and especially within GRN
elicit stochastic properties. For example, stochastic expression of key genes (Nanog, Sox2, Oct4,) can
lead to heterogeneous populations of stem cells even when starting from a homogeneous culture in a
homogeneous environment. In a regulatory network, stochasticity can have different origins including
the low number of molecules usually involved in molecular processes occurring in a cell, the effect of
external perturbations and response of signaling pathways. Furthermore, the transcription/translation
processes are also stochastic with an impact on the release of proteins. It has also been shown that dy-
namical sub-networks can increase (positive feedback) or reduce (negative feedback) stochastic effects.
Taking into account the stochastic nature of the dynamics is thus of primary importance when simulating
the dynamics of an extended regulatory network and appropriate methods must be chosen.
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2.3 Extended regulatory network and multi-scale processes

Molecular events, such as dimerization and phosphorylation, occurring in signaling pathways and pro-
cesses such as TF binding, transcription/ translation and mRNA transfer occur on different timescales.
Regarding the transcription and translation, one observes a delay between the beginning of these pro-
cesses and the release of the final product. It is known that systems involving delayed dynamics can
elicit specific behavior [47, 48]. From a computational perspective, including dynamical events occur-
ring at various timescale within a single dynamical model can be complex. Two approaches can be used.
If one stands from the point of view of the slowest processes, one will assume that the fastest processes
have already reached their equilibrium state when the slowest events take place. Otherwise, one takes the
point of view of the fastest processes and in that case, one needs to take into account the fact that there is
a time delay between the release of the products by the fastest reactions and the release of the product by
the slowest reactions. It is this second point of view which is considered in this work. Thus, we divide
the set of reactions into two distinct subsets. Firstly, we assume that the fastest chemical reactions occurs
immediately (products are released at once). Secondly, the slower chemical reactions are supposed to
release their products with a delay which must be specified. Thus we need to know the delay between the
beginning and the release of the products for the slower processes. The exact duration of transcription
rate and translation rate usually varies from one gene to another and other chemical or physiological pa-
rameters can intervene. Nevertheless, these rates are always slower than the dimerization mechanisms.
Modeling multi-scale stochastic systems can be done using dSSA (exact formulation of a SSA including
delay, see description below) which allows considering the delay when the model includes processes
occurring on different time scales.

3 Stochastic simulation: an optimized version of the Gillespie algorithm

There are two formalisms for mathematically describing the time behavior of a spatially homogeneous
chemical system. The deterministic approach regards the time evolution as a continuous, wholly pre-
dictable process which is governed by a set of coupled ODEs. The stochastic approach regards the
time evolution as a kind of random-walk process which is governed by a single differential-difference
equation (the master equation). In practice, many modeling studies rely on using different flavors of
ODE-based formulations, probably because many scientists are more familiar with purely deterministic
approaches and that formulating a model in terms of ODEs and solving this system is most of the time
straightforward. Although, deterministic modeling relies on several strong assumptions, it can provide
suitable and accurate results in many situations. Furthermore, formulating the dynamics of the system
in terms of ODEs makes easier to perform additional analytical or numerical analysis of the underlying
dynamical properties of the system.

Moreover, when considering dynamical systems eliciting stochastic behavior,such as GRNs or signaling
pathways whose dynamics is directly connected to a GRN, fairly simple kinetic theory arguments show
that the stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic
formulation. However, the fundamental stochastic master equation becomes quickly mathematically and
computationally intractable when the dimensionality of the system becomes large, i.e., for systems with
more than 5 or 6 variables. This problem is well known and different approaches have been suggested
to overcome this issue [49, 50, 51, 52, 53, 54]. One of the most famous is the Gillespie method, also
known as the stochastic simulation algorithm (SSA), which allows making exact numerical calculations
within the framework of the stochastic formulation without having to deal with the master equation di-
rectly [55]. It uses a rigorously derived Monte Carlo procedure to simulate the time evolution of the
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given chemical system. Like the master equation, the SSA correctly accounts for the inherent fluctua-
tions and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike
most procedures for numerically solving the ODE, this algorithm never approximates infinitesimal time
increments.

