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Abstract 9 

1. The assessment of the conservation status of wide ranging species depends on 10 

estimates of the magnitude of their population trends. The accuracy of global trend 11 

estimates will depend on how many locations within a species range are sampled and 12 

where in the range population size is sampled. 13 

2. We ask how the spatial extent of sampling within a species range interacts with non-14 

linear patterns in long-term trends to affect estimates of decline in standardised catch 15 

of tiger sharks (Galeocerdo cuvier) in a shark control program on the east coast of 16 

Australia. We use Bayesian random effects models to estimate long-term population 17 

trends. We compare estimates of trends where we use all data spanning 11.5 degrees 18 

of latitude to estimates that used spatial subsets of the data. We also introduce a 19 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/395509doi: bioRxiv preprint 

https://doi.org/10.1101/395509
http://creativecommons.org/licenses/by/4.0/


Pre-print. Contact chris.brown@griffith.edu.au 

method to that uses prior information on species life-history to inform on the expected 20 

level of population variation. 21 

3. As more regions were included in the model the trend estimates converged towards 22 

an overall decline of 64% over three generations. Trends estimated from data only 23 

from northern regions underestimated the regional decline, trends estimated from 24 

data only from southern regions overestimated the regional decline. When a subset of 25 

regions were modelled, rather than the full data-set, the estimated trend depended on 26 

the choice of the Bayesian prior for population variation. The prior informed by life-27 

history traits performed well, a prior incorrectly informed by life-history traits of a 28 

much slower growing shark species performed poorly. 29 

Synthesis and applications The rate of decline in tiger sharks is consistent with a listing East 30 

Coast Australia tiger sharks as endangered under local legislation. Monitoring programs 31 

that aim to estimate population trends should attempt to cover the extremes and mid-32 

points of a population’s range. Life-history information can be used to inform priors for 33 

population variation and may give more accurate estimates of trends that can be justified 34 

in debates about red listing of threatened species, particularly when sampling is limited. 35 

Keywords: Bayesian model, informed prior, migratory species, IUCN red list, megafauna 36 

Introduction 37 

Determining the status of species threatened by human activities is important for 38 

informing the investment of conservation funds (Rodrigues et al. 2006). A species’ status is 39 

often defined on the basis of trends in population size (Conservation of Nature Species 40 
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Survival Commission 2001). For instance, some Great Hammerhead Shark populations 41 

(Sphyrna mokarran) were listed as critically endangered on the International Union for the 42 

Conservation of Nature (IUCN) Red List, partly on the basis of an >80% population decline 43 

over the past three generations (Camhi et al. 2009). The performance of management 44 

actions aimed at averting decline should also be assessed by monitoring population trends 45 

(e.g. Ward-Paige et al. 2012). Monitoring data will be most useful when it covers sufficient 46 

spatial and temporal scales to estimate trends accurately. 47 

Accurate estimates of the magnitude of a population change may be confounded by short-48 

term and localised variation in abundance, or masked by measurement errors (Gaston & 49 

McArdle 1994). Migration into and out of the sampling area may also bias local abundance 50 

measurements of mobile species (Forney 2000). Our ability to observe a species may also 51 

vary place to place because of environmental variation, for instance, catch indicators of 52 

tiger shark (Galeocerdo cuvier) abundance vary inter-annually with temperature (Payne et 53 

al. 2018). This issue is likely to be worsened where sampling of abundances is limited to 54 

few locations within a species’ broader range, because fewer sites are more likely to exhibit 55 

random variations that do not reflect the population’s true trend (Forney 2000). The 56 

precision of population trend estimates will therefore depend on the spatial extent of 57 

sampling. 58 

Appropriately formulated statistical models can separate short-term noise from important 59 

trends. Linear and log-linear models have been popular approaches trend analysis (e.g. 60 

Dudley & Simpfendorfer 2006; Baum & Blanchard 2010; Keith et al. 2015; Knape 2016). 61 

Linear models provide a simple phenomological model of trends, but may miss non-linear 62 
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changes and be influenced by short-term temporal ‘outliers’ (Fewster et al. 2000; Knape 63 

2016). Non-linear statistical models, like smoothing splines, are another popular 64 

phenomological approach, because they smooth over short-term deviations in abundance 65 

to capture longer-term non-linear trends (Fewster et al. 2000; Forney 2000; Knape 2016). 66 

