1 2 3 Fitness effects of competition within and between species change 4 across species' ranges, and reveal limited local adaptation in rainforest 5 Drosophila 6 7 8 9 Eleanor K. O'Brien, Megan Higgie, Christopher T. Jeffs, Ary A. Hoffmann, Jan 10 Hrček, Owen T. Lewis & Jon R. Bridle 11 12 13 14 Abstract 15 16 17 Competition within and between species can have large effects on fitness and 18 may therefore drive local adaptation. However, these effects are rarely tested 19 systematically, or considered when predicting species' responses to 20 environmental change. We used a field transplant experiment to test the 21 effects of intra and interspecific competition on fitness across the ecological 22 niches of two rainforest Drosophila species that replace each other along an 23 elevation gradient. For the species with the broader elevational range, we also tested for adaptation to the local abiotic and biotic environment. In both 24 25 species, intraspecific competition reduced productivity more than interspecific 26 competition at the centre of its elevational range, while interspecific 27 competition had a stronger effect at the range edge, where the competing 28 species is more abundant. Local adaptation was detected in the centre of the 29 range of the more widespread species, but only in the presence of 30 intraspecific competition. This study is the first to demonstrate that fitness 31 effects of inter-specific competition increase at ecological margins, while intra-32 specific competition has more pervasive effects at range centres. This is a key 33 assumption of "tangled bank" models of community evolution and has

34 important implications for predicting the resilience of ecological networks to

- 35 global change.
- 36
- 37
- 38

39 Introduction

40 41

42 Darwin (1859) used the metaphor of the "entangled bank" to describe the way 43 that interactions within and among species structure an ecological community, 44 due to the narrow range of conditions within which a given species can 45 successfully compete with a neighbouring species. Competitive interactions 46 can have large effects on fitness and are therefore likely to drive adaptive 47 divergence within species (e.g. Stuart et al. 2014, Hargreaves et al. 2019). If 48 we assume a trade-off between resistance to antagonistic interactions such 49 as competition, parasitism or predation, and tolerance of abiotic conditions 50 such as temperature or humidity, then antagonistic biotic interactions should 51 narrow a species' environmental niche by reducing the range of conditions 52 within which it can persist, causing the evolution of ecological specialisation in 53 communities (Kneitel & Chase 2003; Poisot et al. 2011). Such theory predicts 54 that competition within a species (intraspecific competition) should have the 55 strongest effect on fitness at the centre of the species' distribution but will 56 become less important towards the range edge. By contrast, at species' 57 margins, a given level of interspecific competition should have a bigger effect 58 on fitness, leading to species' turnover along ecological gradients. 59 Interspecific competition should therefore increase in its effects on fitness at

- 60 or beyond the margins of a species' range, especially where other closely
- 61 related species (and likely competitors) increase in frequency.
- 62

02	
63	Spatial variation in the effects of competition on fitness should cause local
64	adaptation if these effects are consistent over time, especially where there is
65	a trade-off between competitive success and resistance to abiotic stress.
66	Studies in angiosperms have found that competition can either increase (e.g.
67	Bischoff et al. 2006; Rice & Knapp 2008) or decrease (e.g. Bischoff et al.
68	2006) the magnitude of local adaptation. In a meta-analysis of field studies,
69	mostly in plants, Hargreaves et al. (2019) found that local adaptation was
70	neither more prevalent nor stronger in the presence of biotic interactions
71	(including competition), compared with cases where biotic interactions were
72	excluded, despite strong effects of biotic interactions on fitness. However,
73	this effect varied with latitude: in tropical environments, local adaptation was
74	more prevalent when biotic interactions were left intact, however this was not
75	the case in temperate environments.
76	
77	Strong and pervasive effects of competition on fitness may be more likely in
78	low latitude (tropical) ecosystems, where productivity and biodiversity are
79	generally much higher than in temperate ecosystems, where stronger
80	seasonal fluctuations continually reduce or reset biotic interactions (e.g. Coley
81	& Barone 1996; Schemske et al 2009). At a given latitude, the effects of biotic
82	interactions on fitness should also vary along elevational gradients, given their
83	pervasive effect on community structure, species turnover, and species'
84	ecology, as well as climatic factors (e.g. Rahbek 1995; Körner 2007; Morris et

85	al. 2015). Consistent with expectations along latitudinal gradients, biotic
86	interactions should be a more important determinant of species' ecological
87	limits at lower elevation ("warm") margins, compared with high elevation
88	("cold") margins where effects of abiotic factors (e.g. temperature,
89	precipitation) are relatively stronger (e.g. Davis et al. 1998; Pearson &
90	Dawson 2003).
91	
92	Ecosystems where closely related and ecologically similar species replace
93	each other across predictable environmental gradients provide excellent
94	opportunities to test how competition within and among species affects fitness
95	and drives local adaptation, and how these effects change as species
96	approach their ecological limits. In practice however, it is difficult to
97	disentangle the effects of competition from those of abiotic factors (e.g.
98	temperature, precipitation) on fitness or as drivers of adaptive divergence,
99	because different sources of environmental variation are typically correlated
100	(Godsoe et al. 2017). Experiments that manipulate competition and abiotic
101	environmental variation independently are therefore essential for
102	understanding how environmental change mediates the evolution of species
103	interactions.
104	
105	In the Australian tropical rainforest fruit fly Drosophila birchii, transplant
106	experiments have demonstrated that abiotic factors alone cannot explain the
107	species' field abundance across its climatic range, suggesting an important

- 108 role for biotic interactions. O'Brien et al. (2017) tested how the fitness of
- 109 families of *D. birchii* varied when virgin flies were transplanted at a fixed

110 density into field cages at 10 sites along each of two elevation gradients and 111 allowed to mate and produce offspring. They found that fitness (estimated by 112 number of offspring produced) in field cages was highest at the warmest, low 113 elevation sites and declined with increasing elevation. This pattern contrasted 114 with patterns of field abundance, where *D. birchii* was rare at low elevation 115 sites but increased in abundance with elevation up to ~900m asl. However, 116 given these field cages contained only a single species at low density, the 117 effects of competition and other biotic interactions on fitness were not 118 included. The results from these transplant experiments therefore suggested 119 that although abiotic factors (probably cold limits) can explain the upper limit 120 to *D. birchii*'s elevational range, biotic interactions limit population growth at 121 the warm edge of *D. birchii*'s range, leading to a mismatch between cage 122 productivity and field abundance at low elevations. Despite observing 123 substantial genetic variation in fitness of *D. birchii* in field cages (and clinal 124 divergence in productivity under laboratory conditions), O'Brien et al (2017) 125 did not detect any evidence for local adaptation in these field transplants: D. 126 birchii families transplanted to their home site did not have higher fitness 127 when compared with those transplanted from the opposite extreme of the 128 species' elevational range. However, if competitive interactions are a major 129 determinant of fitness across the elevational range of *D. birchii*, local 130 adaptation may only be revealed in an environment that includes these 131 interactions. 132

In this study, we use a large-scale field transplant experiment to quantify the
effects of ecologically-realistic variation in the intensity of intraspecific and

135	interspecific competition on variation in fitness and life history traits of D.
136	birchii and its phylogenetically and ecologically-close relative, D. bunnanda. In
137	a novel advance on most previous studies, we conduct these assays of
138	density dependent variation in fitness at sites along one of the elevational
139	gradients used in O'Brien et al. (2017), which we already know includes the
140	cold and warm extremes of these species' distributions. In addition, for D.
141	birchii, which is found across a broader range of elevations than D. bunnanda,
142	we tested for local adaptation by transplanting flies from different populations
143	across their elevational range. This comparison tested whether local
144	adaptation was revealed by comparing responses of flies from different
145	populations to increasing inter and intraspecific competition at different
146	elevations along the gradient.
147	
148	We tested the following hypotheses:
148 149	We tested the following hypotheses: (1) The fitness effects of competition is strongest at the warm edge of the
149	(1) The fitness effects of competition is strongest at the warm edge of the
149 150	(1) The fitness effects of competition is strongest at the warm edge of the species' ranges: Competition within and between <i>D. birchii</i> and <i>D.</i>
149 150 151	(1) The fitness effects of competition is strongest at the warm edge of the species' ranges: Competition within and between <i>D. birchii</i> and <i>D. bunnanda</i> will reduce fitness, but the strength of this effect will vary
149 150 151 152	 (1) The fitness effects of competition is strongest at the warm edge of the species' ranges: Competition within and between <i>D. birchii</i> and <i>D. bunnanda</i> will reduce fitness, but the strength of this effect will vary across the elevational gradient. We predict a stronger effect of
 149 150 151 152 153 	 (1) The fitness effects of competition is strongest at the warm edge of the species' ranges: Competition within and between <i>D. birchii</i> and <i>D. bunnanda</i> will reduce fitness, but the strength of this effect will vary across the elevational gradient. We predict a stronger effect of competition on fitness at lower elevations, consistent with the
 149 150 151 152 153 154 	 (1) The fitness effects of competition is strongest at the warm edge of the species' ranges: Competition within and between <i>D. birchii</i> and <i>D. bunnanda</i> will reduce fitness, but the strength of this effect will vary across the elevational gradient. We predict a stronger effect of competition on fitness at lower elevations, consistent with the expectation that antagonistic biotic interactions are more ecologically
 149 150 151 152 153 154 155 	 (1) The fitness effects of competition is strongest at the warm edge of the species' ranges: Competition within and between <i>D. birchii</i> and <i>D. bunnanda</i> will reduce fitness, but the strength of this effect will vary across the elevational gradient. We predict a stronger effect of competition on fitness at lower elevations, consistent with the expectation that antagonistic biotic interactions are more ecologically
 149 150 151 152 153 154 155 156 	(1) The fitness effects of competition is strongest at the warm edge of the species' ranges: Competition within and between <i>D. birchii</i> and <i>D. bunnanda</i> will reduce fitness, but the strength of this effect will vary across the elevational gradient. We predict a stronger effect of competition on fitness at lower elevations, consistent with the expectation that antagonistic biotic interactions are more ecologically important at the warm edges of species' ranges.
 149 150 151 152 153 154 155 156 157 	 (1) The fitness effects of competition is strongest at the warm edge of the species' ranges: Competition within and between <i>D. birchii</i> and <i>D. bunnanda</i> will reduce fitness, but the strength of this effect will vary across the elevational gradient. We predict a stronger effect of competition on fitness at lower elevations, consistent with the expectation that antagonistic biotic interactions are more ecologically important at the warm edges of species' ranges. (2) Competition within and between species causes species to replace