The SSA or Gillespie algorithm, were initially described in the fundamental paper [55]. The key steps of
this algorithm, called the direct method (DM), can be summarized as follows:

Step 0: (Initialization). Input the desired values for theM reaction constants c1, ..., cM and theN initial
molecular population numbers X1, ..., XN . Set the time variable t and the reaction counter n both
to zero. Initialize the Pseudo Random Number Generator (PRNG).

Step 1: Calculate and store the M quantities aµ = cµhµ, (where hµ is the number of distinct molecular
reactant combinations available in the state for reaction µ), for the current molecular population
numbers. Also calculate and store as a0 the sum of the M aµ values.

Step 2: Generate two random numbers r1 and r2 using the PRNG, and calculate τ and µ according to

τ =
1

a0
ln

1

r1
(14)

and
µ−1∑
ν=1

< r2a0 ≤
µ∑
ν=1

aν (15)

Step 3: Using the τ and µ values obtained in step two, increase t by τ , and adjust the molecular popu-
lation levels to reflect the occurrence of one Rµ reaction. Then increase the reaction counter n by
1 and return to step one.

The SSA is a very accurate method but when the number of reactions becomes large, the DM becomes
too slow to be useful in practice. It is necessary to use several specific algorithmic techniques which can
speed up the algorithm while keeping its accuracy intact. Here we provide a general description of the
different approaches used in our implementation. The strategy is to focus on the steps of the DM which
are the most computationally expensive.

Dependency graph In the DM, after a reaction has been fired, all the aµ coefficients are updated. It
easy to see that only a few of them are actually modified when a reaction occurs. An appropriate
way to take this fact into account is to implement a dependency graph. For each reaction, this
data structure stores the label of the aµ which are modified. For each reaction, the set of aµ to be
updated is constructed as follow: we consider the label of the species whose belongs to the set of
reactants or products of the given reaction. If any of these species appears in the set of reactants of
a reaction i, then the corresponding a(µ=i) is added in the set of aµ to be updated. It is also useful
to save the smallest label which must be updated [56].

Partial Summation Another expensive step in the DM is the computation of a0. It is possible to reduce
the number of operations by building a set of partial sum over the aµ. For a system with M
chemical reactions, a set of M partial sums is constructed. A partial sum is defined as follows:

ãµ =

µ∑
ν=1

aν (16)

Using a recursive formula it is possible to compute each partial sum from the previous one. Taking
into account that a0 = ãM , and the fact that we know the smallest label µ̃which has been modified
it is possible to restrict the computation of a0 to the subset of partial sums ν ∈ {µ̃,M}.
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Binary tree data structure and binary tree search Locating the reaction to fire next is the most ex-
pensive step of the DM. A way to reduce the cost of this step is to make use of a specific data
structure called binary tree and the related binary tree search algorithm [57]. This approach is
known as the Logarithmic Direct Method (LDM) [58] and the use of binary tree search reduces
the search depth to O(logM). Furthermore, for LDM, the average search depth is independent of
the ordering of the reactions. Hence there is no need for a pre-simulation.

Contracting the stoichiometric matrix Another step of the DM which is computationally expensive
is the update of the number of molecules of each species. This update depends on the label of
the reactions fired. In the direct method the stoichiometric coefficients of the chemical reactions
are stored in a matrix whose dimensions scale with the number of reactions and species of the
system. A key property of this matrix is that it is usually sparse, that is, for each reaction there
are only a few species which must be updated. It means that in the DM, most of the operations
are additions of zero terms. A way to reduce the computational cost of the update is to use sparse
matrix techniques. In our case we have implemented a supplementary structure which contains
for each reaction the label of the non-zero stoichiometric coefficients. Thus the update is done by
taking into account the labels appearing in this structure.