A choice must then be made in the modelling about the degree of smoothing. This choice is 67 

usually made based on sample size (Fewster et al. 2000) or the level of smoothing is fitted 68 

empirically with a method like generalized cross validation (Wood 2006). However, 69 

empirical approaches to smoothing can lead to over-fitting and biased inferences on trends 70 

(Knape 2016). 71 

A model’s fit to time-series data can also be controlled by using process models that 72 

explicitly account for species life-history traits (Kindsvater et al. 2018; Sköld & Knape 73 

2018). Process models can be effective at discerning short-term noise from longer term 74 

trends driven by population dynamics (e.g. Wilson et al. 2011; Rueda-Cediel et al. 2018), 75 

but accurate estimation of population parameters can be difficult if the population trend 76 

exhibits a ‘one-way-trip’ (Szuwalski & Thorson 2017). ‘One-way-trips’ will be common in 77 

species data that is being analysed for extinction risk. Process models, such as those used to 78 

model trends in fished populations also make additional assumptions that can lead to 79 

biased reporting of trends (Edgar et al. 2018). What we need is an approach that takes 80 

strength from both the phenomological and process based approaches to obtain accurate 81 

estimates of population trends in the face of monitoring data that is limited in geographic 82 

and temporal extent. 83 
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Here we apply Bayesian random-effects models to fit trends to population declines. We use 84 

a species’ life-history traits as Bayesian prior information to control the level of smoothing 85 

in the fitted trend line. Inclusion of life-history information can improve the estimation of 86 

population trends, and may be particularly beneficial for overcoming the deficiency of 87 

monitoring data for many potentially threatened species (Kindsvater et al. 2018). The 88 

approach is thus a hybrid that blends phenomological description of trends with ecological 89 

processes that inform the smoothing. We use simulations to explore the accuracy of fitted 90 

trends for species with a range of population growth rates. 91 

As a case-study we modelled multi-decadal trends in a declining tiger shark population 92 

from the east coast of Australia (Holmes et al. 2012; Roff et al. 2018). The data are from the 93 

Queensland Shark Control Program (QSCP) a unique spatially replicated annual time-series 94 

of shark catch and effort that covers 1962-2017. We aimed to determine (A) how the choice 95 

of prior influences the models’ ability to detect a long-term trend in relative abundance; 96 

and (B) whether the appropriate choice of a prior can give a more accurate estimate of the 97 

large-scale trend when sampling is constrained to fewer regions. 98 

Methods 99 

Case-study 100 

We analysed temporal variation in shark catch per unit effort in the Queensland Shark 101 

Control Program (QSCP, Kidston et al. 1992). The QSCP was instigated in 1962 at several 102 

sites around south-east Queensland, and has since been expanded to 11 regions across 103 

1760km of coastline, ranging from the tropics (16.7oS) to sub-tropical areas (28.2oS, Figure 104 
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1). The QSCP uses a series of baited drumlines and mesh nets to capture sharks. The nets 105 

and drumlines are checked by contractors 15-20 days of each month, who also record the 106 

length and taxonomic identity of captured sharks. A previous analysis of this same data-set 107 

found declines in four major groups of sharks caught in the QSCP, and declines were 108 

consistent across regions, suggesting a common trend across the eastern coast of Australia 109 

in these shark groups (Roff et al. 2018). This included a 75% decline in tiger sharks 110 

between 1962 and 2017 (Roff et al. 2018). Effort data in the form of total number of nets 111 

and drumlines was reconstructed using historical records from contractor’s logbooks 112 

between 1962-2017. Historical effort records account for seasonal lifting of gear and 113 

swapping of gear between beaches during seasons to avoid bycatch of turtles and whales, 114 

and annual effort was adjusted to reflect these changes (Roff et al. 2018). Where catch 115 

records were unclear or uncertainty existed regarding number of drumlines or nets, 116 

beaches were excluded from the analysis (Roff et al. 2018). Since the early 1990’s, 117 

drumlines and net types have been standardised across the program (Sumpton et al. 2010). 118 

A recent analysis of the QSCP data found declines in four major groups of sharks across 119 

regions, suggesting a common trend across the eastern coast of Australia in these shark 120 

groups (Roff et al. 2018). Here, we explore the impact of model choice and the spatial 121 

extent of data on estimates of tiger shark declines. We focus on tiger sharks because: (1) 122 

they are reliably identified due to their distinctive body stripes (Fig 1b) (Holmes et al. 123 