160	interspecific competition for a given species within cages transplanted
161	into the elevational range where that species has the highest relative
162	abundance (high elevation for <i>D. birchii</i> ; low elevation for <i>D.</i>
163	bunnanda). By contrast, increasing interspecific competition will have
164	a greater effect than intraspecific competition within cages transplanted
165	to elevations where the competitor species has higher relative
166	abundance.
167	
168	(3) Selection on competitive ability at different elevations causes local
169	adaptation within species: Drosophila birchii reared from populations
170	close to the transplant location will suffer lower reductions in fitness in
171	response to increasing levels of competition than those reared from
172	populations further away on the elevational gradient. At high elevation
173	(where D. birchii is most abundant), intraspecific competition will be a
174	stronger driver of fitness and therefore local adaptation. By contrast,
175	local adaptation will be more strongly associated with interspecific
176	competition at lower elevations, where <i>D. birchii</i> is outnumbered by the
177	competitor species (D. bunnanda), and intraspecific interactions are
178	relatively rare.
179	
180	
181 182 183	Methods
184 185	Study species
185	Drosophila birchii and D. bunnanda (Diptera: Drosophilidae) are both confined
187	to tropical rainforest habitat, with distributions that overlap at lower latitudes

188	and elevations. They are closely related, similar in size and likely to target
189	similar food and oviposition resources at sites where they co-occur. They do
190	not hybridise in the laboratory (personal observation), and there is no
191	evidence for hybridisation in the wild. Drosophila birchii has a broader
192	latitudinal range than <i>D. bunnanda</i> (van Heerwaarden et al. 2009), and a
193	broader elevational range within latitudes, with D. bunnanda confined to
194	warmer sites at low latitudes and elevations. At the sites sampled for this
195	study, D. bunnanda typically outnumbers D. birchii ~3:1 in field traps below
196	100m elevation, then it declines in abundance at higher elevations. The two
197	species have roughly equal abundance ~400m asl, and D. bunnanda is
198	virtually absent above 500m asl, where abundance of D. birchii increases,
199	reaching its maximum around 900m asl (Figure 1; Bridle et al. 2009; O'Brien
200	<i>et al.</i> 2017).
201	
202 203 204	Source of flies used in field transplant experiment
204 205	In April 2016, we established 80 <i>D</i> , <i>birchii</i> isofemale lines from field-mated

204	In April 2016, we established 80 D. birchii isofemale lines from field-mated
206	females collected at two high elevation (~900m above sea level (a.s.l.)) and
207	two low elevation (<100m a.s.l.) sites at each of two gradients separated by
208	~300 km of latitude: Paluma (19°00' S, 146°14' E) and Mt Lewis (16°35' S,
209	145°19' E)(Eight sites in total). Each isofemale line was founded by a single,
210	field-mated female. These ten D. birchii isofemale lines per site were
211	maintained in the laboratory for 10 months (~20 generations). Two
212	generations before establishment of the cage transplant experiment, we
213	mixed lines from the same site together to create eight mass-bred D.birchii
214	populations (Supplementary Note 1).

216	We established isofemale lines of the competitor species, D. bunnanda, using
217	the same method as for <i>D. birchii</i> . However, because <i>D. bunnanda</i> is absent
218	above 500m, these lines all came from low elevation sites at each of the two
219	gradients where D. birchii was collected. We maintained five D. bunnanda
220	lines from each of Paluma and Mt Lewis (10 D. bunnanda lines in total) in the
221	laboratory over the same period and under the same conditions as for the D.
222	birchii lines. We then combined them all to establish a single mass bred
223	population of <i>D. bunnanda</i> (Supplementary Note 1).
224 225	All isofemale lines and mass-bred populations were maintained at 23 °C on a
226	12:12hr light:dark cycle prior to establishment of the field experiment.
227	
228 229 230	Establishment of field transplant experiment
	<i>Establishment of field transplant experiment</i> Two generations after mixing, we separated emergees from mass-bred
229 230	
229 230 231	Two generations after mixing, we separated emergees from mass-bred
229 230 231 232	Two generations after mixing, we separated emergees from mass-bred populations by sex under light CO_2 anaesthesia within 24 hours of emergence
229 230 231 232 233	Two generations after mixing, we separated emergees from mass-bred populations by sex under light CO_2 anaesthesia within 24 hours of emergence every day over seven days, and held them in single-sex vials (maximum
 229 230 231 232 233 234 	Two generations after mixing, we separated emergees from mass-bred populations by sex under light CO_2 anaesthesia within 24 hours of emergence every day over seven days, and held them in single-sex vials (maximum density 10 flies). This ensured they were unmated at the start of the
 229 230 231 232 233 234 235 	Two generations after mixing, we separated emergees from mass-bred populations by sex under light CO_2 anaesthesia within 24 hours of emergence every day over seven days, and held them in single-sex vials (maximum density 10 flies). This ensured they were unmated at the start of the experiment, and that all courtship and mating occurred within field cages. We
 229 230 231 232 233 234 235 236 	Two generations after mixing, we separated emergees from mass-bred populations by sex under light CO_2 anaesthesia within 24 hours of emergence every day over seven days, and held them in single-sex vials (maximum density 10 flies). This ensured they were unmated at the start of the experiment, and that all courtship and mating occurred within field cages. We kept them in single-sex vials for a minimum of 72 hours to recover from the
 229 230 231 232 233 234 235 236 237 	Two generations after mixing, we separated emergees from mass-bred populations by sex under light CO_2 anaesthesia within 24 hours of emergence every day over seven days, and held them in single-sex vials (maximum density 10 flies). This ensured they were unmated at the start of the experiment, and that all courtship and mating occurred within field cages. We kept them in single-sex vials for a minimum of 72 hours to recover from the effects of CO_2 before transplant into field cages. The long collection period

- 241 emergees from different emergence days within each population prior to
- 242 establishment of field vials.
- 243

244	
244 245	We transplanted all populations of <i>D. birchii</i> and <i>D. bunnanda</i> in vials along
246	one of the field elevation gradients where flies were sourced (Paluma). The
247	two gradients from which the original lines were collected have very similar
248	ranges of abiotic conditions (temperature and humidity), which change in the
249	same way with increasing elevation (O'Brien et al. 2017). We established
250	transplant cages at three elevations ('sites'): Low (80m above sea level
251	(a.s.l.)), Mid (450m a.s.l.) and High (900m a.s.l.). The low and high transplant
252	sites included the sites from which the Paluma isofemale lines were sourced.
253	To account for localised environmental heterogeneity within each elevation,
254	we divided each site into five sub-sites ('blocks') of roughly equal size, giving
255	15 blocks in total. Details on variation in the abiotic environment along the
256	gradient are provided in Supplementary Note 2 and Figure S1.
257 258	
258 259	We transplanted flies in 30 ml plastic vials containing 5 ml of standard
260	Drosophila media. Vials were closed with a square of muslin secured with a
261	rubber band, which prevented flies from getting in or out, but allowed free air
262	exchange with the outside, meaning conditions inside the vials tracked
263	external temperature. We placed vials in holders constructed from 600 ml
264	plastic bottles with two 135 x 95 mm windows cut out of the sides, ensuring
265	maximal flow of air around the vial openings. We placed between two and
266	four food vials in each bottle and hung bottles from tree branches at a height
267	1.3 – 1.8 m above the ground. We suspended a 26cm plastic plate upside

down on the twine above each bottle to protect vials from rain and encased

269 each bottle in strong wire mesh (20mm square holes) to prevent damage by

270 vertebrates (particularly birds and small mammals).

271

272 We transplanted 19 656 virgin flies (11 808 D. birchii and 7 848 D. bunnanda) 273 in 972 vials at a range of intraspecific and interspecific densities (see 274 'competition treatments' below) into the three transplant elevations in May 275 2017. We placed flies in vials less than 24 hours before they were installed in 276 the field and left them in vials at their respective transplant sites for 10 days. 277 Therefore, virtually all courtship, mating and egg-laying happened under field 278 conditions. After 10 days, we removed and discarded any surviving flies, and 279 left vials in the field until emergence began. This was 14 days after the 280 establishment of vials at low elevation, 17 days at mid elevation, and 21 days 281 at high elevation. On the day that the first emergence was observed, all vials 282 at that transplant elevation were removed and taken to the laboratory to 283 enable daily emergence to be recorded accurately. Vials were held in a 284 constant temperature room set to the same mean temperature as the 285 elevation at which they had been transplanted, determined using data from 286 the dataloggers inside cages at that site (Supplementary Note 2; Figure S1), 287 on a 12:12 hr light:dark cycle at 60% relative humidity (RH). At all transplant 288 blocks, virtually all larvae had pupated by the time vials were brought in from 289 the field.