In addition to optimizing the performances of the standard SSA, supplementary adaptations must be
done to include the effects of multi scale dynamics. Indeed, in the initial formulation of the Gillespie
method, it is assumed that all reactions occur instantly, i.e., products are released instantly. While this
is true in many cases, it is also possible that some chemical reactions take certain time to finish after
they are initiated. Thus, the product of such reactions will emerge after certain delays. It is important to
distinguish two different kinds of delayed reactions. The non consuming reaction, where the reactants of
an unfinished reaction can participate in a new reaction and the consuming reaction, where the reactants
of an unfinished reaction cannot participate in a new reaction.

The main difference between consuming and non consuming reactions occurs at the level of the evolution
of the reactant: When a non consuming reaction occurs, the population of the reactants does not change
and the involved species can participate in a new reaction; however, when a consuming reaction occurs,
the population of the reactants changes immediately, and the molecules involved in a consuming reaction
can not participate in a new reaction.

There are many algorithms which have been released to integrate delayed reactions into the standard
SSA scheme. However, many of them rely on various approximations which although allowing to mimic
the effects of delayed reactions, do not constitute a mathematically accurate implementation of delayed
reactions with th SSA. In this work, the algorithm chosen [59], is an exact SSA algorithm for chemical
reaction systems with delays. The algorithm is exact, since it is rigorously developed based upon the
fundamental premise of stochastic chemical kinetics derived by Gillespie. The difference between the
complexity of the algorithm [59] and other exact methods like rejection algorithm mainly lies in the
number of random variables generated by two algorithms. Specifically, the rejection algorithm needs to
generate up to 50% more random variables than the algorithm presented in [59], if the chemical reaction
system is dominated by reactions with delays. On the other hand, if the reaction system is dominated by
reactions without delays, the rejection algorithm still generates slightly more random variables than the
algorithm [59].
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4 Examples of simulation

4.1 The model: The LIF pathway

The model is based on a work published by Mahdavi et al. [60] to characterize the dynamics of the
LIFR-GP130 signaling pathway. This pathway is well known as a key regulator involved in the pluripo-
tency maintenance of mouse embryonic stem cell [44]. Initially formulated as a set of ODEs, this model
includes the formation of the activated receptor complex between LIFR and GP130 as well as its traf-
ficking along the membrane and the effects of the negative feedback loop by SOCS3. The second part
of the model is the activation of the STAT3 dimer via endogenous and exogenous phosphorylation. Ac-
tivation of STAT3 dimer is followed by its nuclear translocation where it acts as a transcription factor for
SOCS3 and other key pluripotency factors such as NANOG and OCT4. Moreover, it has been recently
shown that NANOG is also involved in a positive feedback loop to increase STAT3 signaling by inhibit-
ing SOCS3 transcription [61]. Although rather simple, this model is useful as it provides the user with a
concrete example of how the different types of reactions described above should be implemented to use
the code described herein. In what follows, we use the results of simulations performed with the SSA to
illustrate the main dynamical features of this model.

4.2 Dynamics without multi-scale dynamics

The simulation starts without ligand and only GP130 receptors, LIF receptors and cytoplasmic STAT3
dimers are present. The model assumes that endogenous phosphorylation of cytoplasmic STAT3 dimers
( Tyr705-phosphorylated 2STAT3) takes place. Thus as chemical reactions occur, the concentration of
phosphorylated STA3 dimers (p2STAT3) increases inside the cytoplasm and can translocate inside the
nucleus. Although present at low concentration, the level of p2STAT3 inside the nucleus is enough to in-
duce the basal transcription of SOCS3 mRNA. SOCS3 mRNA can translocate into the cytoplasm where
translation of SOCS3 protein occurs. Once the system has reached its equilibrium, LIF inducer is added.
From a dynamical point of view, addition of LIF can be considered as an external perturbation which is
applied on the cellular network3. LIF first binds to LIFR receptor which then form a receptor complex
with GP130 co-receptor. Figure 1 shows the decrease of LIFR and GP130 concentration upon addition
of external ligands for various concentrations.

