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Abstract 
1. The assessment of the conservation status of wide ranging species depends on estimates of 

the magnitude of their population trends. The accuracy of global trend estimates will depend 
on how many locations within a species range are sampled and where in the range 
population size is sampled. 

2. We ask how the spatial extent of sampling within a species range interacts with non-linear 
patterns in long-term trends to affect estimates of decline in the tiger sharks (Galeocerdo 
cuvier) population on the east coast of Australia. We use Bayesian random effects models to 
estimate long-term population trends. We compare estimates of trends where we use all 
data spanning 11.5 degrees of latitude to estimates that used spatial subsets of the data. We 
also introduce a method to that uses prior information on species life-history to inform on 
the expected level of population variation. 

3. As more regions were included in the model the trend estimates converged towards an 
overall decline of 65% over three generations. Trends estimated from data only from 
northern regions underestimated the regional decline, trends estimated from data only from 
southern regions overestimated the regional decline. When a subset of regions were 
modelled, rather than the full data-set, the estimated trend depended on the choice of the 
Bayesian prior for population variation. The prior informed by life-history traits performed 
well, a prior incorrectly informed by life-history traits of a much slower growing shark 
species performed poorly. 

Synthesis and applications The rate of decline in tiger sharks is consistent with a listing East Coast 
Australia tiger sharks as endangered under local legislation. Monitoring programs that aim to 
estimate population trends should attempt to cover the extreme’s and mid-points of a 
population’s range. Life-history information can be used to inform priors for population variation 
and may give more accurate estimates of trends that can be justified in debates about red listing 
of threatened species, particularly when sampling is limited. 
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Introduction 

Determining the status of species threatened by human activities is important for evaluating the 
success of conservation actions and when considering the investment of funds in further actions 
(Rodrigues et al. 2006). A species’ status is often defined on the basis of trends in population size 
(Conservation of Nature Species Survival Commission 2001). For instance, Great Hammerhead 
Sharks (Sphyrna mokarran) were listed as critically endangered on the International Union for 
the Conservation of Nature (IUCN) Red List in parts of the Atlantic and Indian Oceans, partly on 
the basis of an >80% population decline over the past three generations (Camhi et al. 2009). The 
performance of management actions aimed at averting decline should also be assessed by 
monitoring population trends (e.g. Ward-Paige et al. 2012). Monitoring data will be most useful 
when it covers sufficient spatial and temporal scales to estimate trends accurately with respect to 
the IUCN criteria for red listing. 

Accurate estimates of the magnitude of a population change may be confounded by short-term 
and localised variability in abundance, or masked by measurement errors (Gaston & McArdle 
1994). When sampling does not cover the entire range of a mobile organism, migration into and 
out of the sampling area may also bias local measurements of population trends (Forney 2000). 
Our ability to observe a species may also vary place to place because of environmental variation, 
for instance, catch indicators of tiger shark (Galeocerdo cuvier) abundance vary interannually 
with temperature (Payne et al. 2018). This issue is likely to be worsened where sampling of 
abundances is limited to few locations within a species’ broader range, because fewer sites are 
more likely to exhibit random variations that do not reflect a global trend (Forney 2000). The 
precision to which a population trend can be determined will therefore depend on the spatial 
extent of sampling. 

Appropriately formulated statistical models can separate short-term noise from important 
trends. Linear and log-linear models have been popular approaches for estimating the magnitude 
of population change (Dudley & Simpfendorfer 2006; e.g. Baum & Blanchard 2010; Keith et al. 
2015; Knape 2016). Linear models provide a simple phenomological explanation of population 
change, but may miss non-linear changes, or be unduly influenced by short-term temporal 
‘outliers’ (Fewster et al. 2000; Knape 2016). Non-linear statistical models, like smoothing splines, 
are another popular phenomological approach, because they smooth over short-term deviations 
in abundance to capture longer-term non-linear trends (Fewster et al. 2000; Forney 2000; Knape 
2016). A choice must then be made in the modelling about the degree of smoothing. The choice 
about smoothing is usually made ad-hoc based on sample size or the level of smoothing is fitted 
empirically, however both approaches can lead to over-fitting and biased inferences on trends 
(Knape 2016). A model’s fit to time-series data can also be controlled by using process models 
that explicitly account for species life-history traits. Process models can be effective at discerning 
short-term noise from longer term trends driven by population dynamics (e.g. Wilson et al. 2011; 
Rueda-Cediel et al. 2018), but accurate estimation of population parameters can be difficult if the 
population trend exhibits a ‘one-way-trip’ (Szuwalski & Thorson 2017). ‘One-way-trips’ will be 
common in species data that is being analysed for extinction risk. Process models, such as those 
used to model trends in fished populations (e.g. Maunder et al. 2006), also make additional 
assumptions that can lead to biased reporting of trends (Edgar et al. n.d.). What we need is an 
approach that takes strength from both the phenomological and process based approaches to 
obtain accurate estimates of population trends in the face of monitoring data that is limited in 
geographic and temporal extent. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2018. ; https://doi.org/10.1101/395509doi: bioRxiv preprint 