290

291 Competition treatments

292	We used a response surface design (Inouye 2001), which independently
293	varied the numbers of each species and enabled us to estimate the effects of
294	intraspecific vs interspecific competition. We used 10 treatments, each
295	defined by the number of <i>D. birchii</i> and <i>D. bunnanda</i> in a vial, with a total
296	density of 6, 12, 24 or 48 flies (Figure 2). In a pilot study, we found that the
297	average productivity of D. birchii declined with increasing intraspecific density
298	across this range of densities (Supplementary Note 3; Figure S2),
299	demonstrating that it was an appropriate range for detecting competition
300	effects. We also verified that the size of flies emerging from each treatment
301	lay within the size range of field-caught flies at the same elevation
302	(Supplementary Note 4, Figure 3), implying that our competition treatments
303	are ecologically realistic. We introduced equal numbers of unmated males
304	and females (of each species, for mixed species treatments) into each vial,
305	and transplanted five replicate vials of each Population x Treatment
306	combination to each site (one replicate per block).
307	
308	Measuring traits of flips emerging from field vials

308 Measuring traits of flies emerging from field vials

309 We removed and counted the number of emergees of each species and sex 310 from each vial on the day emergence began at the transplant site, then daily 311 for the next 10 days and then every three days for an additional nine days to 312 capture any late emergence (20 days total from start of emergence). We 313 undertook species identification and trait measurements blind with respect to 314 treatment or transplant elevation. Male D. birchii and D. bunnanda were 315 distinguished by their genital bristles (Schiffer & McEvey 2006). Females 316 were identified based on differences in their pigmentation: the dark bands on

a	
317	the dorsal abdomen are straight with sharp edges in <i>D. bunnanda</i> , whereas in
318	D. birchii they rise in the centre and are more diffuse (M. Schiffer personal
319	communication, and personal observation). For each species emerging from
320	each vial, we recorded the number of male and female offspring emerging
321	each day, to obtain values for the following: (1) productivity (total number of
322	offspring per laying female), (2) offspring sex ratio (number of male offspring
323	as a proportion of the total) for each vial, and (3) emergence time of each fly.
324	We then mounted, photographed and landmarked the right wing of each fly to
325	obtain a measure of (4) wing size, as a proxy for body size. Following the
326	protocol described in Griffiths et al. (2005), we calculated wing centroid size
327	by taking the square root of the sum of the squared distances between each
328	of 10 wing landmarks and the wing centroid.
329	
330 331	Data analysis
330	Data analysis Testing effects of competition and elevation on traits
330 331 332 333 334	
330 331 332 333 334 335	Testing effects of competition and elevation on traits
 330 331 332 333 334 335 336 	Testing effects of competition and elevation on traits We fitted (generalized) linear mixed models to test for the effects of
 330 331 332 333 334 335 336 337 	Testing effects of competition and elevation on traits We fitted (generalized) linear mixed models to test for the effects of competition ('Intraspecific/Interspecific density': see Figure 2 for treatment
 330 331 332 333 334 335 336 337 338 	Testing effects of competition and elevation on traits We fitted (generalized) linear mixed models to test for the effects of competition ('Intraspecific/Interspecific density': see Figure 2 for treatment combinations) and abiotic ('Elevation': low, mid or high) environmental
 330 331 332 333 334 335 336 337 338 339 	Testing effects of competition and elevation on traits We fitted (generalized) linear mixed models to test for the effects of competition ('Intraspecific/Interspecific density': see Figure 2 for treatment combinations) and abiotic ('Elevation': low, mid or high) environmental variation on each trait. Separate models were fitted for each trait in each
 330 331 332 333 334 335 336 337 338 339 340 	Testing effects of competition and elevation on traits We fitted (generalized) linear mixed models to test for the effects of competition ('Intraspecific/Interspecific density': see Figure 2 for treatment combinations) and abiotic ('Elevation': low, mid or high) environmental variation on each trait. Separate models were fitted for each trait in each species. We applied a Bonferroni correction to adjust the significance level to

elevation. All models were fitted using *Ime4* (Bates *et al.* 2015), implemented

345 in *R* v 3.4.2.

346

347 For productivity and sex ratio, where vial was the unit of analysis, we fitted 348 models that included fixed effects of intraspecific density, interspecific density, 349 transplant elevation, source elevation and all two-way interactions. We 350 included source population as a random effect. For productivity, we square 351 root transformed data to conform to assumptions of normality, and fitted linear 352 mixed models with the factors described above. For offspring sex ratio, we 353 fitted generalized linear models with a binomial distribution and a logit link 354 function. For emergence time (day) and wing size (mm), which were 355 measured on individual flies, we fitted models with the same fixed and random 356 factors, but additionally included vial as a random effect. Both body size and 357 development time typically differ between males and females in Drosophila 358 species (e.g. Santos et al. 1994; Arthur et al. 2008), therefore separate 359 models were fitted for each sex. Emergence time and wing size data were 360 normally distributed and were left untransformed. 361

The significance of fixed and random effect terms in each model was assessed by comparing the log likelihood of a model with or without the relevant term using a chi-squared test. For several traits in both species, the effects of intraspecific and interspecific density varied with elevation (indicated by significant density x elevation terms; Table 1). To further explore the relative effect of intra- and interspecific density on traits within each elevation, we fitted separate linear mixed models for each transplant elevation (i.e. low,

369 mid and high), keeping the remaining fixed and random effects the same as in 370 the full model. For each trait at each elevation, we assessed the relative 371 importance of intraspecific vs interspecific competition in each species using 372 the ratio of their partial regression coefficients, $\beta_{\text{intraspecific}}$: $\beta_{\text{interspecific}}$ (Anderson 373 & Whiteman 2015). 374 375 Testing the power of competition to explain species' distributions 376 We tested whether the observed effects of intra and interspecific competition 377 on productivity can explain the relative distributions of *D. birchii* and *D.* 378 bunnanda across the elevation gradient, by comparing predicted productivities 379 with and without competition between the species. We considered three 380 different scenarios: (1) no interspecific competition and constant intraspecific 381 competition across the gradient, (2) no interspecific competition and 382 intraspecific interactions at a frequency proportional to field observations of 383 the abundance of each species, and (3) intraspecific and interspecific 384 interactions at frequencies proportional to the field abundance of each 385 species. For (1), we used the observed productivity of flies in single-species 386 field vials at intermediate density (density = 12). For (2) and (3), we used our 387 field abundance counts (Figure 1) as the starting values for each species' 388 density (and hence estimates of the frequencies of intraspecific (2 and 3) and 389 interspecific (3) interactions) at each elevation, and used the equations from 390 our elevation-specific models to calculate the expected productivity of each 391 species across the gradient at these densities. Note that because D. 392 *bunnanda* was not found at the high elevation site (density = 0), using this as 393 the starting value meant that the predicted abundance of this species

394 remained zero under each of these scenarios. To enable comparison of 395 observed and predicted abundances under each scenario, we calculated 396 abundances (observed or predicted) of each species at each site relative to 397 the abundance of *D. birchii* at the low elevation site. That is, we set the 398 abundance of *D. birchii* at the low elevation site to 1 and calculated the 399 relative abundance of *D. birchii* at the other sites and *D. bunnanda* at all sites 400 by dividing their observed or predicted abundances by that of *D. birchii* at the 401 low elevation site.

402

403 Testing for local adaptation

404 For *D. birchii*, where we transplanted populations from extreme ends of the 405 species' elevational range, we were able to test for adaptation to the local 406 abiotic or competitive environment. Local adaptation would be revealed by 407 higher fitness of populations in their 'local' environment compared with their 408 fitness in other environments ('home' vs 'away'), and/or by higher fitness of 409 local populations than those transplanted from elsewhere in the species' 410 range ('local' vs 'non-local')(Kawecki & Ebert 2004). Either of these should 411 result in a source population x transplant environment interaction for fitness. 412 We therefore examined the following interactions in the full models for each 413 trait to test for local adaptation: (i) the 'Elevation x Source elevation' 414 interaction to test for local adaptation to the abiotic environment (averaged 415 across all competition treatments); (ii) the 'Intraspecific density x Source 416 elevation' and 'Interspecific density x Source elevation' interactions to test for 417 adaptation to the local intraspecific and interspecific competitive environments 418 respectively (averaged across transplant elevations and the other form of

419	competition). Furthermore, because abiotic and biotic environmental factors
420	may combine to drive adaptive divergence (if, for example, divergence in
421	competitive ability depends upon the abiotic environment in which it is
422	measured), we examined how Intraspecific/Interspecific density x Source
423	elevation interactions varied across the three transplant elevations. We did
424	not have enough statistical power to detect significant three-way interactions
425	in our full model (i.e. Intraspecific/Interspecific density x Elevation x Source
426	elevation). We therefore used the elevation-specific models and examined:
427	(iii) Intraspecific density x Source elevation and Interspecific density x Source
428	elevation interactions to test for divergence among source populations in their
429	responses to intraspecific and interspecific competition respectively within
430	each transplant elevation. Wherever one of the interactions described above
431	was significant (after Bonferroni correction for multiple comparisons), we
432	examined the pattern of fitness variation to determine whether it was
433	consistent with local adaptation (i.e. superior performance of the 'home' or
434	'local' population).
435	
436	The traits we considered when testing for local adaptation were (i) productivity

437 (since this may be considered a direct measure of fitness) and (ii) wing size,

438 as a proxy for body size, which in *Drosophila* is positively correlated with a

439 range of fitness measures including longevity, female fecundity and male

440 mating success (e.g. Partridge & Farquhar 1983; Santos et al. 1992; McCabe441 & Partridge 1997).

442

443

444

445 446 447 448 449	Results
449 450 451 452	(1) Fitness effects of competition are strongest at the warm edge of the species' ranges
452 453	There was a strong effect of elevation on the overall productivity of both
454	species (Table 1), consistent in direction and magnitude with that observed in
455	D. birchii in O'Brien et al. (2017). Mean productivity (averaged across all
456	density treatments) was highest in field cages at the warmest, low elevation
457	site (<i>D. birchii</i> offspring per female mean \pm SD = 5.52 \pm 5.25; <i>D. bunnanda</i>
458	mean \pm SD = 3.44 \pm 2.69; Table S2) and declined with elevation, so that at
459	the high elevation site mean productivity was 24.5% and 27% of that at the
460	low elevation site in D. birchii and D. bunnanda respectively (D. birchii
461	offspring per female mean \pm SD = 1.35 \pm 2.02; <i>D. bunnanda</i> mean \pm SD =
462	0.93 ± 1.05; Table S2).
463	
464	Emergence time and wing size also varied with transplant elevation (Table 1),
465	with flies of both sexes and species emerging later and at a larger size at
466	higher elevations (Figure 3; Table S2). In D. birchii, emergence from cages at
467	the high elevation site was, on average, 9.6 days (males) and 10.4 days
468	(females) later than at the low elevation site (increases of 37.2% and 41.6%
469	respectively; Table S2). In <i>D. bunnanda</i> , mean emergence times for males
470	and females respectively increased by 11.7 days (46.4%) and 10.8 days
471	(42.5%) from the low to the high elevation site (Table S2). The mean wing
472	size of <i>D. birchii</i> emerging at the high elevation site was 11.0% (males) and
473	9.7% (females) greater than those emerging at the low elevation site (Table

474 S2). In *D. bunnanda*, these increases were 9.9% and 8.5% for males and

475 females respectively (Table S2). We did not detect an effect of elevation on

476 the sex ratio of offspring of either species (Table 1).

477

478 Both intra and interspecific competition greatly reduced the productivity of

479 both species (Table 1; Figure 3) at all transplant elevations (Table 2). The

480 strength of this effect varied with elevation (note the significant interactions of

481 intra and interspecific density x elevation on productivity of *D. birchii*, and

482 intraspecific density x elevation in *D. bunnanda*; Table 1). In both species, the

483 reduction in productivity in response to intraspecific and interspecific

484 competition was greatest at the low elevation transplant site, with weaker

485 effects of both forms of competition at the mid and high elevation sites. In *D*.