2012; Roff et al. 2018); (2) there are extensive catch records for this species, providing 124 

sufficient data for us to analyse the effect of using data from a sub-set of regions; (3) they 125 

may be of conservation concern because the previous found declines of ~75% between 126 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/395509doi: bioRxiv preprint 

https://doi.org/10.1101/395509
http://creativecommons.org/licenses/by/4.0/


Pre-print. Contact chris.brown@griffith.edu.au 

1962 and 2017 (Roff et al. 2018) and (4) the declines were non-linear, making tiger sharks 127 

a useful test-case for exploring the impact of non-linear trends on estimates of decline. 128 

For inclusion in the IUCN red list, populations must exhibit observed, estimated, inferred or 129 

suspected population size reductions over the last 10 years, or over three generations 130 

(Conservation of Nature Species Survival Commission 2001). Many regional agencies also 131 

apply the IUCN red listing criteria to determine local listing of species, including the state of 132 

Queensland and Australia (Committee 2019; Environment & Heritage Protection 2019). 133 

Analysis of sharks caught in the QSCP indicate an estimated age at 50% of maturity (A50) 134 

for female sharks of 10-13 years (Holmes et al. 2015). Based on this criteria, we analysed 135 

the QSCP dataset of 11 regions for trends in tiger shark catches between two time periods: 136 

three generations which was 1984 to 2017; and the longer term trend over 1970 to 2017. 137 

1970 was the earliest year shared by all sites used in the regional subsets. 138 
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 139 

Figure 1 A) Map of the study region, showing major regions, first year of shark program 140 

sizes and scaling of sites from north to south, B) mature female Galeocerdo cuvier (~3m 141 

length) showing characteristic vertical striping pattern. Photo credit: Juan Oliphant 142 
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Model 143 

We used Bayesian random effects models to fit non-linear trend lines to tiger shark CPUE 144 

patterns. The model of the count of shark catch for each region, gear type and year (𝑦𝑖,𝑔,𝑡) 145 

was as follows: 146 

𝑦𝑖,𝑔,𝑡 ∼ 𝑛𝑏𝑖𝑛𝑜𝑚(𝜇𝑖,𝑔,𝑡 , 𝜃) 147 

Where 𝜃 was the scale parameter of the negative binomial distribution and 𝜇𝑖,𝑔,𝑡 was the 148 

expected abundance. The expectation was specified: 149 

𝑙𝑛(𝜇𝑖,𝑔,𝑡) = 𝛼 + 𝛽𝑥𝑖,𝑔,𝑡 + 𝑏𝑖 + 𝑧𝑡 + 𝐸𝑖,𝑔,𝑡 150 

Where 𝛼 was a global intercept, 𝛽 was the additive effect of mesh nets, 𝑥𝑖,𝑔,𝑡 was an 151 

indicator variable for nets (=1) or drumlines (=0), 𝑏𝑖 was an independent, normally 152 

distributed random effect of region, with standard deviation 𝑠𝑖𝑔𝑚𝑎𝑏 . Gear and region 153 

effects were included to help control for differences in catches in different location by 154 

different gear types (e.g. Holmes et al. 2012). 𝑧𝑡 was a latent first order random walk, with 155 

standard deviation 𝜎𝑅𝑊1 (e.g. Rue & Held 2005): 156 

𝑧𝑡+1 − 𝑧𝑡 ∼ 𝑛𝑜𝑟𝑚(0, 𝜎𝑅𝑊1) 157 

The random walk allows for non-linear trends in abundance with time, but will shrink 158 

toward a flat line for small values of 𝜎𝑅𝑊1. The term 𝐸𝑖,𝑔,𝑡 was an offset term that accounted 159 

for variation in the number of drum lines and nets across time and regions. This model is 160 

similar to that used in Roff et al. (2018), except that we ignored site level variation by 161 

summing over drum/net sites within a region. 162 
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We specified prior distributions for the parameters 𝛼, 𝛽 and the hyper-parameters 𝜃, 163 