https://doi.org/10.1101/395509
http://creativecommons.org/licenses/by/4.0/


Here we apply Bayesian random-effects models to fit trends to population declines. The Bayesian 
framework allows us to use a species’ life-history traits as prior information that controls the 
level of smoothing in the fitted trend line. Inclusion of life-history information can improve the 
estimation of population trends, and may be particularly beneficial for overcoming the deficiency 
of monitoring data for many potentially threatened species (Kindsvater et al. 2018). The 
approach is thus a hybrid that blends phenomological description of trends with ecological 
processes that inform the smoothing. We use simulations to explore the accuracy of fitted trends 
for species with a range of population growth rates. 

As a case-study we model data on the tiger shark population on the east coast of Australia. Tiger 
shark abundance is declining on the east coast of Australia (Holmes et al. 2012; Roff et al. 2018). 
We use data from the Queensland Shark Control Program (QSCP) a unique spatially replicated 
annual time-series of shark catch and effort that covers 1962-2017. Specifically we aim to 
determine using the tiger shark data (A) how the choice of prior influences the models’ ability to 
detect a long-term trend in relative abundance; and (B) whether the appropriate choice of a prior 
can give a more accurate estimate of the large-scale trend when sampling is constrained to fewer 
regions. 

Methods 

Case-study 

We analysed the decline in shark catch per unit effort in the Queensland Shark Control Program 
(QSCP, Kidston et al. 1992). The QSCP was instigated in 1962 at several sites around south-east 
Queensland, and has since been expanded to 11 regions across 1760km of coastline, ranging from 
the tropics (16.7oS) to sub-tropical areas (28.2oS, Figure 1). The QSCP uses a series of baited 
drumlines and mesh nets to capture sharks. The nets and drumlines are checked by contractors 
15-20 days of each month, who also record the length and taxonomic identity of captured sharks. 
A previous analysis that analysed this same data-set found declines in four major groups of 
sharks caught in the QSCP, and declines were consistent across regions, suggesting a common 
trend across the eastern coast of Australia in these shark groups (Roff et al. 2018). 

Our aim here was to explore the impact of model choice and the spatial extent of data on 
estimates of declines, so we focus this new analysis on a single species, tiger sharks. Tiger shark 
catch per unit effort (CPUE) was previously shown to have declined from historical values by 
75% between 1962 and 2017 (Roff et al. 2018). We focus on tiger sharks because: (1) they are 
reliably identified due to their distinctive body stripes (Fig 1b), so there is less concern about 
misidentification of this species by contractors working on the QSCP than with other species 
(Holmes et al. 2012; Roff et al. 2018); (2) there are extensive catch records for this species, 
providing sufficient data for us to analyse the effect of using data from a sub-set of regions; (3) 
the trend in tiger shark CPUE was previously shown to be non-linear (Roff et al. 2018), making 
tiger sharks a useful test-case for exploring the impact of non-linear trends on estimates of 
decline. 