486 *birchii*, the reduction in productivity with each additional competitor of the

487 same species (intraspecific competition; $\beta_{\text{Intraspecific}}$) or of the other species

488 (interspecific competition; $\beta_{\text{Interspecific}}$) was, respectively, 1.6 and 1.8 times

489 greater at the low elevation site than at the high elevation site. In *D*.

490 *bunnanda*, $\beta_{\text{Intraspecific}}$ and $\beta_{\text{Interspecific}}$ were, respectively, 1.8 and 1.2 times

491 greater at the low than the high elevation site (Table 2; Figure 3).

492

There were also strong effects of competition on emergence time and wing size of both species (Table 1). Increasing intensities of intra and interspecific competition resulted in smaller flies that emerged earlier (Figure 3). In contrast to productivity however, the size of the effect of intra and interspecific competition on these traits did not vary with elevation (note lack of significant interactions of intra and interspecific competition with elevation; Table 1).

<i>ч))</i>	
500	Effects of competition on offspring sex ratio varied between the species and
501	according to the type of competition and were evident only at the low
502	elevation site (Table 2). In D. birchii, there was a small but significant
503	increase in the proportion of male offspring emerging as a function of the
504	intensity of interspecific competition at the low elevation site. The mean sex
505	ratio ranged from slightly female-biased (mean prop males \pm SD = 0.46 \pm
506	0.02) in field cages where <i>D. bunnanda</i> was absent (i.e. no interspecific
507	competition) to slightly male-biased (mean \pm SD = 0.54 \pm 0.02) in mixed-
508	species cages (Table S2). However, there was no effect of intraspecific
509	competition on sex ratio (Table 1). By contrast, in <i>D. bunnanda</i> , we found the
510	opposite: intraspecific competition, but not interspecific competition, increased
511	the proportion of male offspring at the low elevation site (Table 2; Table S2).
512	While the sex ratio of <i>D. bunnanda</i> offspring was female-biased in nearly all
513	density treatments at this site (mean prop males \pm SD = 0.4 \pm 0.18), it ranged
514	from mean \pm SD = 0.35 \pm 0.07 at the lowest intraspecific density to 0.46 \pm
515	0.02 at the highest intraspecific density (Table S2).
516 517 518 519 520 521	(2) Competition within and between species causes species to replace each other along environmental gradients
522	Effects of intra and interspecific competition on fitness: In D. birchii,
523	interspecific competition had a stronger effect in reducing productivity than
524	intraspecific competition at the low and mid elevation sites (ratios of
525	intraspecific to interspecific density coefficients ($\beta_{Intraspecific}/\beta_{Interspecific}$) are less
526	than one; Table 2), where <i>D. bunnanda</i> is most abundant (Figure 1). By

527	contrast, at the high elevation site	(where <i>D. birchii</i> is most abundant and <i>D.</i>

- 528 *bunnanda* is absent), the negative effects of both forms of competition on
- 529 productivity were equal ($\beta_{\text{Intraspecific}}$:/ $\beta_{\text{Interspecific}}$ = 1; Table 2).
- 530
- 531 Similarly, in *D. bunnanda*, intraspecific competition reduced productivity more
- 532 strongly than interspecific competition at the low and mid elevation sites

533 ($\beta_{\text{Intraspecific}}/\beta_{\text{Interspecific}} > 1$; Table 2) where intraspecific interactions are most

534 frequent in this species, whereas interspecific competition had a stronger

535 effect in cages at the high elevation transplant site ($\beta_{\text{Intraspecific}}/\beta_{\text{Interspecific}} < 1$;

- 536 Table 2) where this species is not normally found.
- 537
- 538 By contrast, the relative effects of intraspecific vs interspecific competition on
- 539 other traits of the offspring in the cages (sex ratio, emergence time, wing size)
- 540 did not show consistent contrasts in effect between the centre and edge of
- 541 each species' elevational limits (Table 2).
- 542
- 543

544 Testing the power of competition to explain species' distributions

545 Using the likely frequencies of intraspecific and interspecific interactions at 546 field sites, and the fitness effects of such intensities of interaction within cages 547 to predict species' relative abundances at each site resulted in predictions that 548 were closer to observed field abundances than predictions made assuming no 549 interspecific competition (Figure S3). Using the productivity of each species 550 in single-species vials to predict field relative abundance gave very misleading 551 results: in particular, it predicted a higher abundance of D. birchii (compared 552 to D. bunnanda) at the low elevation site and a higher abundance of D. 553 bunnanda at the high elevation site (Figure S3B), which is the reverse of what

is observed in these ecological communities (Figure 1, Figure S3A).

- 555 Predictions were significantly improved by assuming intraspecific interactions
- at a frequency proportional to observed field abundances (Figure S3C), and
- 557 further by also assuming interspecific interactions occurred at field
- 558 frequencies (Figure S3D). However, both of these approaches still predicted
- similar abundances of *D. birchii* at low and high elevations, whereas field
- 560 observations show much higher abundance of this species at high than at low
- 561 elevation sites (Figure 1; Figure S3A).
- 562
- 563

564 (3) Selection on competitive ability drives local adaptation within species within a limited part of the elevational range 565 566 567 Evidence for adaptive divergence between high and low elevation source 568 populations of *D. birchii* was limited. Source elevations did not show overall 569 differences in their trait means (no significant effect of Source elevation; Table 570 1), nor in their fitness responses to the abiotic or competitive environment 571 (Elevation x Source elevation and Intraspecific/Interspecific density x Source 572 elevation interactions were not significant for productivity or body size; Table 573 1). 574 575 High and low elevation source populations of *D. birchii* did differ in the effect 576 of intraspecific competition on wing size, but only at the high elevation 577 transplant site (see Intraspecific density x Source elevation interactions in 578 Table S1; Figure 4). At this site, the reduction in size of male offspring from 579 low elevation source populations as a function of intraspecific density $(\beta_{\text{Intraspecific}} \pm \text{SE} = -0.006 \pm 0.002; P = 1.95 \times 10^{-4})$ was three times greater 580

581	than that of offspring from high elevation source populations ($\beta_{Intraspecific} \pm SE =$
582	-0.002 \pm 0.001; $P = 0.114$) (Table S1; Figure 4), suggesting local adaptation
583	in competitive ability at high vs low elevation, in terms of its effects on body
584	size, at the site where natural density (and therefore intensity of intraspecific
585	interactions) was highest. In females emerging at this site, the difference was
586	even more striking: Intraspecific density reduced mean wing size of female D.
587	<i>birchii</i> from low elevation source populations ($\beta_{Intraspecific} \pm SE = -0.009 \pm$
588	0.002; $P = 5.52 \times 10^{-6}$) by nine times as much as it did wing size of high
589	elevation source populations ($\beta_{Intraspecific} \pm SE = -0.001 \pm 0.002$; $P = 0.439$)
590	(Table S1; Figure 4). Source elevations did not differ in their fitness
591	responses to interspecific competition at any of the transplant elevations
592	(Table S1).
593 594 595	
596 597 598	Discussion
599	Competition reduces fitness more at the warm margin of species'
600	ranges
601	Biotic interactions are thought to be a more important determinant of fitness,
602	and therefore species' range limits, at lower latitudes (e.g. Coley & Barone
603	1996; Schemske et al 2009) and elevations (e.g. Davis et al. 1998; Pearson &
604	Dawson 2003). However, tests of this hypothesis have yielded inconsistent
605	results (Moles & Ollerton 2016; Grant et al. 2018). Our results suggest that
606	
	competitive interactions limit population growth more at the low elevation

607 (warm) edge of the ranges of *D. birchii* and *D. bunnanda*, than at their high

608	elevational limits. The low elevation site also had the highest mean
609	productivity overall. Therefore, for a given interaction density (here
610	determined by varying the number of flies introduced to a cage), larval
611	competition was greatest at the low elevation site, meaning food resources
612	would be depleted more rapidly.
613	
614	The large reductions in productivity as intra and interspecific competition is
615	increased in cages transplanted to the low elevation site will be compounded
616	by the increased proportions of male offspring at these sites, which will reduce
617	future population growth rate, and therefore evolutionary potential at this
618	range margin (Bridle et al. 2019). Although the effects on sex ratio were
619	subtle, the most prevalent competitive interactions at this site (interspecific for
620	D. birchii; intraspecific for D. bunnanda) both increased the proportion of
621	offspring that were male. Males are smaller than females in both of these
622	species (Figure 3), and presumably less costly to produce. Therefore,
623	skewing the sex ratio towards males when faced with competitive stress may
624	be a strategy for maximising the number and fitness of offspring produced,
625	consistent with optimal sex allocation theory (Trivers & Willard 1973). It has
626	been shown that female Drosophila melanogaster can adjust the sex ratio of
627	their offspring in response to the age of their mate (Mange 1970; Long &
628	Pischedda 2005), and that this may be adaptive. It is not known whether D.
629	birchii and D. bunnanda are also able to actively manipulate the sex ratio of
630	their offspring, or whether the effect on sex ratio we observe is due to higher
631	survival of male offspring during development. This will be explored further in
632	a future study.