Once the formation and activation of the LIFR-GP130-JAK is achieved, STAT3 dimers bind to the com-
plex and become phosphorylated. As illustrated on Figure 2, the equilibrium switches from a state of a
high concentration of cytoplasmic STAT3 dimer combined with a low concentration of nuclear p2STAT3
to a new state characterized by a lower concentration of cytoplasmic 2STAT3 with a higher concentration
of nuclear p2STAT3.

Higher concentration of p2STAT3 inside the nucleus leads to a significant increase of SOCS3 mRNA,
see Figure 3. As a result, level of cytoplasmic SOCS3 increases. Upon addition of LIF, the negative
feedback loop established between SOCS3 proteins and the receptor complex plays an important in the
regulation of the signal strength. This is essentially because binding of cytoplasmic SOCS3 to the LIFR-
GP130-JAK complex is the main step leading to the final degradation of the receptor complex. The
strong decrease in SOCS3 mRNA concentration which is observed right after LIF addition is the direct

3For each simulation, it is required to wait until initial equilibrium in absence of LIF is reached. In the corresponding
pictures, the timescale has been rescaled accordingly to hide this first part of the dynamic.
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Figure 1: Response of receptors with respect to addition of LIF inducer. Response of LIFR (Left). Response of GP130
(Right).

consequence of the activation of this feedback, Fig. 3.

The purpose of the negative feedback loop is to improve the stability of the system by reinforcing the
regulation of the signal. In the situation analyzed here, the feedback loop allows the degradation of
the receptor complex which in turn induces the reduction of the exogenous phosphorylation of STAT3
dimers. As a result, nuclear p2STAT3 concentration decreases from its highest level almost directly after
LIF addition, Fig. 2, and the system reaches a new equilibrium state characterized by higher level of
p2STAT3 and SOCS3 (C). The kinetic parameters controlling the rate of association and dissociation
of the receptor complexes as well as the translocation rate of 2STAT3 have a critical influence on the
behavior of the cellular network.

Figure 2: Evolution of the 2STAT3 concentration upon LIF addition in the cytoplasm (Left). LIF addition leads to an increase
of the activated form of 2STAT3 dimer concentration inside the nucleus (Right)

Figure 3: Following LIF addition, transcription of SOCS3 increases. SOCS3 mRNA in the nucleus (Left). SOCS3 protein
concentration inside the cytoplasm (Right)

The model presented here also contains the PIAS3 inhibitor. PIAS3 is present inside the cytoplasmic
environment as well as inside the nuclear compartment. In the cytoplasmic compartment, PIAS3 acts as
an inhibitor by forming a complex with the activated form of 2STAT3 preventing its translocation into the
nucleus. In the nucleus, PIAS3 may also binds to the 2STAT3 preventing its export and further activation
by phosphorylation. As a consequence, the level of available STAT3 within the phosphorylation loop is
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reduced. This second mechanism also contributes to the regulation of the signal strength.

Upon withdrawal of LIF, the ability of the cellular network to come to back to its initial state is a function
of the kinetic parameters controlling the deactivation and degradation of the receptor complexes. Thus the
frequency of addition and withdrawal of LIF can have an impact on the level of cytoplasmic p2STAT3
and SOCS3 protein. To illustrate this, we show the behavior of the main components of the cellular
network for a periodical addition and withdrawal of LIF on Fig. 4.

Figure 4: Temporal evolution of the main components of the pathway for a periodical addition of LIF inducer. Data are
shown for a periodical addition of 180 minutes.