𝑠𝑖𝑔𝑚𝑎𝑏  and 𝜎𝑅𝑊1. For 𝛼 and 𝛽 we used broad normal priors with mean zero. These are the 164 

defaults in the software we used (Martins et al. 2013). For 𝜎𝑏 we also used the default that 165 

is a weakly informative loggamma prior with parameters 1 and 1e-5. For 𝜃 we used the 166 

penalized complexity prior with one parameter. We set this parameter to a value of 7 based 167 

on a simulation study (Supplementary material). The penalized complexity prior will 168 

shrink the negative binomial distribution toward a Poisson distribution if there is not 169 

strong evidence for over-dispersion (𝜎2 >> 𝜇) (Simpson et al. 2017). Using weakly 170 

informative priors means computations are more efficient and avoids overfitting the data 171 

to the variance parameters (Simpson et al. 2017). Finally, we refitted models with several 172 

different priors for 𝜎𝑅𝑊1, as is explained below. To peform Bayesian computation we used 173 

the programming package INLA (Integrated Nested Laplace Approximation) (Rue et al. 174 

2009, 2017) as implemented in the R programming environment (INLA version 17.06.20; R 175 

version 3.4.4; Martins et al. 2013; R Core Team 2018). 176 

Prior choice for the standard deviation of the random walk 177 

The prior for the standard deviation of the random walk controls the level of smoothing in 178 

the trend line. A prior that has greater density closer to a smaller standard deviation will 179 

shrink the trend toward a constant line. We used life-history information on the annual 180 

potential for variation in tiger shark abundance to inform the prior for the random walk 181 

(Simpson et al. 2017). The standard deviation of a random walk has a direct interpretation 182 

in terms of population growth: For the exponential population model 𝑁𝑡 = 𝑁𝑡−1𝑒
𝑟𝑡 , where 183 

𝑟𝑡 is an annually varying instantaneous growth rate and is sampled from a normal 184 
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distribution, the standard deviation of a (logged) random walk will equal the standard 185 

deviation of r (𝜎𝑅𝑊1 = 𝜎𝑟). In applying this approach to CPUE data, we assumed that CPUE 186 

was proportional to population abundance. 187 

One potential pitfall of the above approach is that normally distributed values of 𝑟𝑡 imply 188 

the same probability of increases as decreases, thus, a prior constrained by population 189 

growth may also limit our ability to observe large population declines. To overcome this 190 

problem we used a penalized complexity prior for precision of the variance of the random 191 

walk (Simpson et al. 2017). The penalized complexity prior had a high density near a 192 

standard deviation of zero, but also a long tail (Figure 2). The long tail accommodates the 193 

possibility of rapid declines provided they result in sustained changes to CPUE. For 194 

instance, a sudden decline in CPUE would be smoothed over if the population immediately 195 

recovered the next year, which might be indicative of a temporary migration. Whereas, we 196 

would expect a sudden decline that was caused by overfishing to result in a sustained 197 

decline in CPUE, such sustained changes would be captured by the model, but we explore 198 

this assumption below. 199 

Given that tiger sharks are large predators with relatively late age at maturity (estimated at 200 

10-13 years by Holmes et al. (2015)), a low fecundity and a high adult survival rate (Cortés 201 

2002), we assumed that the instantaneous growth rate represents the near maximum rate 202 

of negative or positive annual change in the population. Therefore, we choose the penalized 203 

complexity prior such that there was only a 0.025 probability of a standard deviation 204 

greater than a prior estimate of 𝑟 for tiger sharks. The exact probability level of 0.025 is 205 

arbitrary, but the probability should be small enough that annual changes larger than 𝑟 are 206 
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unlikely. The penalized complexity prior combined with the normally distributed random 207 

walk meant the probability of 𝑟𝑡 > 𝑟𝑚𝑎𝑥 (or 𝑟𝑡 < −𝑟𝑚𝑎𝑥) was 0.016. 208 

We obtained an estimate of the maximum annual instantaneous growth rate by applying 209 

the corrected Lotka-Euler equation to G. cuvier life-history parameters (Cortés 2016; Pardo 210 

et al. 2016). We used life-history parameters from the local region where possible 211 

(Supplementary information). The estimate of the instantaneous rate of increase for Pacific 212 

tiger sharks was 0.24, which is consistent with previous estimates from the Atlantic (Cortés 213 

2016; Pardo et al. 2016). 214 

We compare results from the best-guess prior with three other priors. The first was the 215 

INLA default prior (a loggamma with parameters (1, 1E-5)). The second and third were 216 

penalized complexity priors parameterised to represent a very slow growing shark species 217 

