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Abstract 13 

The water buffalo (Bubalus bubalis) has shown enormous milk production 14 

potential in many Asian countries. India is considered as the home tract of some of the best 15 

buffalo breeds. However, genetic structure of the Indian river buffalo is poorly understood. 16 

Hence, for selection and breeding strategies, there is a need to characterize the populations 17 

and understand the genetic structure of various buffalo breeds. In this study, we have 18 

analysed genetic variability and population structure of seven buffalo breeds from their 19 

respective geographical regions using Axiom
®

 Buffalo Genotyping Array having 124,030 20 

Single Nucleotide Polymorphisms (SNPs). Blood samples were obtained from 302 21 

buffaloes comprising Murrah, Nili-Ravi, Mehsana, Jaffarabadi, Banni, Pandharpuri and 22 

Surti breeds. Diversity, as measured by expected heterozygosity (He) ranged from 0.364 in 23 

the Surti to 0.384 in the Murrah breed. All the breeds showed negligible inbreeding 24 

coefficient. Pair-wise FST values revealed the lowest genetic distance between Mehsana 25 

and Nili-Ravi (0.0022) while highest between Surti and Pandharpuri (0.030). Principal 26 

component analysis and structure analysis unveiled the differentiation of Surti, 27 

Pandharpuri and Jaffarabadi in first two PCs, while remaining breeds were grouped 28 

together as a separate single cluster. Murrah and Mehsana showed early linkage 29 

disequilibrium decay while Surti breed showed late decay, similarly LD based Ne was 30 

drastically declined for Murrah and Mehsana since last 100 generations. In LD blocks to 31 

QTLs concordance analysis, 14.19 per cent of concordance was observed with 873 (out of 32 

1144) LD blocks overlapped with 8912 (out of 67804) QTLs. Overall, total 4090 markers 33 

were identified from all LD blocks for six types of traits. Results of this study indicated 34 

that these SNP markers could differentiate phenotypically distinct breeds like Surti, 35 
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Pandharpuri and Jaffarabadi but not others. So, there is a need to develop SNP chip based 36 

on SNP markers identified by sequence information of local breeds. 37 

Author Summary 38 

 Indian buffaloes, through 13 recognised breeds, contribute about 49% in 39 

total milk production and play a vital role in enhancing the economic condition of Indian 40 

farmers. High density genotyping these breeds will allow us to study differences at the 41 

molecular level. Evolutionary relationship and phenotypes relations with genotype could 42 

be tested with high density genotyping. Breed structure analysis helps to take effective 43 

breeding policy decision. In the present study, we have used the high-throughput 44 

microarray based genotyping technology for SNP markers. These markers were used for 45 

breed differentiation using various genetic parameters. Population structure reflected the 46 

proportion of breed admixture among studied breeds. We have also tried to dig the markers 47 

associated with traits based LD calculation. However, these SNPs couldn’t explain obvious 48 

variation up to the expected level, hence, there is need to develop an indigenous SNP chip 49 

based on Indian buffalo populations.  50 
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Introduction 51 

The importance of genetic diversity in livestock is directly related to the need for 52 

genetic improvement of economically important traits as well as to facilitate rapid 53 

adaptation to potential changes as per breeding goals [1]. Population structure, and unusual 54 

levels of shared ancestry, can potentially cause spurious associations. The analysis of a 55 

large number of SNPs across the genome will reveal aspects of the population genetic 56 

structure, including evidence of adaptive selection across the genome [2]. Domestication 57 

greatly changed the morphological, behavioural characteristics, and selection programmes 58 

for improving the production traits allowed the formation of very diverse breeds [3].  59 

India, the largest producer of milk in the world, is producing over 155.5 million 60 

tone milk during 2015-16 and about 49% of milk production is contributed by buffaloes 61 

[4]. India has approximately 108.7 million buffaloes [4] with 13 registered breeds 62 

recognized based on their phenotypic characteristics, production performance, utility 63 

pattern and eco-geographical distribution.  64 

Genetic analysis is facilitated by genotyping polymorphic genetic loci, also called 65 

genetic variants, signspots, landmarks or markers. SNPs are the most common type of 66 

genetic variants, consisting of a single nucleotide differences between two individuals at a 67 

particular site in the DNA sequence. SNPs are generally bi-allelic. Assessing genetic 68 

biodiversity and population structure of minor breeds through the information provided by 69 

neutral molecular markers like, SNPs & microsatellites, allows determination of their 70 

extinction risk and to design strategies for their management and conservation [5]. 71 