For inclusion in the IUCN red list, populations must exhibit observed, estimated, inferred or 
suspected population size reductions over the last 10 years, or over three generations 
(Conservation of Nature Species Survival Commission 2001). Many regional agencies also apply 
the IUCN red listing criteria to determine if a species should be listed locally, for instance the 
state of Queensland and Australia both apply the red list criteria for regional listing of threatened 
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species (Committee n.d.; Queensland Government & Protection n.d.). Analysis of sharks caught in 
the QSCP indicate an estimated age at 50% of maturity (A50) for female sharks of 10-13 years 
(Holmes et al. 2015). Based on this criteria, we analysed the QSCP dataset of 11 regions for trends 
in tiger shark catches between two time periods: three generations which was 1984 to 2017; and 
the longer term trend over 1970 to 2017. 1970 was the earliest year shared by all sites in used in 
the regional subsets. 
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Figure 1 A) Map of the study region, showing major regions, first year of shark program sizes 
and scaling of sites from north to south, B) mature female Galeocerdo cuvier (~3m length) 
showing characteristic vertical striping pattern. Photo credit: Juan Oliphant 
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Model 

We used Bayesian random effects models to fit non-linear trend lines to tiger shark CPUE 
patterns. The model of the count of shark catch for each region, gear type and year (𝑦 , , ) was as 
follows: 

𝑦 , , ∼ 𝑛𝑏𝑖𝑛𝑜𝑚(𝜇 , , , 𝜃) 

Where 𝜃 was the scale parameter of the negative binomial distribution and 𝜇 , ,  was the 
expected abundance. The expectation was specified: 

𝑙𝑛(𝜇 , , ) = 𝛼 + 𝛽𝑥 , , + 𝑏 + 𝑧 + 𝐸 , ,  

Where 𝛼 was a global intercept, 𝛽 was the additive effect of mesh nets, 𝑥 , ,  was an indicator 
variable for nets (=1) or drumlines (=0), 𝑏  was an independent, normally distributed random 
effect of region, with standard deviation 𝑠𝑖𝑔𝑚𝑎 , 𝑧  was a latent second order random walk, with 
standard deviation 𝜎  (e.g. Rue & Held 2005): 

𝑧 − 2𝑧 + 𝑧 ∼ 𝑛𝑜𝑟𝑚(0, 𝜎 ) 

The term 𝐸 , ,  was an offset term that accounted for variation in the number of drum lines and 
nets across time and regions. This model is similar to that used in Roff et al. (2018), except that 
we ignored site level variation by summing over drum/net sites within a region. 

We specified prior distributions for the parameters 𝛼, 𝛽 and the hyper-parameters 𝜃, 𝑠𝑖𝑔𝑚𝑎  and 
𝜎 . For 𝛼 and 𝛽 we used broad normal priors with mean zero. These are the defaults in the 
software we used (Martins et al. 2013). For 𝜎  we also used the default that is a weakly 
informative loggamma prior with parameters 1 and 1e-5. For 𝜃 we used the penalized complexity 
prior with one parameter. We set this parameter to a value of 7 based on a simulation study 
(Supplementary material). The penalized complexity prior will shrink the negative binomial 
distribution toward a poisson distribution if there is not strong evidence for over-dispersion 
(𝜎 >> 𝜇) (Simpson et al. 2017). Using weakly informative priors means computations are more 
efficient and avoids overfitting the data to the variance parameters (Simpson et al. 2017). Finally, 
we refitted models with several different priors for 𝜎 , as is explained below. To peform 
Bayesian computation we used the programming package INLA (Integrated Nested Laplace 
Approximation) (Rue et al. 2009, 2017) as implemented in the R programming environment 
(INLA version 17.06.20; R version 3.4.4; Martins et al. 2013; Team & others 2018). 

Prior choice for the standard deviation of the random walk 

We used prior information on the annual potential for variation in tiger shark population 
abundance to select the level of smoothing for the random walk model of CPUE (Simpson et al. 
2017). The level of smoothing in the trend line can be controlled by varying the prior for the 
standard deviation of the random walk. A prior that has greater density close to a standard 
deviation of zero will shrink the trend toward a constant line. We could use prior information on 
variation in abundance, because the standard deviation of a random walk has a direct 
interpretation in terms of population growth. For the exponential population model 𝑁 =
𝑁 𝑒( ), where 𝑟  is an annually varying instantaneous growth rate and is sampled from a 
normal distribution, the standard deviation of a (logged) random walk will equal the standard 
deviation of r (𝜎 ). Thus, we can inform the prior for the random walk based on the maximum 
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expected yearly population change for tiger sharks. For this application we use a second order 
random walk, because it gave better smoothing properties (it smooths over single year 
deviations) and is analogous to the smoothers used in generalized additive models (Rue & Held 
2005). The standard deviation for the second order random walk (𝜎 = 𝑠𝑑(𝑁 − 2𝑁 +

𝑁 )∀𝑡 < 𝑇 − 2) will equal 𝜎 √2. In applying this approach to CPUE data, we assumed that CPUE 
was proportional to population abundance. 