633

634 Competition shapes the relative distributions of D. birchii and D.

635 bunnanda

636	The extent to which competitive interactions shape species' distributions, and
637	under what conditions, is a longstanding question in ecology (e.g. Wisz et al.
638	2013; Godsoe et al. 2015). Our results demonstrate that both the abiotic
639	environment and the intensity of intra and interspecific competition determine
640	the fitness of Drosophila birchii and D. bunnanda transplanted in cages across
641	their entire elevational ranges. The effects of competition intensity on
642	productivity in cages varied across the elevation gradient in ways that were
643	consistent with the species' relative distributions, and with the predictions of
644	the "Tangled Bank" theory of community assembly (REF): each species
645	suffers a greater loss of fitness (productivity) due to intraspecific competition
646	within the centre of its range, and due to interspecific competition at its
647	ecological margins, where the competitor species is more abundant in nature.
648	
649	We used the site-specific intra and interspecific competition effects estimated
650	from our field transplant experiments to predict relative abundance of D.
651	birchii and D. bunnanda along the gradient to test for evidence that
652	competitive interactions limit the distributions of these species. Including both
653	types of competition resulted in predicted relative abundances that much
654	more closely matched observed abundance in the field, particularly when
655	compared with predictions made assuming constant intraspecific competition
656	and no interspecific competition (Figure S3). This is consistent with

657 conclusions from a previous transplant study in *D. birchii* that the abiotic

658	environment alone cannot explain its elevational distribution, and that biotic
659	interactions are an important limit to population growth, particularly at low
660	elevations (O'Brien et al. 2017). However, our best predictions still over-
661	estimated the relative abundance of <i>D. birchii</i> at the low and mid elevation
662	sites, suggesting that additional factors are required to explain the lower
663	range limit of this species, potentially including other competitors, availability
664	of food resources, pathogens and parasitoids. It is for example known that
665	rates of parasitism by parasitoid wasps on Drosophila species in these
666	communities increase at lower elevations (Jeffs et al. 2020), and the effect of
667	this on fitness is being assessed in ongoing work.
668	
669	
(70)	Evidence for least edentation is atransly dependent on the chiefic and

670 Evidence for local adaptation is strongly dependent on the abiotic and

671 competitive environment

672 Despite the very large fitness effects of the abiotic and competitive 673 environments tested in these transplant experiments, evidence for local 674 adaptation in D. birchii along the elevational gradient could only be detected under a limited set of abiotic and biotic conditions. Increasing within-species 675 676 (intraspecific) competition in cages had a negative effect on productivity and 677 wing size of *D. birchii* at all transplant elevations. However, at the high 678 elevation transplant site, the effect on wing size varied according to the 679 elevation from which isofemale lines had been sourced, with flies from low 680 elevation source populations showing a much greater (3x in males and 9x in 681 females) reduction in mean wing size than high elevation flies in response to 682 increasing intraspecific competition. Given that the natural abundance of D.

683	birchii increases with elevation, this result is consistent with local adaptation of
684	high elevation flies to higher intraspecific density (e.g. by the evolution of
685	increased efficiency at extracting nutrient resources in the presence of
686	conspecifics). In female Drosophila melanogaster, large body size has been
687	shown to be strongly predictive of fitness (survival and lifetime productivity),
688	but only when tested under cool (not warm) conditions (McCabe & Partridge
689	1997). If the same is true in <i>D. birchii</i> , selection may favour the maintenance
690	of large body size at the cool edge of the range, even in the presence of high
691	intraspecific competition.
692	
693	In a study of damselflies, Siepielski et al. (2016) also found that source
694	populations differed in their susceptibility to the negative effects of
695	intraspecific density. In contrast to our result, they observed that populations
696	transplanted to their local site showed more, not less, reduction in fitness in
697	response to intraspecific competition. They attribute this to local populations
698	being better adapted to the abiotic environment at the transplant site and
699	therefore more productive, which exacerbated the intensity of competition
700	(Siepielski et al. 2016). However, in our study we did not find any difference
701	in mean productivity of populations from elevational extremes.
702	
703	Detecting local adaptation in <i>D. birchii</i> is therefore strongly dependent on both
704	the abiotic and biotic environment in which it is measured. This likely explains
705	why neither population divergence nor local adaptation was detected in a

706 previous experiment where *D. birchii* sourced from the same elevational range

707 was transplanted at very low density (O'Brien et al. 2017). Our finding that

708	intraspecific competition can strongly affect the likelihood of detecting
709	population divergence (and possible local adaptation) contrasts with that of
710	Hargreaves et al. (2020), who found in a meta-analysis that maintaining biotic
711	interactions in field transplant experiments did not increase the likelihood or
712	strength of local adaptation detected, compared with studies where biotic
713	interactions were excluded. However, it may be that variation among sites in
714	the extent to which biotic interactions reveal local adaptation, such as we
715	observed here, means that such effects are not detectable when averaged
716	over a wide range of environments.
717	
718	Some of the most compelling evidence for effects of biotic interactions on
719	adaptation comes from experimental evolution studies of microbial
720	communities (e.g. Lawrence et al. 2012; Fiegna et al. 2015; Jousset et al.
721	2016; Hall et al. 2018; Scheuerl et al. 2020). Such studies have shown that
722	competitive interactions can constrain adaptive responses to the abiotic
723	environment (e.g. Hall et al. 2018) and that individual species evolve at a
724	slower rate when they are maintained in diverse communities than when
725	evolved alone (Fiegna et al. 2015; Scheuerl et al. 2020). This may be
726	because negative biotic interactions such as competition reduce population
727	sizes and therefore evolutionary potential, or due to trade-offs between
728	adaptation to multiple interacting species or between biotic and abiotic
729	adaptation (Barraclough 2015). It is not yet known whether the tendency for
730	species interactions to reduce evolutionary responses generalises to
731	communities of other types of organisms, but if it does, we would expect local
732	adaptation to be weaker at low latitudes and elevations, where species

733 diversity is typically higher (e.g. Rahbek 1995; Hillebrand 2004; Schemske et 734 al 2009). The greater population divergence of *D. birchii* in response to 735 competition at the high elevation site (compared with the low elevation site) 736 appears to support this pattern. 737 738 739 Conclusions 740 741 Using a novel field transplant design, we assessed the fitness effects of 742 competitive interactions between two species of tropical rainforest Drosophila 743 (D. birchii and D. bunnanda) at sites along an elevation gradient spanning the 744 full climatic extent of their distributions. Consistent with expectations from 745 patterns of biodiversity along elevational and latitudinal gradients, we found 746 that fitness effects of both intra and interspecific competition increased 747 towards the warm, low elevation range margin in both species. In each 748 species, intraspecific competition reduced fitness more than interspecific 749 competition at the centre of the species' distribution, whereas the reverse was 750 true at the margins where the competitor species becomes more abundant, 751 consistent with adaptation to the abiotic environment inhabited by each 752 species. We also detected adaptation to the local competitive environment 753 within D. birchii, the more widespread species, but only at the high elevation 754 (cold) end of its distribution, suggesting evolutionary responses are contingent 755 upon both the abiotic and biotic environment. Our findings highlight the 756 importance of considering biotic interactions when investigating limits to 757 species' distributions and predicting ecological and evolutionary responses to

environmental change. This will be particularly important with climate change,

759 which is expected to have profound effects not just on the abiotic environment

- 760 but on community composition, and therefore the type and frequency of
- 761 interactions between organisms (Lurgi et al. 2012).

Word count: 6995 763

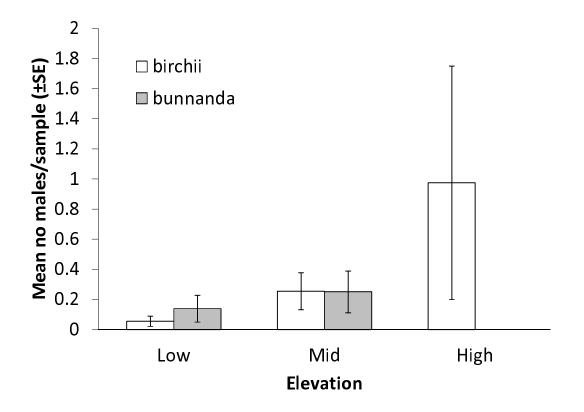
764

765

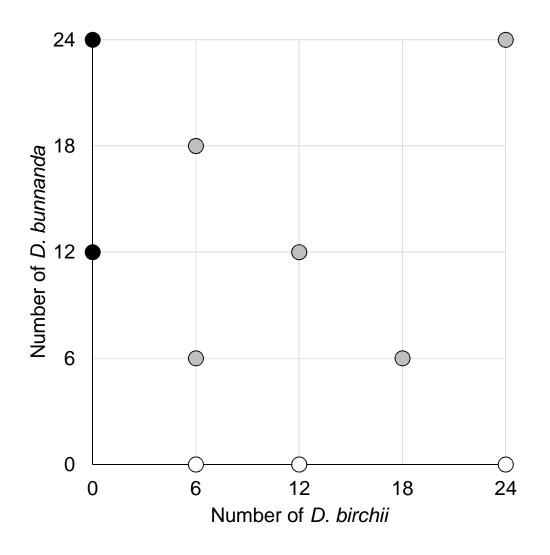
766 Acknowledgements

767

768 Thank you to Marcus Lee and Giovanni Bianco for assistance with running the 769 field transplant experiment, and to Jenny Cocciardi and Rebecca Moss for 770 maintaining the Drosophila isofemale lines. For assistance with mounting, 771 photographing and landmarking wings, we would like to thank: Katie Andrews, 772 Sasha Anisman, Eliane Belben, Hannah Bray, Guy Burstein, Jack Challice, 773 Amber-Rose Cooper, Lydia Davies, Peter Dobra, Jessie Fernando, Gemma 774 Glasscock, Dunia Gonzales, Vilhelmiina Haavisto, Sophie Harding, Maxwell 775 James, Bertie Loyd, Cameron Matthews, Harry New, Catherine Rawlinson, 776 Kate Rylands, Mina Sheppard, Nathan Williams, Victoria Williams and Ella 777 Wright. This work was funded by NERC standard grant NE/N010221/1. JH 778 was supported by Czech Science Foundation grant no. 17-27184Y. 779 780 781 References 782 783 Anderson, T.L. & Whiteman, H.H. (2015). Asymmetric effects of intra- and 784 interspecific competition on a pond-breeding salamander. *Ecology*, 96, 785 1681 - 1690. 786 787 Arthur, A.L., Weeks, A.R. & Sgro, C.M. (2008). Investigating latitudinal clines for 788 life history and stress resistance traits in *Drosophila simulans* from 789 eastern Australia. Journal of Evolutionary Biology, 21, 1470 - 1479. 790 791 Barraclough, T.G. (2015). How do species interactions affect evolutionary 792 dynamics across whole communities? Annual Review of Ecology, Evolution 793 and Systematics 46, 25 - 48. 794

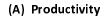

- 795 Bates, D., Machler, M., Bolker, B.M. & Walker, S.C. (2015). Fitting Linear Mixed-
- 796 Effects Models Using lme4. *Journal of Statistical Software*, 67, 1 - 48. 797
- 798 799 Bischoff, A., Crémieux, L., Smilauerova, M., Lawson, C.S., Mortimer, S.R., Dolezal, J., 800 Lanta, V., Edwards, A.R., Brook, A.J., Macel, M., Leps, J., Steinger, T. & 801 Müller-Schärer, H. (2006). Detecting local adaptation in widespread 802 grassland species -the importance of scale and local plant community. 803 *Journal of Ecology*, 94, 1130 - 1142. 804
- 805 Bridle, J.R., Gavaz, S. & Kennington, W.J. (2009). Testing limits to adaptation 806 along altitudinal gradients in rainforest Drosophila. Proceedings of the 807 Royal Society B: Biological Sciences, 276, 1507 - 1515.