Maintenance of genetic variation is a condition for continuous genetic improvement. For 72 

overall breed improvement and to meet future challenges there is an immediate action to 73 

be taken for characterization of buffalo breeds in India. Comprehensive knowledge of 74 

genetic variation within and among different breeds is very much necessary for 75 

understanding and improving traits of economic importance. Current study was performed 76 

based on SNP genotyping data to determine the genetic structure of Indian buffalo breeds 77 

so that to construct appropriate conservation strategies and to utilize the breed variation.  78 

Materials and Methods 79 

Animals and Sampling 80 

A total of 302 female buffaloes were used in this study, comprising of seven 81 

breeds: Murrah (n=70), Nili-Ravi (n = 40), Mehsana (n = 75), Jaffarabadi (n = 41), Banni 82 

(n = 20), Pandharpuri (n = 34) and Surti (n = 22). All animals were selected based on their 83 

true breed specific phenotypic characteristics from their respective home tract and blood 84 

samples were collected from all the selected animals. 85 

SNP Genotyping 86 

DNA was extracted using QIAamp® kit as per manufacturer’s instructions at R&D 87 

laboratory NDDB, Hyderabad. DNA quantity and quality were checked using Nanodrop
TM

 88 

(Thermo Fisher Scientific, MA) and agarose gel electrophoresis respectively. SNP 89 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 19, 2018. ; https://doi.org/10.1101/395681doi: bioRxiv preprint 

https://doi.org/10.1101/395681


4 

 

genotyping was carried out using Axiom
®

 Buffalo Genotyping Array with 123,040 SNPs 90 

on GeneTitan
®

 MC (Thermo Fisher Scientific, MA) instrument at a commercial laboratory 91 

(Imperial Life Science Group, Gurgaon). Array was pre-designed through the Expert 92 

Design Program, facilitated by Affymetrix and developed in collaboration with the 93 

International Buffalo Genome Consortium using reference genome of Bos taurus 94 

(UMD3.1) for SNP position and annotation (Thermo Fisher Scientific, MA; Iamartino et 95 

al., 2013). It was designed based on SNPs discovered from Mediterranean, Murrah, 96 

Jaffarabadi and Nili-Ravi breeds of buffaloes. The genotyping experiment was performed 97 

in four batches, NDDB_EXP 1 (96 samples), NDDB_EXP 2 (96 samples), NDDB_EXP 3 98 

(95 samples) and NDDB_EXP 4 (89 samples) with average call rate ranged from 97 per 99 

cent to 98.8 per cent. 100 

Data filtering and quality control 101 

Only SNPs mapped to autosomal chromosomes were used in this study. Data was 102 

filtered based on criteria: SNPs that have poor call rate (<95%). Further, quality control 103 

was performed with PLINK v1.07 [6] and SNPs removed with following criteria: missing 104 

genotypes (geno < 0.1), individual missing genotypes (mind < 0.1), minor allele frequency 105 

(MAF < 0.05) and Hardy-Weinberg Equilibrium (HWE < 0.00001). Remaining markers 106 

were used for further analysis. 107 

Genetic Diversity Assessment 108 

Observed and expected genotype frequencies within each breed was calculated for 109 

all the loci using PLINK v1.07 [7] and the results were evaluated based on p values 110 

obtained for each loci. Linkage disequilibrium was calculated using PLINK and R
2
 values 111 

were calculated for all SNP pairs which were located not more than 1000 SNPs apart and 112 

falling under 10 Mb distance windows. Further SNPs were binned with bin size of 10,000 113 

bases distance and average R
2
 value of each bin was plotted against median distance value 114 

ggplot2 v2.2.1 [8] package in R v3.3. Pair-wise FST values between all possible 115 

combination of breeds were estimated and subsequently dendrogram was generated in 116 

Fitch-Phylip [9] using Fitch-Margoliash method. 117 

Breed-wise effective population size (Ne) was calculated using SNeP v1.1 [10] 118 

with parameters: bin-width=50,000 bp; minimum distance between SNPs=50,000 bp, 119 

maximum distance between SNPs=4,000,000 bp, minimum allele frequency=0.05. 120 

Principle component analysis was calculated using PLINK-1.9 [11] with 285 highly 121 

variable markers (Allele frequency difference between breeds > 0.5). PCA was plotted 122 

using scatterplot3d [12] package in R. Breed structure and breed differentiation was 123 

performed using fastSTRUCTURE [13] using same 285 highly variable markers. The 124 

differentiation of populations was performed up to the group (K) level of 8 using simple 125 

model. The fastSTRUCTURE analysis provided ancestry proportions for each sample 126 

under analysis which was graphically represented by distruct.py script within the 127 

fastSTRUCTURE software.  128 
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Genome wide LD block mapping on QTLs 129 