(𝑈 = 𝑙𝑜𝑔(1.01)) and a very fast growing shark species (𝑈 = 𝑙𝑜𝑔(1.66)) (Cortés 2002). We 218 

also tried ‘traditional’ broad gamma priors (e.g. the gamma(0.01, 0.01) prior) however we 219 

found that they caused significant issues with model estimation. Such priors are now 220 

eschewed by statisticians, because they allow for unrealistically high variance (e.g. Simpson 221 

et al. 2017). 222 

In the INLA implementation we set the ‘scale.model’ option equals ‘FALSE’ to ensure the 223 

value provided for 𝜎𝑅𝑊1 was interpreted as the marginal standard deviation. We also set 224 

‘constr’ equals ‘FALSE’ to remove the sum to zero constraint. 225 

 226 
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 227 

Figure 2 The approach for using life-history information to inform on trends in population 228 

modelling. From Cortes 2002 229 
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Analyses 230 

We initially ran a simulation study to explore the impact of prior choice on estimation for 231 

species with a range of life-history traits. We simulated random walks and then fit models 232 

to the simulated data. We simulated drifting random walks (with an average decline of 233 

2.5% per year) that covered the range of shark species population growth rates with 234 

simulations for values of 𝑒𝑥𝑝(𝜎𝑟) = 1.01, 1.34 and 1.66 (Cortés 2002). For each trend and 235 

life-history type we simulated 20 replicate time-series of 30 years. Annual observations 236 

were then sampled from a negative binomial distribution with an expectation equal to the 237 

random walk value in each year and a dispersion (size) parameter = 2, to generate 238 

overdispersed counts. We repeated these analyses drawing observation errors from a 239 

Poisson distribution. We assumed effort was fixed over time and initial CPUE was set at 10 240 

(approx. mean for tiger sharks). For each time-series we fitted three negative binomial 241 

models with different penalized complexity priors: 𝜎𝑟𝑤 = ln(1.01), ln(1.34) and ln(1.66). In 242 

total we simulated 120 random time-series, fitting a total of 360 models. Each set of model 243 

fits was evaluated by: (1) the product of the likelihood of the true (simulated) mean given 244 

the fitted marginal probability distributions in each year and; (2) using the predictive 245 

ordinate (Held et al. 2010). 246 

We also studied the ability of different priors and models to detect sudden sustained 247 

population crashes. In these simulations we used the same priors and observation errors as 248 

above and an initial CPUE of 50. We created time-series where the mean abundance was 249 

stable for 27 years, then collapsed in the 28th year to one of four values (12.5%, 25% or 250 
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50%). Models were fitted with random walks and either three or six years of post-decline 251 

observations (see Supplementary material). 252 

For the tiger shark data we explore the impact of the extent of sampling and prior choice on 253 

estimates of decline over the time periods 1970 to 2017 and 1984 to 2017. We fit models to 254 

60 subsamples of time-series drawn from different subsets of all regions and different 255 

prior specifications. We performed a factorial set of analyses crossing the four prior 256 

densities for 𝜎𝑅𝑊1 with subsets of the number of regions included in the model fitting. We 257 

included 15 subsets of the set of 11 regions. The 15 subsets were a factorial cross of 1, 3, 6 258 

and 9 regions crossed with a selection of regions grouped into: (A) the northern-most 259 

regions, (B) middle latitude regions, (C) southern-most regions and, (D) regions equally 260 

dispersed across the full extent of the dataset (fig. 1). For the subsets, we chose regions that 261 

had the most complete time-series. We also ran all priors for the complete set of 11 regions. 262 

We compared results from all tiger shark model fits for their predictions of the magnitude 263 

of the population decline across two time-periods. Comparisons were made to the 11 264 

region model with the life-history prior as our best-estimate. The % magnitude of 265 

population decline from the reference year was calculated as −100(1 − 𝑧2017/𝑧0) where 266 

𝑧2017 was the value of the smoother in the most recent year and 𝑧0 was its value at the 267 

reference year (1970 or 1984). We used INLA’s ‘lincomb’ feature to calculate the marginal 268 

posterior distribution of the % decline statistic. We then compared scenarios for their 269 

median values and 95% credible intervals. 270 

We also compared results for the tiger sharks by fitting a Generalized Additive Mixed 271 