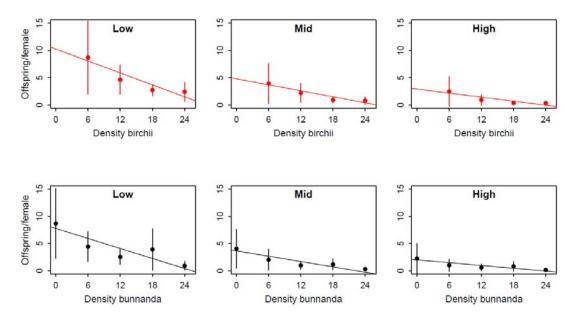
808	
809	Bridle, J.R., Kawata, M. & Butlin, R.K. (2019). Local adaptation stops where
810	ecological gradients steepen or are interrupted. <i>Evolutionary</i>
811	Applications, 12, 1449 - 1462.
812	
813	Coley, P.D. & Barone, J.A. (1996). Herbivory and plant defenses in tropical
814	forests. Annual Review of Ecology and Systematics, 27, 305 - 335
815	
816	Darwin, C.R. (1859). On the origins of species by means of natural selection, or
817	the preservation of favoured races in the struggle for life. John Murray,
818	London UK
819	
820	Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B. & Wood, S. (1998). Making
820	
	mistakes when predicting shifts in species range in response to global
822	warming. <i>Nature</i> , 391, 783 - 786.
823	
824	Fiegna, F., Scheuerl, T., Moreno-Letelier, A., Bell, T. & Barraclough, T.G. (2015).
825	Saturating effects of species diversity on life-history evolution in bacteria.
826	Proceedings of the Royal Society of London B., 282, 20151794.
827	
828	
829	Godsoe, W., Murray, R. & Plank, M.J. (2015). The effect of competition on species'
830	distributions depends on coexistence, rather than scale alone. <i>Ecography</i>
831	38, 1071 - 1079.
832	
833	Godsoe, W., Franklin, J. & Blanchet, F.G. (2017). Effects of biotic interactions on
834	modeled species' distribution can be masked by environmental gradients.
835	Ecology and Evolution, 7, 654 - 664.
836	
837	Grant, E.H.C., Brand, A.B., De Wekker, S.F.J., Lee, T.R. & Wofford, J.E.B. (2018).
838	Evidence that climate sets the lower elevation range limit in a high-
839	elevation endemic salamander. <i>Ecology and Evolution</i> , 8, 7553 - 7562.
840	
841	Griffiths, J.A., Schiffer, M. & Hofmann, A.A. (2005). Clinal variation and laboratory
842	adaptation in the rainforest species Drosophila birchii for stress
843	resistance, wing size, wing shape and development time. <i>Journal of</i>
844	Evolutionary Biology, 18, 213 - 222.
845	
846	Hall, J.P.J., Harrison, E. & Brockhurst, M.A. (2018). Competitive species
847	interactions constrain abiotic adaptation in a bacterial soil community.
848	Evolution Letters, 2, 580 - 589.
849	
850	Hargreaves, A.L., Germain, R.M., Bontrager, M., Persi, J. & Angert, A.L. (2020).
851	Local adaptation to biotic interactions: a meta-analysis across latitudes.
852	The American Naturalist 195, 395 - 411.
852	ine interieur italaranst 195,595 - 111.
855	Inouye, B.D. (2001). Response surface experimental designs for investigating
855	interspecific competition. <i>Ecology</i> , 82, 2696 - 2706.
855	
000	

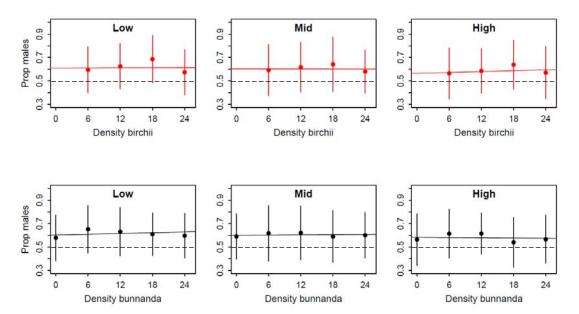

857 858 859 860 861	Jeffs, C.T., Terry, J.C.D., Higgie, M., Jandovà, A., Konvičkovà, H., Brown, J.J., Lue, C-H., Schiffer, M., O'Brien, E.K., Bridle, J.R., Hrček, J. & Lewis, O.T. (2020). Molecular analyses reveal consistent food web structure with elevation in rainforest <i>Drosophila</i> -parasitoid communities. <i>BioRxiv</i> DOI: https://doi.org/10.1101/2020.07.21.213678.
862 863 864 865 866	Jousset, A., Eisenhauer, N., Merker, M., Mouquet, N. & Scheu, S. (2016). High functional diversity stimulates diversification in experimental microbial communities. <i>Science Advances</i> , 2, e1600124.
867 868 869	Kawecki, T.J. & Ebert, D. (2004). Conceptual issues in local adaptation. <i>Ecology Letters</i> , 7, 1225 - 1241.
870 871 872	Körner, C. (2007). The use of 'altitude' in ecological research. <i>Trends in Ecology</i> & <i>Evolution</i> , 22, 569 - 574.
873 874 875 876	Lawrence, D., Fiegna, F., Behrends, V., Bundy, J.G., Phillimore, A.B., Bell, T. & Barraclough, T.G. (2012). Species interactions alter evolutionary responses to a novel environment. <i>PLOS Biology</i> , 10, e1001330.
877 878 879 880	Long, T.A.F. & Pischedda, A. (2005). Do female <i>Drosophila melanogaster</i> adaptively bias offspring sex ratios in relation to the age of their mate? <i>Proceedings of the Royal Society B: Biological Sciences</i> , 272, 1781 - 1787.
881 882 883 884	Lurgi, M., López, B.C. & Montoya, J.M. (2012). Novel communities from climate change. <i>Philosophical Transactions of the Royal Society B</i> , 367, 2913 - 2922.
885 886 887	Mange, A.P. (1970). Possible nonrandom utilization of X- and Y-bearing sperm in Drosophila melanogaster. Genetics, 65, 95 - 106.
888 889 890 891	McCabe, J. & Partridge, L. (1997). An interaction between environmental temperature and genetic variation for body size for the fitness of adult female <i>Drosophila melanogaster</i> . <i>Evolution</i> , 51, 1164 - 1174.
892 893 894 895	Moles, A.T. & Ollerton, J. (2016). Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea? <i>Biotropica</i> , 48, 141 - 145.
895 896 897 898 899	Morris, R.J., Sinclair, F.H. & Burwell, C.J. (2015). Food web structure changes with elevation but not rainforest stratum. <i>Ecography</i> , 38, 792 - 802.
900 901 902 903 904	O'Brien, E.K., Higgie, M., Reynolds, A., Hoffmann, A.A. & Bridle, J.R. (2017). Testing for local adaptation and evolutionary potential along altitudinal gradients in rainforest Drosophila: beyond laboratory estimates. <i>Global Change</i> <i>Biology</i> , 23, 1847 - 1860.

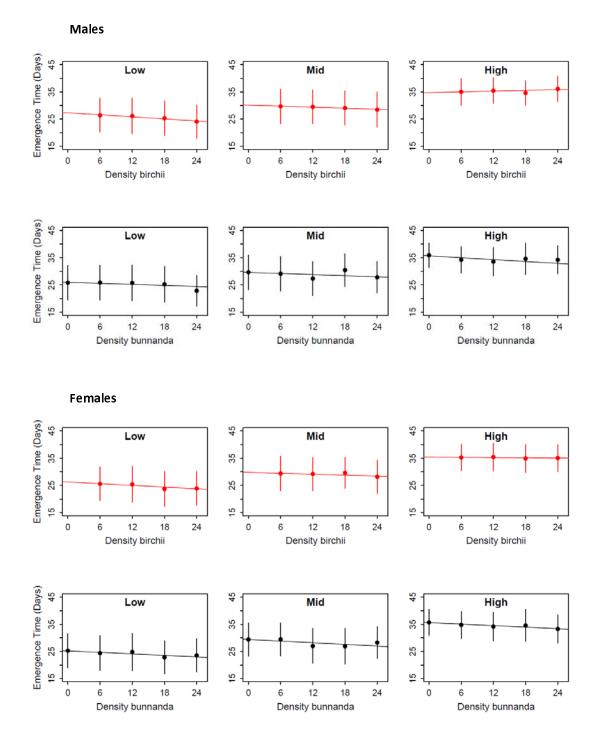
905 906 907 908	Partridge, L. & Farquhar, M. (1983). Lifetime mating success of male fruitflies (Drosophila melanogaster) is related to their size. Animal Behaviour, 31, 871 - 877.
909 910 911 912	Pearson, R.G. & Dawson, T.P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? <i>Global Ecology and Biogeography</i> , 12, 361 - 371.
913 914 915 916	Poisot, T., Bever, J.D., Nemri, A., Thrall, P.H. & Hochberg, M.E. (2011). A conceptual framework for the evolution of ecological specialisation. <i>Ecology Letters</i> , 14, 841 - 851.
917 918 919	Rahbek, C. (1995). The elevational gradient of species richness - a uniform pattern. <i>Ecography</i> , 18, 200 - 205.
920 921 922 923	Rice, K.J. & Knapp, E.E. (2008). Effects of competition and life history stage on the expression of local adaptation in two native bunchgrasses. <i>Restoration Ecology</i> , 16, 12 - 23.
923 924 925 926 927 928	Santos, M., Ruiz, A., Quezada-Diaz, J.E., Barbadilla, A. & Fontdevila, A. (1992). The evolutionary history of <i>Drosophila buzzatii</i> . XX. Positive phenotypic covariance between field adult fitness components and body size. <i>Journal</i> of Evolutionary Biology, 5, 403 - 422.
929 930 931 932 933	Santos, M., Fowler, K. & Partridge, L. (1994). Gene-environment interaction for body size and larval density in Drosophila melanogaster: an investigation of effects on development time, thorax length and adult sex ratio. Heredity, 72, 515 - 521
934 935 936	Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? <i>Annual Review of Ecology, Evolution, and Systematics,</i> 40, 245 - 269.
937 938 939 940 941	Scheuerl, T., Hopkins, M., Nowell, R.W., Rivett, D.W., Barraclough, T.G. & Bell, T. (2020). Bacterial adaptation is constrained in complex communities. <i>Nature Communications</i> , 11, 1 - 8.
942 943 944 945	Schiffer, M. & McEvey, S.F. (2006). Drosophila bunnanda - a new species from northern Australia with notes on other Australian members of the montium subgroup (Diptera:Drosophilidae). Zootaxa, 1333, 1-23.
946 947 948 949	Stuart, Y.E., Campbell, T.S., Hohenlohe, P.A., Reynolds, R.G., Revell, L.J. & Losos, J.B. (2014). Rapid evolution of a native species following invasion by a congener. Science, 346, 463 - 466.
950 951 952 953	Siepielski, A.M., Nemirov, A., Cattivera, M. & Nickerson, A. (2016). Experimental evidence for an eco-evolutionary coupling between local adaptation and intraspecific competition. <i>The American Naturalist</i> 187, 447 - 456.