Given that tiger sharks are large predators with relatively late age at maturity (estimated at 10-
13 years by Holmes et al. (2015)), a low fecundity and a high adult survival rate (Cortés 2002), 
we assumed that the finite growth rate represents the near maximum rate of negative or positive 
annual change in the population. Therefore, we choose the prior such that there was only a 0.025 
probability of a standard deviation greater than a prior estimate of 𝑟. We obtained an estimate of 
the maxmimum annual instantaneous growth rate from a previous study, which used life-history 
parameters of tiger sharks from the Atlantic Ocean to estimate the finite rate of population 
increase (Cortés 2002). The estimate of the instantaneous rate of increase was = ln(1.246). 

We used a penalized complexity prior for precision of the random walk (= 1/variance) with 
parameters 𝑈 and 𝛼 where 𝑝𝑟(𝜎 > 𝑈) = 𝛼 (Simpson et al. 2017). As our best estimate, we 
used 𝑈 = 𝑙𝑛(1.246) and 𝑎𝑙𝑝ℎ𝑎 = 0.025 to capture the low probability of population changes 
greater than the maximum potential growth rate. The penalized complexity prior has a high 
density near a standard deviation of zero, but also a long tail (Figure 2). Thus, it allows for strong, 
multi-year trends where they are present in the data, but shrinks the trend toward a flat line if 
the data are noisy or no trends are present. Our choice of prior will smooth over temporary 
deviations in abundance from the primary trend, which likely reflect sampling error or inter-
annual variation in migration that temporarily sees fluctuations in catches of sharks. The model 
of the random walk is symmetrical, so the prior reflects the probability of both CPUE increases 
and decreases. However, the prior’s long tail means the model can pick-up on strong declines in 
abundance, such as ongoing population declines caused by overfishing. 

We compare results from the best-guess prior with three other priors. The first was the INLA 
default prior (a loggamma with parameters (1, 1E-5)). The second and third were penalized 
complexity priors parameterised to represent a very slow growing shark species (𝑈 = 𝑙𝑜𝑔(1.01)) 
and a very fast growing shark species (𝑈 = 𝑙𝑜𝑔(1.66)) (Cortés 2002). 

In the INLA implementation we set the ‘scale.model’ option equals ‘TRUE’ to ensure the value 
provided for 𝜎  was interpreted as the marginal standard deviation. We also set ‘constr’ equals 
‘FALSE’ to remove the sum to zero constraint. 
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Figure 2 The approach for using life-history information to inform on trends in population 
modelling. *From Cortes 2002 
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Analyses 

To explore the impact of prior choice on species with a range of life-history traits, we initially ran 
a simulation study, where we simulated random walks and then fit models to the simulated data. 
We included a bias in the simulated random walk so the population declined on average by 2.5% 
each year. We simulated the biased random walks that covered the range of shark species 
population growth rates with simulations for values of 𝑒𝑥𝑝(𝜎 ) = 1.01, 1.34 and 1.66 (Cortés 
2002). For each trend and life-history type we simulated 20 replicate time-series of 30 years. 
Annual observations were then sampled from a negative binomial distribution with an 
expectation equal to the random walk value in each year and a dispersion (size) parameter = 2, to 
generate overdispersed counts. We repeated these analyses drawing observation errors from a 
poisson distribution. We assumed effort was fixed over time and initial CPUE was set at 10 
(approx. mean for tiger sharks). For each time-series we fitted three models with different 
penalized complexity priors: 𝜎 𝑤 = ln(1.01), ln(1.34) and ln(1.66). In total we simulated 120 
random time-series, fitting a total of 360 models. Each set of model fits was evaluated by: (1) the 
product of the likelihood of the true (simulated) mean given the fitted marginal probability 
distributions in each year and; (2) using the predictive ordinate (Held et al. 2010). 

For the tiger shark data we explore the impact of the extent of sampling and prior choice on 
estimates of decline over the time periods 1970 to 2017 and 1984 to 2017. We fit models to 60 
subsamples of the data and different prior specifications. We performed a factorial set of analyses 
crossing the four prior densities for 𝜎  with subsets of the number of regions included in the 
model fitting. We included 15 subsets of the set of 11 regions. The 15 subsets were a factorial 
cross of 1, 3, 6 and 9 regions by a selection of regions that included the northern-most regions, 
middle latitude regions, southern-most regions, and regions equally dispersed across the full 
extent of the dataset (fig. 1). For the subsets, we chose regions that had the most complete time-
series. We also ran all priors for the complete set of 11 regions. 