Model (GAMM) with maximum likelihood methods and cross validation (with the R 272 
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package mgcv, version 1.8-23 Wood 2017). The GAMM was fit with random effects by 273 

regions (for sub-samples with >1 region) and a thin plate smoothing spline applied to year. 274 

The maximum degrees of freedom was set to either 1/3 the number of years (Fewster et al. 275 

2000), or chosen with cross-validation (Wood 2017). 276 

Results 277 

The simulation study indicated that model fits were a more accurate representation of the 278 

true mean for slower growing species when compared to fast-growing species (Fig 3). Slow 279 

growing species had less variability overall, so it was easier to detect the simulated trend. 280 

For all species, fits were more accurate with either medium or fast priors, when compared 281 

to the slow prior (Fig. 3). Interestingly, the predictive ordinate, a standard in-sample 282 

evaluation measure did not detect any differences in the accuracy of fits by different priors 283 

(Fig S2). In general, fits to the model with Poisson errors, rather than over-dispersed 284 

negative binomial errors, were slightly more accurate (Fig 3, S2). 285 

The simulation study of a sudden rapid decline showed that the faster priors were more 286 

likely to detect a sudden decline in CPUE (Fig S3). With the slow prior, the model estimated 287 

probability of a decline was always near 0.5. The models fitted to observations that were 288 

negatively binomially distributed were less sensitive to the decline than if the data were 289 

Poisson distributed. For instance, the probability of detecting a sudden decline with 290 

medium or fast priors was near one when data were Poisson distributed for any magnitude 291 

of decline and length of post-decline data. When data were negative binomially distributed 292 

the probability of decline was estimated to be between 0.55 and 0.88 for three years of 293 

post-decline data and between 0.6 and 0.9 for six years of post-decline data (Fig S3). 294 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/395509doi: bioRxiv preprint 

https://doi.org/10.1101/395509
http://creativecommons.org/licenses/by/4.0/


Pre-print. Contact chris.brown@griffith.edu.au 

 295 

Figure 3 Results from simulation study for the log probability of the true simulated mean 296 

across all sample years given the results of the fitted model. Horizontal axes give the 297 

different priors, the panels show results from models fitted to time-series data simulated 298 

for species with different life-history traits. Higher (less negative values) indicate the 299 

model performed better at recovering the true trend. Boxes give the inter-quartile range 300 

and the horizontal bar gives the mean value. Vertical error bars extend no more than 301 

1.5xIQR. 302 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/395509doi: bioRxiv preprint 

https://doi.org/10.1101/395509
http://creativecommons.org/licenses/by/4.0/


Pre-print. Contact chris.brown@griffith.edu.au 

 303 

Fig 4 Examples of non-linear trends fitted to the tiger shark data. Models fitted to all 304 

regions (A), and 6 and 3 extreme-latitude regions (B, C), and just the southern-most region 305 

(Gold Coast) (D). Lines show the fitted values for the random walk with 95% C.I.s (shading) 306 

for the life-history prior (solid), slow life history prior (dashed) and INLA default prior 307 

(dotted, orange). For comparison the 95% C.I.s for model fitted to all data with the life-308 

history prior is included as the shaded polygon. 309 

For tiger sharks the magnitude of decline over three generations was reasonably accurate 310 

with any prior and data from six or more regions (Fig 4, Fig 5). The slow prior tended to 311 

under-estimate non-linearities in the trend and shrunk back to no trend when there were 312 

only data for 1-3 regions (Fig 4D, Fig 5). The slow prior also tended to have the poorest 313 
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coverage of the true magnitude when there were only 1-6 regions included. The slow prior 314 

was also more confident about the magnitude of the trend (narrower credible intervals, Fig 315 

5). Results were similar when estimating declines over 1970 - 2017 (Fig S4). It is notable 316 

that INLA’s default prior gave similar results to the prior informed by life-history traits (Fig 317 

5). 318 

With a greater number of regions the estimate of decline converged to 64%. Subsets with 319 

southern regions tended to overestimate the decline, whereas subsets with middle and 320 

northern regions tended to underestimate the decline (Fig. 5). Data subsets that mixed 321 

extreme north and south regions were closer to the 64% decline than data subsets just of 322 

north or south regions. There was a notable spike in abundance during the 1970s predicted 323 

by the model that used all regions and the life-history prior (Fig 4A), which was not present 324 

in subsets of the data (Fig 4B-D). 325 

A generalized additive mixed model fitted using maximum likelihood methods showed a 326 

similar pattern to the Bayesian model of convergence of trend estimates as more regions 327 

were added, and greater declines estimated if data were taken from southern regions when 328 

compared to data taken from northern regions (Fig S5). The GAMM had similar results for 329 

either standard setting for its degrees of freedom. 330 
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 331 