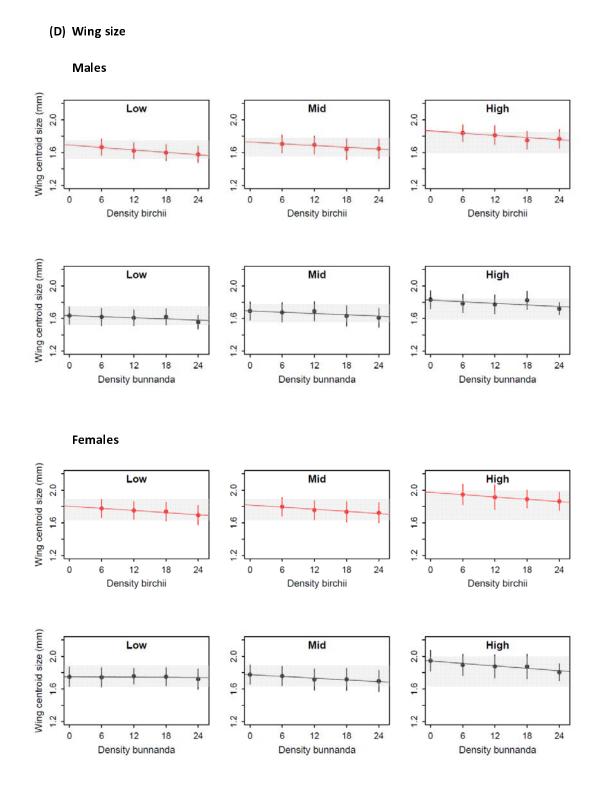
954 955 956	Trivers, R.L. & Willard, D.E. (1973). Natural selection of parental ability to vary sex ratio of offspring. <i>Science</i> , 179, 90 - 92.
957	van Heerwaarden, B., Kellermann, V., Schiffer, M., Blacket, M., Sgrò, C.M. &
958	Hoffmann, A.A. (2009). Testing evolutionary hypotheses about species
959	borders: patterns of genetic variation towards the southern borders of
960	two rainforest <i>Drosophila</i> and a related habitat generalist. <i>Proceedings of</i>
961	the Royal Society B., 276, 1517 - 1526.
962	
963	Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F. <i>et al.</i>
964	(2013). The role of biotic interactions in shaping distributions and
965	realised assemblages of species: implications for species distribution
966	modelling. <i>Biological Reviews,</i> 88, 15-30.
967	
968	
969	
970	
971	



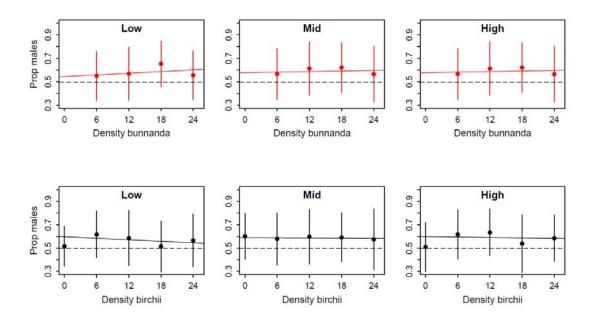

Figure 1. Abundance of *Drosophila birchii* (white bars) and *D. bunnanda* (grey bars) males caught in field traps at Paluma between March – June 2017, including the period when the caged transplant experiment was conducted. Bars indicate the mean number of males of each species caught per trap per day, with error bars indicating standard errors among days.

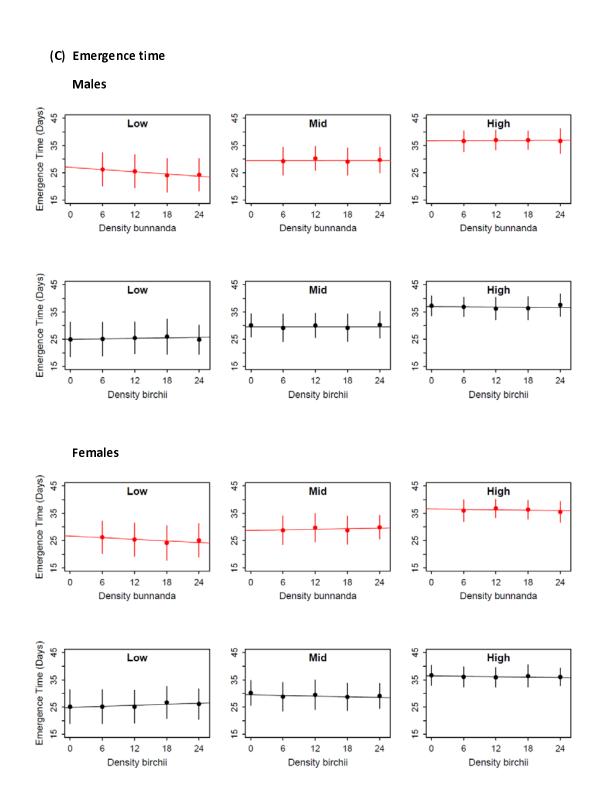

Figure 2. Density treatments in vials, each of which were transplanted to high, middle and low elevation sites at Paluma (average 32 vials/treatment/site). There were 10 treatments, representing different numbers and/or ratios of *D. birchii* and *D. bunnanda*. White circles are treatments with only *D. birchii*, black circles are treatments with only *D. bunnanda*, and grey circles are treatments with a combination of both species.

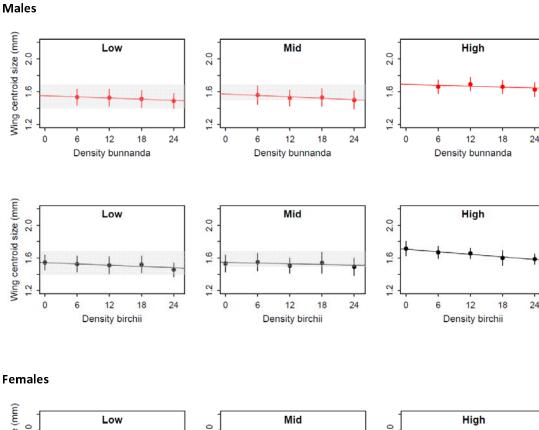







(C) Emergence time





(B) Sex ratio

24

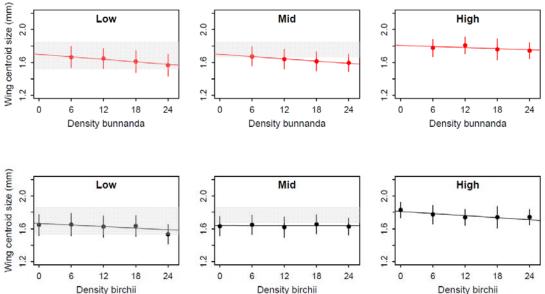
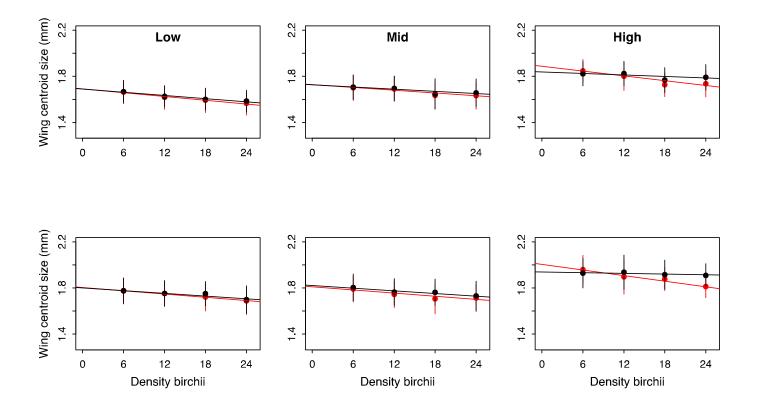



Figure 3. Effect of intraspecific competition (red markers and lines) and interspecific competition (black markers and lines) on productivity, sex ratio, emergence time and wing size of (i) Drosophila birchii and (ii) D. bunnanda at elevations spanning the abiotic environmental range of both species. Points are means of predicted values from (generalised) linear mixed models that included intraspecific density, interspecific density, elevation and all interactions. Error bars are standard deviations. Lines are the partial regression lines estimated from these models, and

therefore represent the independent effect of each type of competition, after accounting for other sources of variation. Where relevant, predicted values have been back-transformed so they are on the original scale. Dashed lines on plots of sex ratio represent an equal sex ratio in the offspring (proportion males = 0.5), therefore values above this line indicate a male-biased sex ratio and values below the line a female-biased sex ratio. The shaded regions on wing size plots show the area bounded by 1 standard deviation either side of the mean wing size of field-caught flies of the relevant sex and species at that elevation.

bioRxiv preprint doi: https://doi.org/10.1101/395624; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 4. Effect of intraspecific competition (given by the density of *D. birchii*) on wing size of *Drosophila birchii* males (top) and females (bottom) from low elevation (red points) and high elevation (black points) source populations, when transplanted to the low, mid and high elevation sites. Points are means of predicted values from linear mixed models that included intraspecific density, interspecific density, source elevation and all interactions, fitted separately for males and females. Error bars are standard deviations. Lines are the partial regression lines estimated from these models, and therefore represent the independent effect of intraspecific competition, after accounting for other sources of variation. Intraspecific competition caused a significant reduction in wing size of both males and females at all transplant sites. However, the response of low and high elevation source populations only differed at the high elevation site, where intraspecific competition caused a greater reduction in the wing size of flies sourced from low elevation than those from high elevation in both males and females.