Linkage disequilibrium (LD) blocks, combination of alleles linked along a 130 

chromosome and inherited together from a common ancestor, were generated with Java 131 

based gPLINK v1.0 and Haploview v2.01 [14]. Blocks were defined by employing 132 

haplotypic diversity criterion, where a small number of common haplotypes provide high 133 

chromosomal frequency coverage [15-18]. The algorithm suggested by Gabriel et al. [19] 134 

was used which defines a pair of SNPs to be in strong LD if the upper 95% confidence 135 

bound of Dʹ value between 0.7 and 0.98. Reconstructed haplotypes were inserted into 136 

Haploview v2.01 [14] to estimate LD statistics and construct the blocking pattern for all 29 137 

autosomes. LD blocks were estimated using an accelerated EM algorithm method 138 

described by Qin et al. [20]. QTL database was retrieved from previously reported QTLs 139 

in Animal QTLdb [21]. QTL data set of cattle (Bos taurus) QTL_UMD_3.11.bed was used 140 

as a reference for the analysis, containing the information regarding six types of the traits: 141 

milk traits; health traits; production traits; reproduction traits; exterior traits; and meat and 142 

carcass traits. The QTL files were intersected with the files of LD-blocks using Bedtools 143 

v2.26.0 [22] to obtain information of QTLs overlapping with LD blocks. 144 

Results 145 

Genetic Diversity Analysis 146 

After data filtering and quality filtering, 295 samples with 75,704 SNPs remained 147 

available for population analysis. SNPs were discarded (total 47,336 SNPs) based on 148 

criteria: poor quality call rate (42,166), unknown chromosome-specific position (17), 149 

Chromosome X (4228), HWE less than 0.00001 (528), missing genotype rate less than 0.1 150 

(471), and all genotypes from seven Nili-Ravi animals were removed since they were 151 

outliers. 152 

Alternate allele frequency followed almost intermediate distribution with higher 153 

proportion for Murrah and Mehsana (Fig 1.A). Highest allele count was observed in the 154 

range of frequency class 0.2-0.5. Highest average alternate allele frequency was observed 155 

in Nili-Ravi (0.3051) followed by Murrah (0.3049) while Jaffarabadi showed least average 156 

(0.3028) among all breeds (Fig 1.B). Highest proportion of alternate alleles was observed 157 

in Murrah with 91.86 per cent while lowest proportion was observed in Surti with 89.86 158 

per cent (Fig 1.C). The observed heterozygosity (Ho) and expected heterozygosity (He) 159 

was also found highest in Murrah breed (0.3864 and 0.3846) followed by Mehsana breed 160 

(0.3857 and 0.3830), while lowest was observed in Pandharpuri breed with Ho = 0.3719 161 

and He = 0.3680 (Error! Reference source not found. 1). The lowest FIS were observed 162 

for Murrah (-0.0046) and Mehsana (-0.0070) while highest was seen in Surti (-0.0314) 163 

followed by Banni (-0.0270). 164 

FST values showed lowest genetic distance between Murrah and Nili-Ravi 165 

(0.00221) followed by Murrah and Mehsana (0.00402) while highest genetic distance was 166 

observed between Surti and Pandharpuri (0.03097) followed by Surti and Banni (0.02650) 167 

(Table 2). Based on FST values, phylogenetic tree placed Nili-Ravi and Murrah as well as 168 
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Mehsana and Banni together in two separate clusters, which corresponds with their 169 

geographical origin (Fig 2). This differentiation also correlates with the phenotypic 170 

differentiation of the buffalo breeds.  171 

Population Structure 172 

The total variability of principal components explained was 65.6 per cent of which 173 

by first, second and third components explained 30.05 per cent, 27.14 per cent and 8.45 174 

per cent, respectively. This variation resulted in separate cluster of Surti, Pandharpuri and 175 

Jaffarabadi on coordinates 1, 2 and 3 respectively while other breeds remain admixed (Fig 176 

3). 177 

Further, relatedness between breeds and the significance of the existence of 178 

subpopulations was investigated by model-based unsurprised clustering using K=2 to K=8 179 