We compared results from models with the different priors and different numbers of regions for 
their predictions of the magnitude of the population decline across two time-periods. 
Comparisons were made to the 11 region model with the life-history prior as our best-estimate. 
The % magnitude of population decline from the reference year was calculated as −100(1 −
𝑧 /𝑧 ) where 𝑧  was the value of the smoother in the most recent year and 𝑧  was its value 
at the reference year (1970 or 1984). We used INLA’s ‘lincomb’ feature to calculate the marginal 
posterior distribution of the % decline statistic. We then compared scenarios for their median 
values and 95% credible intervals. 

We also compared results for the tiger sharks by fitting a Generalized Additive Mixed Model 
(GAMM) with maximum likelihood methods and cross validation (with the R package mgcv, 
version 1.8-23 Wood 2017). The GAMM was fit with random effects by regions (for sub-samples 
with >1 region) and a thin plates smoothing spline applied to year. The maximum degrees of 
freedom was set to either 1/3 the number of years (as recommended by Fewster et al. (2000)), 
or chosen with cross-validation (Wood 2017). 

Results 

The simulation study to test the ability of different priors to fit population trends indicated that 
model fits were a more accurate representation of the true mean for slower growing species 
when compared to fast-growing species (Fig 3). Slow growing species had less variability overall, 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2018. ; https://doi.org/10.1101/395509doi: bioRxiv preprint 

https://doi.org/10.1101/395509
http://creativecommons.org/licenses/by/4.0/


so it was easier to detect the simulated trend. For slow growing species, the fit was equally 
accurate for any prior. For species with medium and fast growth rates, fits were more accurate 
with either medium or fast priors, when compared to the slow prior (Fig. 3). Interestingly, the 
predictive ordinate, a standard in-sample evaluation measure did not detect any differences in 
the accuracy of fits by different priors (Fig S3). In general, fits to the model with poisson errors, 
rather than over-dispersed negative binomial errors, were more accurate (Fig 3, S3). 

 

Figure 3 Results from simulation study for the log probability of the true simulated mean across 
all sample years given the results of the fitted model. Horizontal axes give the different priors, the 
panels show results from models fitted to time-series data simulated for species with different 
life-history traits. Higher (less negative values) indicate the model performed better at 
recovering the true trend. Boxes give the inter-quartile range and the horizontal bar gives the 
mean value. Vertical error bars extend no more than 1.5xIQR. 
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Fig 4 Examples of non-linear trends fitted to the tiger shark data. Models fitted to all regions (A), 
and 6 and 3 extreme-latitude regions (B, C), and just the southern most region (Gold Coast) (D). 
Lines show the fitted values for the random walk with 95% C.I.s (shading) for the life-history 
prior (solid), slow life history prior (dashed) and INLA default prior (dotted, orange). For 
comparison the 95% C.I.s for model fitted to all data with the life-history prior is included as the 
shaded polygon. 

For tiger sharks the magnitude of decline over three generations was reasonably accurate with 
any prior (Fig 4, Fig 5). The slow prior tended to under-estimate non-linearities in the trend 
(e.g. Fig 4), but this did not matter for the long-term estimation of the decline, which was quite 
strong. The slow prior tended to have the poorest coverage of the true magnitude when there 
were only 1-6 regions included. Most priors had 8/15 scenarios that did include the best-
estimate value in their 95% C.I.s, whereas the slow prior had only 5 and 2 scenarios respectively 
that did include the best-estimate. The slow prior was also more confident about the magnitude 
of the trend (narrower credibile intervals, Fig 5). Results were similar when estimating declines 
over 1970 - 2017 (Fig S4). It is notable that INLA’s default prior gave similar results to the prior 
informed by life-history traits (Fig 5). 