Table 1. Summary of effects of competition (Intraspecific and Interspecific density) and transplant site (Elevation) on productivity, sex ratio, emergence time and wing size in *Drosophila birchii* and *D. bunnanda*. For *D. birchii*, we additionally tested for divergence between flies sourced from high and low elevation sites (Source elevation). These effects and all 2-way interactions were fitted as fixed factors in (generalised) linear mixed models for each species and trait. For emergence time and wing size, separate models were fitted for each sex. Population was included as a random factor in all models, and vial was additionally included as a random factor in models analysing variation in emergence time and wing size. Values shown for effects on each trait are χ^2 values obtained from a comparison of the log likelihood of models with and without that fixed effect term included. Within each species, we used a Bonferroni-corrected significance threshold of P = 0.013 to test each fixed effect, to account for testing of multiple traits. Tests where the *P*-value for a trait was below this threshold are highlighted and in bold italics. Symbols indicate the range within which *P*-values fall. See legend beneath table.

			Trait					
Species	Effect	df	Productivity	Sex ratio	Emergence time		Wing size	
					Males	Females	Males	Females
	Intraspecific density	1	293.2 ^{***}	0.016	14.72^{**}	9.077 [*]	122.4 ^{***}	69.51 ***
	Interspecific density	1	297.5 ***	20.65***	19.18^{***}	30.72***	36.88***	14.82 ^{**}
	Elevation	2	<i>390.8^{***}</i>	8.785+	5 23.4 ***	680.9 ***	510.9 ^{***}	340.9***
Drosophila	Source elevation	1	0.354	0.347	2.475	4.129†	1.429	1.794
birchii								
Dirchii	Intraspecific x interspecific density	1	135.8 ^{***}	0.217	0.070	9.495 [*]	6.598†	13.05**
(847 vials)	Intraspecific density x Elevation	2	14.84 ^{**}	0.542	8.795†	1.348	1.663	0.170
	Intraspecific density x Source elevation	1	1.402	0.025	1.497	10.79 [*]	2.037	3.885+
	Interspecific density x Elevation	2	<i>33.23^{***}</i>	8.376†	0.837	0.049	0.027	13.40 [*]
	Interspecific density x Source elevation	1	0	0.037	0.123	0.056	0.645	1.327
	Elevation x Source elevation	2	2.535	2.005	0.951	1.218	0.683	0.745
Drosophila	Intraspecific density	1	166.9 ^{***}	9.315 [*]	5.609†	535.8 ^{***}	25.19^{***}	48.29 ^{***}
bunnanda	Interspecific density	1	89.92 ^{***}	2.326	0.105	3.706	25.54***	1 2.90^{**}
	Elevation	2	267.6***	6.762+	5 42.8^{***}	539.6 ^{***}	293.6***	170.6***
(572 vials)								

Intraspecific x interspecific density	/ 1	36.58***	2.408	3.235	0.729	1.916	0.177
Intraspecific density x Elevation	2	36.81***	2.503	8.451†	7.244†	2.135	10.35 [*]
Interspecific density x Elevation	2	1.238	5.710	0.407	5.569	8.347†	5.714

*** P < 0.0001; ** 0.0001 $\leq P < 0.001$; *0.001 $\leq P < 0.013$; †0.013 $\leq P < 0.05$

Table 2. Effects of intraspecific and interspecific competition on productivity, sex ratio, emergence time and wing size in Drosophila birchii and D. bunnanda at each transplant elevation. Shown are estimates of the partial regression coefficients (β) for effects of intraspecific and interspecific density (i.e. holding the other variable constant) on each trait, and its standard error (SE). These were obtained from (generalised) linear mixed models fitted separately for each species, trait and elevation, and separately for males and females for emergence time and wing size. Also shown is the intercept and its SE for each model, back-transformed where necessary so that all values are on the original scale. For productivity and sex ratio, the expected change in the trait value with respect to each predictor variable described by the coefficients (β) is on the transformed/link scale used in the model (square root for productivity, log for sex ratio), and so should be interpreted accordingly. The final column gives the ratio of the two partial regression coefficients, which we use to evaluate the relative effect of intraspecific vs interspecific competition on each trait at each elevation. This was calculated as $\beta_{\text{Intraspecific}}/\beta_{\text{Interspecific}}$, therefore absolute values greater than 1 indicate a stronger effect of intraspecific competition, and absolute values less than 1 a stronger effect of interspecific competition. Negative values indicate that the two types of competition had opposite effects (i.e. one type increased the value of the trait, while the other decreased it. Within each species, we used a Bonferroni-corrected significance threshold of P = 0.013 to test each fixed effect, to account for testing of multiple traits. Cases where the partial regression coefficient was significant at this threshold are highlighted and in bold italics. Tests where P < 0.05 but not below the corrected threshold are in italics. Symbols indicate the range within which P-values fall. See legend beneath table.

	Elevation	Trait	Intercept (SE)	β _{Intraspecific} (± SE)	B _{Interspecific} (± SE)	B Intraspecific / B Interspecific
	Low (278 vials)	Productivity	17.13 (0.02)	-0.109 (0.009)***	-0.126 (0.011) ^{***}	0.865
		Sex ratio	0.462 (0.52)	0.001 (0.005)	0.027 (0.009) ***	0.037
		Emergence time				
		Males	28.33 (0.69)	-0.123 (0.043) ***	-0.062 (0.059) [*]	1.980
		Females	28.22 (0.64)	-0.171 (0.040) [†]	-0.220 (0.058) **	0.777
Drosophila		Wing size (x 10 ⁻³)				
birchii		Males	1.708 (0.013)	<i>-5.31</i> (0.712) ^{***}	<i>-4.93</i> (0.981) ^{***}	1.077
		Females	1.808 (0.017)	-4.71 (0.937) ***	-2.93 (1.37)	1.608
	Mid (288 vials)	Productivity	8.827 (0.01)	-0.084 (0.006) ^{***}	-0.111 (0.008) ^{***}	0.757
		Sex ratio	0.498 (0.50)	-0.003 (0.008)	0.008 (0.014)	0.375
		Emergence time				

					+	
		Males	30.92 (0.72)	-0.092 (0.049)	-0.066 (0.074) [*]	1.394
		Females	32.30 (0.74)	-0.188 (0.048)	-0.252 (0.070) [*]	0.746
		Wing size (x 10 ⁻³)				
		Males	1.739 (0.015)	-3.91 (1.01) ^{****}	-3.38 (1.50) **	1.157
		Females	1.841 (0.019)	-4.70 (1.25) ****	-7.12 (1.92) **	0.660
		Productivity	4.227 (0.01)	-0.070 (0.007)***	-0.070 (0.009) ^{***}	1.00
		Sex ratio	0.416 (0.54)	0.011 (0.012)	-0.008 (0.018)	-1.375
		Emergence time				
		Males	35.70 (0.83)	0.010 (0.054)	-0.060 (0.079) *	-0.167
	High	Females	36.30 (0.74)	-0.022 (0.050)	-0.102 (0.070) *	0.216
	(281 vials)	Wing size (x 10 ⁻³)		. ,		
		Males	1.842 (0.022)	-2.41 (1.31) ***	-2.08 (1.88) [†]	1.159
		Females	1.963 (0.027)	-2.02 (1.59) **	-7.19 (2.12) **	0.281
				. ,		
		Productivity	10.98 (0.03)	-0.090 (0.011) ****	-0.070 (0.012) ***	1.286
	Low (188 vials)	Sex ratio	0.397 (0.54)	0.019 (0.010)*	$-0.013(0.013)^{\dagger}$	-1.462
		Emergence time		. , ,		
		Males	27.48 (1.05)	-0.163 (0.064) *	-0.055 (0.085)	2.964
		Females	26.74 (0.92)	-0.137 (0.058) *	0.002 (0.071) ⁺	-68.50
		Wing size (x 10 ⁻³)	、 ,			
		Males	1.567 (0.019)	-2.49 (1.09)**	-2.26 (1.41) **	1.102
Drosophila		Females	1.748 (0.025)	-6.89 (1.54) ^{****}	-4.87 (1.81) **	1.415
bunnanda			ι γ			
		Productivity	5.354 (0.02)	-0.064 (0.008) ***	-0.061 (0.010) ***	1.049
		, Sex ratio	0.502 (0.56)	-0.002 (0.015)	-0.030 (0.021)	0.067
	Mid	Emergence time	· · /	·····/	·/	
	(194 vials)	Males	29.92 (0.94)	-0.032 (0.058)	-0.054 (0.081)	0.593
		Females	28.54 (1.00)	0.041 (0.060)	0.038 (0.079)	1.079
		Wing size (x 10^{-3})	_0.0 ((1.00)	0.011 (0.000)		1.0, 5

	_	Males Females	1.603 (0.025) 1.758 (0.026)	-4.23 (1.53) [*] -7.99 (1.60) ^{***}	-3.84 (2.08) -5.61 (2.19)	1.102 1.424
		Productivity	3.500 (0.02)	-0.052 (0.008) ***	-0.061 (0.009) ****	0.852
		Sex ratio	0.497 (0.57)	-0.014 (0.016)	-0.025 (0.027)	0.560
		Emergence time				
	High	Males	38.47 (0.95)	-0.089 (0.057)	-0.174 (0.086)	0.511
	(190 vials)	Females	36.26 (0.88)	0.005 (0.052)	-0.020 (0.074)	-0.250
		Wing size (x 10 ⁻³)				
		Males	1.750 (0.021)	-3.33 (1.24)	-8.15 (1.88) ***	0.409
		Females	1.858 (0.033)	-4.50 (2.01)	-8.83 (2.70) ⁺	0.510

**** P < 0.0001; ** 0.0001 $\le P < 0.001$; *0.001 $\le P < 0.01$; +0.01 $\le P < 0.05$