Fig 5 Estimated magnitudes of decline for the each prior (panels) and each scenario for 332 

subsets of regions (coloured points) over 3 generations (1984-2017). Points give median 333 

estimates and bars give 95% C.I.s. For comparison, the black and dashed lines give the 334 

median and 95% C.I.s for the life-history prior fitted to data for all regions. 335 

Discussion 336 

Important statistics for informing on the status of threatened species and the effectiveness 337 

of management interventions are estimates of the magnitude of population change 338 

(Rodrigues et al. 2006). We found the accuracy of population change estimates can be 339 

improved by fitting non-linear trends where the level of smoothing is informed with life-340 

history traits and that greater spatial replication of time-series can improve the reliability 341 

of estimates. Accurate estimates of population change for wide-ranging species are 342 
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therefore best based on sampling that covers a large part of their range. However, spatially 343 

extensive sampling can be expensive and not all species will have spatially extensive time-344 

series available for assessing trends (Kindsvater et al. 2018). We additionally found that 345 

using prior information on life-history traits can help to establish more robust estimates of 346 

decline by smoothing over short-term and local deviations in population size. 347 

We introduced a method for using Bayesian priors to inform on the degree of non-linearity 348 

in population trends. The method may help to overcome some of biases that come from 349 

analysing abundance indices with purely descriptive statistical models (Maunder et al. 350 

2006). For instance, models that limit population growth by life-history parameters can 351 

overcome biased trends that resulted from change in detection probability of cryptic 352 

species (Sköld & Knape 2018). The results for the three generation decline were similar for 353 

all priors, so long as all sites were included in the analysis. The generalized additive model 354 

also estimated a similar rate of decline as the Bayesian model. The convergence in 355 

estimates across these different methods occurred because the tiger sharks CPUE data had 356 

a strong trend. Where patterns in the data are strong, the prior will be less influential (e.g. 357 

Kindsvater et al. 2018). 358 

Despite the consistencies in trend estimates across the different methods, we still advocate 359 

using prior information to inform on population variability. The informed prior gave 360 

estimates closer to the global trend when subsets of the data were used. It is also powerful 361 

that we can tune the level of smoothing in the Bayesian model for a species life-history. 362 

Life-history does not figure into the choice of smoothing for generalized additive models, 363 

which instead be made by evaluating smoothing against the data at hand, or with reference 364 
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to simulation studies that are often from very different organisms (Fewster et al. 2000; 365 

Knape 2016). In our simulations the predictive ordinate (an in-sample evaluation measure) 366 

performed poorly in that it did not distinguish among different priors. This suggests that 367 

using the in-sample measures may lead to overfitting of the smoothing splines. We suggest 368 

that a-priori decisions about smoothing will provide more accurate trend estimates. 369 

Informed priors may also be more easily justified than choices about smoothing made with 370 

reference to other organisms. Defensible parameter choices are important when model 371 

results may be contested, such as when governments make potentially contentious 372 

decisions about the status of populations (e.g. Edgar et al. 2018). 373 

When life-history traits are uncertain we suggest using a penalized complexity prior that 374 

allows for greater variation (and non-linearity) in the long-term trend. Our simulations 375 

study suggested that priors that allow for higher variance gave more accurate results than 376 

priors that restricted variance. However, the decision to allow for overestimation of 377 

variance may not be safe if a different prior distribution other than the penalized 378 

complexity priors was used. For instance, very flat priors that give equal prior weighting to 379 

low and high temporal variances can perform very poorly (Simpson et al. 2017). The shape 380 

of the penalized complexity prior was specifically designed to allow the data to speak for 381 

themselves when trends are strong, but to shrink estimates towards no trend when the 382 

data are weak or noisy (Simpson et al. 2017). Our results add further support to usefulness 383 

of penalized complexity priors for applied problems. 384 

An avenue that requires further research is testing the utility of the new method across 385 

many species with a broader range of life-history types. We expect the approach will work 386 
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best when short-term variation in abundance, such as that caused by temporary 387 