With a greater number of regions the estimate of decline became more accurate. Subsets with 
southern regions tended to overestimate the trend, whereas subsets with middle and northern 
regions tended to underestimate the trend (Fig. 5). Data subsets that mixed extreme north and 
south regions were more accurate than data subsets just of north or south regions, because the 
different rates of the trends balanced out. A generalized additive mixed model fitted using 
maximum likelihood methods showed a similar pattern to the Bayesian model of convergence of 
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trend estimates as more regions were added, and greater declines estimated if data were taken 
from southern regions when compared to data taken from northern regions (Fig S5). The GAMM 
had similar results for either standard setting for its degrees of freedom. 

 

Fig 5 Estimated magnitudes of decline for the each prior (panels) and each scenario for subests 
of regions (coloured points) over 3 generations (1984-2017). Points give median estimates and 
bars give 95% C.I.s. For comparison, the black and dashed lines give the median and 95% C.I.s for 
the life-history prior fitted to data for all regions. 

Discussion 

Important statistics for informing on the status of threatened species and the effectiveness of 
management interventions are estimates of the magnitude of population change (Rodrigues et al. 
2006). We found the accuracy of population change estimates can be improved by using fitting 
non-linear trends where the level of smoothing is informed with life-history traits and, that 
greater spatial replication of time-series can improve the reliability of estimates. Accurate 
estimates of population change for wide-ranging species are therefore best based on sampling 
that covers a full range of sites. However, spatially extensive sampling can expensive and not all 
species will have spatially extensive time-series available for assessing trends (Kindsvater et al. 
2018). We additionally found that using prior information on life-history traits to set the degree 
of smoothing in trends can help to establish more robust estimates of decline by smoothing over 
short-term, site-specific deviations in population size. 

We introduced a method for using prior information in Bayesian models to inform on the degree 
of non-linearity in population trends. The method may help to overcome some of the short-
comings of analysing abundance indices with purely descriptive statistical models (Maunder et 
al. 2006), by enabling the inclusion of information on species life-history. The results for the 
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three generation decline were similar for all priors, except the prior for a slow growing species. 
The generalized additive model also estimated a similar rate of decline as the Bayesian model. 
The convergence in estimates across these different methods occurred because the tiger sharks 
CPUE data had a strong trend. Where patterns in the data are strong, the prior will be less 
influential (e.g. Kindsvater et al. 2018). 

Despite the consistencies in trend estimates across the different methods, we still advocate using 
prior information to inform on population variability for several reasons. The informed prior 
gave estimates closer to the global trend when subsets of the data were used. It is also powerful 
that we can tune the level of smoothing in the Bayesian model for a species life-history. The 
control of smoothing in generalized additive models is not based on species life-history. The 
choice of smoothing for generalized additive models must instead be made by evaluating 
smoothing against the data at hand, or with reference to prior simulation studies that are often 
from very different organisms (Fewster et al. 2000; Knape 2016). In our simulations the 
predictive ordinate (an in-sample evaluation measure) performed poorly in that it did not 
distinguish among different priors, even though the out-of-sample measures clearly indicated 
some priors had superior accuracy for estimating trends. This suggests that using the in-sample 
measure to may lead to overfitting of the smoothing splines. We suggest that a-priori decisions 
about smoothing will provide more accurate trend estimates. Informed priors may also be more 
easily justified than choices about smoothing made with reference to other organisms. Defensible 
parameter choices are important when model results may be contested when governments make 
potentially contentious decisions about the status of populations (e.g. Edgar et al. n.d.). 

When life-history traits are uncertain we suggest using a penalized complexity prior that allows 
for greater variation (and non-linearity) in the long-term trend. Our simulations study suggested 
that priors that allow for higher variance gave more accurate results than priors that restricted 
variance. However, the decision to allow for overestimation of variance may not be safe if a 
different prior distribution other than the penalized complexity priors was used. For instance, 
very flat priors that give equal prior weighting to low and high temporal variances can perform 
very poorly, because they overweight the probability of very high variability (Simpson et al. 
2017). The shape of the penalized complexity prior was specifically designed to allow the data to 
speak for themselves when trends are strong, but to shrink estimates towards no trend when the 
data are weak or noisy (Simpson et al. 2017). Our results add further support to usefulness of 
penalized complexity priors for applied problems. 