(K values indicates the number of groups). Banni breed showed better separation with 180 

small amount of admixture at all levels while Murrah and Mehsana breed showed higher 181 

amount of admixture consistent with its crossing with other breeds. With increasing K 182 

values, Pandharpuri and Surti showed separation at all subsequent levels (Fig 4). At K=7, 183 

four buffalo breeds (Surti, Pandharpuri, Jaffarabadi and Banni) were distinctly separated. 184 

Three Jaffarabadi breed were identified as pure breed based on Q-value greater than 95 per 185 

cent while remaining showed variable amount of admixture. Similarly, Pandharpuri 186 

buffaloes showed highest number (26) of purebred individuals. Likewise, Surti breed 187 

showed negligible admixture with other breeds.  188 

Linkage Disequilibrium Analysis 189 

LD decay was performed using bin size of 10 kb distance between SNPs. LD decay 190 

showed highest R
2
 value in Surti (from 0.412 to 0.175) followed by Banni (from 0.412 to 191 

0.169). While Pandharpuri (from 0.379 to 0.149) and Nili-Ravi (from 0.412 to 0.139) as 192 

well as Mehsana (from 0.378 to 0.128) and Murrah (0.382 to 0.120) decayed almost with 193 

same rate. In Surti breed, LD decayed late as distance between loci increased compared to 194 

other. Nili-Ravi and Pandharpuri decayed almost together with given distance. Similar 195 

trend was shown by Mehsana and Murrah. Moreover, Mehsana and Murrah showed early 196 

decay among all the breeds (Fig 5. A). 197 

A continuous steady decline in effective population size was observed over last 198 

1000 generations in all breeds. Effective population size of Murrah and Mehsana has 199 

drastically declined over last 100 generations with an increasingly steeper slope while 200 

Surti and Banni are declining almost at constant rate (Fig 5.B). Jaffarabadi, Nili-Ravi and 201 

Pandharpuri showed intermediate rate of declination over last 100 generations. 202 
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Genome-Wide Study of LD blocks 203 

LD blocks. Total 1144 LD blocks were obtained with highest number of blocks on 204 

chromosome 1 (99 blocks) while lowest number of blocks on chromosome 28 (19 blocks) 205 

(Error! Reference source not found.). Overall, mean number of SNPs in block ranged 206 

from 2.75 to 4.54 SNPs per chromosome while, maximum number of SNPs per block 207 

ranged from 5 (chromosome 18) to 16 (chromosome 17). Overall, frequency-based size 208 

distribution of LD blocks revealed that highest number (547) of LD blocks were found 209 

having size less than 50 kb while very few (8) were observed having size as high as 400-210 

450 kb (Fig 6). 211 

LD blocks – QTL concordance. Out of 1144 LD block (4090 markers), 436 LD 212 

blocks (1624 markers), 368 LD blocks (1285 markers), 326 LD blocks (1253 markers), 213 

345 LD blocks (1351 markers), 81 LD blocks (338 markers) and 104 LD blocks (426 214 

markers) overlapped with QTLs for milk production trait; meat and carcass trait; 215 

reproduction trait; production trait; exterior trait; and health trait respectively (Fig 7). 216 

Concordance, measured as proportion of LD blocks and QTLs overlapping each other, was 217 

highest in chromosome one (16.91 %) while lowest on chromosome 14 (0.91 %). Overall 218 

concordance of all the chromosomes together was 14.19%, with 873 LD blocks 219 

intersecting with 8947 QTLs (Table 4). Chromosome-wise distribution of LD-blocks, 220 

number of markers and mapped QTLs for respective traits is shown in S1 Table.  221 

Further, dendrogram was plotted based on markers overlapping with milk fat 222 

percentage (143 markers) and body weight (315 markers) QTLs (Fig 8). Surprisingly, no 223 

pattern was observed linking phenotypic recorded data with marker-based separation. 224 

Discussion 225 

 Genetic diversity studies conducted for buffalo in India have previously relied 226 

primarily on the use of microsatellites markers [23-28] while use of SNP genotype data in 227 

Indian cattle has been previously reported by Dash et al. [29]. 228 

The chip used in this study was designed based on SNP markers of 4 breeds 229 

(Mediterranean, Murrah, Nili-Ravi and Jaffarabadi) although using the reference of Bos 230 

taurus (UMD_3.1 assembly) [30]. The differences in allele frequencies among the breeds 231 

may be caused by genetic drift, adaptation to selection or ancient divergence among 232 

founder populations [31,32]. Therefore, it is possible that the SNPs that have been 233 

identified as being useful in one population may not necessarily be as useful in other 234 

breeds. Here, we used the term ‘Alternate allele’, because minor allele frequency does not 235 

exceed over 0.5 while in this study, the allele frequency exceeds over 0.5 often called as 236 