4.3 Multi-scale dynamics: effects of delayed reactions

To conclude we illustrate the effects of adding delay within the dynamical system for some reactions.
We consider a delay for the transcription of SOCS3-mRNA (1.58 min), for the nuclear export of SOCS3-
mRNA (1.92 min), for the import and export of the STAT3 dimer (1.2 min and 1.4 min) and for the
translation of SOCS3 protein (100 min). The results are shown of Fig. 5 and Fig. 6. In order to
understand how the imposed delay can affect the dynamics, the results are shown for different values
of the delay for the translation of SOCS3. As expected, the addition of delay impacts how the system
react to the LIF addition but also the concentration levels corresponding to the stationary states with and
without LIF. The saturation observed for the activated form of the STAT3 dimer (Fig. 5 bottom) and
SOCS3-mRNA inside the cytoplasm (Fig. 6 top) and the complete absence of SOCS3 proteins (Fig. 6
bottom) upon LIF addition varies according to the value chosen for the delay of the SOCS3 translation.
From a dynamical point of view thecounter-reaction of the system to the absence of SOCS3 protein
due to very large delay is a direct effect of the negative feedback loop involving SOCS3 described above.
Indeed, upon LIF addition, the complex formed by LIFR and GP130 can be activated and trigger, without
delay, the degradation of the amount SOCS3 already present within the system. As before, there is also
a translocation of a higher concentration of activated STAT3 dimer which can increase SOCS3-mRNA
transcription. However, because the time required to release SOCS3 (up to 100 minutes) is significant,
the increase in SOCS3 transcription cannot directly compensate for the degradation immediately taking
place. When all SOCS3 is eliminated from the system, this feedback loop ceases to function. This
switches the equilibrium for the concentration levels of activated STAT3. When SOCS3 proteins begin
to be released, the system undergoes a dynamics similar to the case without delay with a strong increase
of SOCS3 proteins and a strong decrease of activated STAT3 dimer, the behavior being more accentuated
as the value of the delay increases. The system finally reaches a new steady state which takes longer to
be established than in the case without delay.
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Figure 5: Temporal evolution of the dimer STAT3 inside the cytoplasm (Up) and for the activated dimer STAT3 inside the
nucleus (Bottom) for different values of the delay for the translation of SOCS3.

5 Conclusion

In this document, we have described the mathematical and computational characteristics of a simple
and ready to use implementation of the Gillespie algorithm suitable for simulating the dynamics of
stochastic chemical systems with delayed reactions. The implementation and its associated R script is
adapted to dynamical systems (re)written as a set of chemical reactions following the law of mass action
and assuming that the system is written in terms of elementary reactions only. The practical advantage
of this R script is that the source files and especially heavy data structures, such as binary trees, required
for this kind of code can be automatically generated. The only assumption is that the model obeys the
restrictions on the type of reactions and the order of these reactions.

Although the present code can handle relatively large systems4, it remains a serial version only and
for simulating very large systems, other implementations (either parallelized or running on GPU for
instance) should be used. It is worth emphasizing that what makes stochastic simulations so time con-
suming is the necessity to simulate hundreds or thousands of times the behavior of the system to obtain
correct averaged physical quantities. A straightforward way to speed up the process is to run several
batches of runs on different cores rather than using a single core. The performance of this kind of simu-
lator depends on many factors ranging from the kind of machine used to the properties of the system to
be simulated such as number of reactions, number of different species and types of reactions. Further-
more, adding delayed reactions can significantly increase the computational time and increasing the total
number of molecules within the system decreases the average time step of the algorithm (this is obvious
when checking the formula given by eq. 14) which in turn leads to an increase of the computational
required for reaching a given physical duration.

Nevertheless, this implementation should be useful for students and researchers familiar with R and For-
tran90 and looking for gaining some experience with the use of stochastic simulation algorithms. In all
cases, one should keep in mind that when studying the dynamics of biological networks, the simulation

4The present implementation was used to simulate a extended network made of 509 species and 892 elementary chemical
reactions obtained by combining different signaling pathways using an extended automatized pipeline
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Figure 6: Temporal evolution for SOCS3-mRNA inside the cytoplasm (Up) and for SOCS3 protein inside the cytoplasm
(Bottom) for different values of the delay for the translation of SOCS3.

itself is usually the very beginning of a long journey during which various kinds of computational and
analytical methods might required depending on the purpose of the study and the questions which must
be answered.
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