migrations, is much more variable than long-term trends. For very fast growing species, 388 

such as those with maturity ages of <1 year, a statistical model fitted to annual data may 389 

confound real population trends with short-term deviations. Classification errors for IUCN 390 

red list status tend to be greater for species with fast population growth than species with 391 

slow population growth (Rueda-Cediel et al. 2018). For instance, the results of our 392 

simulation study were most accurate for slow growing species, whereas accuracy was more 393 

variable for fast growing species. The random walk model could still be effective if the 394 

temporal resolution of sampling was increased (e.g. with sub-annual data). 395 

A further improvement to the model would be to specify a prior that allows for greater 396 

population declines than population increases. Rapid declines in population abundance 397 

tend to be more common than rapid increases (Anderson et al. 2017), because the 398 

processes that cause declines, like overfishing, often operate on a much faster time-scale 399 

than reproduction and population recovery. An alternative would be to use a more complex 400 

model, like the Gompertz, that allows for a hard upper limit on population increases (Sköld 401 

& Knape 2018). Our simulation study of rapid declines suggested that the random walk 402 

with penalized complexity prior can still detect rapid declines in abundance, because its 403 

long probability tail does allow for rare but rapid changes in abundance. Conservation 404 

management must balance the risk of missing a true decline against the chance of false 405 

alarm. A next step therefore, would be to apply Bayesian decision analysis to optimise 406 

models for the balance between the cost of missed detection and the cost of false alarms. 407 
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The decline of tiger sharks we observed is consistent with a decline in large sharks 408 

throughout the world’s oceans (e.g. Baum & Myers 2004; Ferretti et al. 2008; Roff et al. 409 

2018). The current global population trend for tiger sharks is unknown, although there is 410 

considerable variation across different oceans, with some regions showing no change 411 

(Baum & Myers 2004) and others large declines (Baum et al. 2003). Overall, their relatively 412 

high growth and reproductive rates (Cortés 2002; Holmes et al. 2015) means that tiger 413 

sharks are not considered at high risk of extinction (Simpfendorfer 2009). The 414 

conservation status of tiger sharks globally escalated from “Lower Risk/near threatened” 415 

under the IUCN listing to “Near Threatened” in 2005 (Simpfendorfer 2009). 416 

Tiger sharks may warrant listing as Endangered under state and national threatened 417 

species legislation (IUCN Criteria A2, >50% decline over three generations). The trend we 418 

observed in Queensland may be part of a broader scale trend. Genetic studies indicate the 419 

east coast population is part of a well mixed Indo-Pacific population (Holmes et al. 2017). 420 

Further, in nearby New South Wales tiger shark catches have also declined, a decline that 421 

has been attributed to increased fishing pressure in temperate waters (Reid et al. 2011). 422 

While our study does not cover the entire Indo-Pacific population, the large spatial extent 423 

of the current study (11 regions across 1760km of coastline) plus declines in adjacent NSW 424 

nearly 1000km south (Reid et al. 2011) likely reflects a large scale regional trend spanning 425 

18° in latitude across tropical and temperate coastlines of eastern Australia. While the 426 

inclusion of time-series data from throughout Indo-Pacific would strengthen evidence for a 427 

whole of population decline, long-term datasets spanning multiple generations are largely 428 

absent for adjacent regions in the Pacific. 429 
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While some uncertainty exists in the historical data used here, data collection was 430 

standardized in the QSCP in the early 1990’s. This implies trends in recent decades when 431 

declines have been observed are robust (see Roff et al. (2018) for discussion). Our 432 

proposed statistical method may also help smooth over temporal and regional variability in 433 

trends by estimating the long-term trend that is consistent across regions, and by 434 

controlling for differences in gear type. 435 

We considered how estimates of population trends for wide-ranging species depend both 436 

on the spatial extent of data and the model used to partition short-term variation from 437 

long-term trends in population size. We found that the choice of model and the spatial 438 

extent of sampling interact to effect population trends. Informing priors with life-history 439 

information could improve the accuracy of estimates, particularly when sampling was 440 

constrained to fewer regions across a species range. Informed priors provide theoretical 441 

grounds for choosing the level of smoothing when modelling population trends. The trends 442 

estimated here, while dependent on the quality of the CPUE data, suggest that tiger sharks 443 

should be listed as a threatened species under Australian state and possibly national 444 

legislation. 445 
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