An avenue that requires further research is the utility of our method for partitioning long-term 
trends from short-term variation across many species with a broader range of life-history types. 
We expect our approach will work best when short-term variation in abundance, such as that 
caused by temporary migrations, is much more variable than long-term trends. For very fast 
growing species, such as those with maturity ages of <1 year, a statistical model fitted to annual 
data may confound real population trends with short-term deviations. Classification errors for 
IUCN red list status tend to be greater for species with fast population growth than species with 
slow population growth (Rueda-Cediel et al. 2018). For instance, the results of our simulation 
study were most accurate for slow growing species, whereas accuracy was more variable for fast 
growing species. Our model could still be effective if the temporal resolution of sampling was 
increased (e.g. with sub-annual data). A further improvement to the model would be to specify a 
prior that gives population declines more probability than population increases. Rapid declines 
in population abundance tend to be more common than rapid increases (Anderson et al. 2017), 
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because the processes that cause declines, like overfishing, often operate on a much faster time-
scale than reproduction and population recovery. 

Widespread declines of large sharks are occurring throughout the world’s oceans (Baum & Myers 
2004; e.g. Ferretti et al. 2008; Roff et al. 2018). Tiger sharks are targeted by numerous fisheries 
and are caught as bycatch at a global scale (see Simpfendorfer (2009) for a concise review). At a 
global scale, changes in tiger shark populations are variable: Comparisons of surveys between the 
1950’s and 1990’s indicate no substantial change in catch rates in the Gulf of Mexico (Baum & 
Myers 2004), while analysis of data from recent decades indicate declines in tiger shark 
populations by 65% since the mid 1980’s in the Northwest Atlantic (Baum et al. 2003). The 
conservation status of tiger sharks globally escalated from “Lower Risk/near threatened” under 
the IUCN listing to “Near Threatened” in 2005 (Simpfendorfer 2009). The current global 
population trend is unknown, although the relatively high growth and reproductive rates (Cortés 
2002; Holmes et al. 2015) means that tiger sharks are not considered at high risk of extinction 
(Simpfendorfer 2009). 

In Australia, tiger sharks are caught as bycatch in commercial fisheries (Macbeth & Macbeth 
2009) and are considered the principal target of shark fishing tournaments (Stevens 1984, Park 
& others (2007)). In northern New South Wales (NSW) commercial shark fisheries, tiger sharks 
represent the fifth highest species (5.9% of total catch, Macbeth & Macbeth 2009) and in 
Queensland, represent 17.4% of recreational shark catch (Stevens 1984). Few long-term records 
of abundance exist in Australia, although a similar (but less pronounced) downward trend in 
abundance has been observed in the monitoring of gamefish sports fishing between 1993-2005 
(Park & others 2007). Declines in tiger shark catches in shark nets in NSW over the past two 
decades, coinciding with a significant decrease in the number of large (>3.0m) individuals has 
been attributed to increased fishing pressure in temperate waters in NSW (Reid et al. 2011), and 
the average size of tiger sharks caught in the Queensland Shark Control Program has declined 
from 2.72m to 2.15m over the past five decades (Roff et al. 2018). A point of contention for listing 
tiger sharks may be the quality of the QSCP effort data - which is collected by contractors 
working to clear nets and drumlines, not by indepdendent scientific observers. Catch per unit 
effort data can also be a biased indicator of abundance trends (Maunder et al. 2006). Our 
proposed statistical method cannot improve the quality of the data, however it may help smooth 
over temporal and regional variability in trends by estimating the long-term trend that is 
consistent across regions. If the QSCP catch records accurately reflect the population’s trend, the 
decline of 65% over three generations suggests that the conservation status of the East Coast 
Australian population of tiger sharks should be escalated to Endangered under Queensland’s 
threatened species legislation (IUCN Criteria A2, >50% decline over three generations). Tiger 
sharks may also warrant listing under national legislation, because genetic studies indicate the 
east coast population is part of a well mixed Indo-Pacific population (Holmes et al. 2017). 

We considered how estimates of population trends for wide-ranging species depend both on the 
spatial extent of data and the model used to partition short-term variation from long-term trends 
in population size. We found that the choice of model and the spatial extent of sampling interact 
to effect population trends. Informing priors with life-history information could improve the 
accuracy of estimates, particularly when sampling was constrained to fewer regions across a 
species range. Informed priors provide theoretical grounds for choosing the level of smoothing to 
apply to population trends modelling that is defensible on the basis of a species ecology. The 
trends estimated here suggest that tiger sharks should be listed as a threatened species under 
Australian state and possibly national legislation. 
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