‘Fixed allele’ and hence, it has been considered as an “Alternate allele’. The differences in 237 

observed allele frequencies among breeds show the genetic diversity that exists within and 238 

between the breeds [33]. The overall allele frequency observed in this study was higher 239 

than previously reported studies in indicine breeds [34-36]. 240 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 19, 2018. ; https://doi.org/10.1101/395681doi: bioRxiv preprint 

https://doi.org/10.1101/395681


8 

 

Murrah and Mehsana had the highest numbers SNPs with intermediate class of 241 

frequency suggesting that this array could be utilised for these breeds for association 242 

studies, with available phenotypic data for the traits of interest. The higher genetic 243 

variability observed in the Murrah and Mehsana, which is evident from the population 244 

structure analysis that suggests introgression of these breeds with other breeds such as 245 

Banni, Nili-Ravi, Jaffarabadi, etc. While Surti and Pandharpuri showed less polymorphic 246 

SNPs suggesting less genetic variability. These findings further supported by observed 247 

heterozygosity (Ho) and expected heterozygosity (He) values, which was found higher in 248 

Murrah and Mehsana breeds as compared to other breeds which could be due to extensive 249 

use of these two breeds via artificial insemination technique. The purpose of using these 250 

breeds is to obtain appropriate production since they are the good milk producers. 251 

Pandharpuri and Surti have less genetic variability with the lowest He suggesting that 252 

inbreeding in conjunction with a small population size and resulted in a loss of variation 253 

within the breed. This low diversity was previously reported in other studies of cattle and 254 

buffalo using microsatellites [37-39] and using SNP panels [29,40]. The F statistics is an 255 

estimate of variation due to differences among populations, which is the reduction in 256 

heterozygosity of a sub-population due to genetic drift. All breeds have shown negligible 257 

inbreeding as negative values of FIS in all breeds indicate that there is absence of 258 

inbreeding in these breeds. In this study, the mean FST indicated that a pair of Surti and 259 

Pandharpuri population has greater genetic distance than other pairs, similar to results of 260 

European cattle breeds (Brown Swiss and Holstein Friesian) [40]. Phylogenetic tree based 261 

on FST values revealed that grouping was observed according to geographical distribution 262 

of population as shown in microsatellite based study of cattle performed by Shah et al. 263 

[41]. They displayed results of phylogenetic relationships as three main clusters according 264 

to geographical distribution: Dangi and Khillar (cluster I); Gir, Kankrej, Nimari and Malvi 265 

(cluster II); and Gaolao and Kenkatha (cluster III). However, the results failed to explain 266 

the hypothesis that Mehsana breed has been developed using Murrah bulls on local Surti 267 

buffaloes [28] as both the breeds were clustered separately. In case of genetic diversity 268 

(FST) of buffalo based on microsatellite markers [42], similar cluster pattern was observed 269 

as in current study. Surti and Pandharpuri grouped in single cluster in present study as 270 

shown by Kumar et al. (2007) as; cluster of Mehsana with Jaffarabadi, Surti with 271 

Pandharpuri and Murrah with Nagpuri. However, Jaffarabadi and Mehsana grouped in 272 

different clusters in present study whereas they were grouped in single cluster in the study 273 

updated Kumar et. al. (2007). 274 

The results of the PCA analysis revealed the higher amount of genetic similarities 275 

among Murrah, Mehsana, Banni and Nili-Ravi, while Surti, Jaffarabadi and Pandharpuri 276 

showed greater genetic differentiations with three distinct clusters. The clustering of 277 

populations from both the PCA and fastSTRUCTURE indicated low levels of within 278 

population diversity of the Surti, Jaffarabadi and Pandharpuri breeds and higher 279 

divergences of these populations from the Murrah, Mehsana, Banni and Nili-Ravi breeds. 280 

In current study, Surti, Jaffarabadi and Pandharpuri grouped in separate clusters, however, 281 

it was shown in single cluster by Kumar et al. [25]. The high genetic diversity and distinct 282 

breed structure imply the possibility of selective breeding in these Indian buffalo breeds 283 
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for genetic improvement (Murrah and Mehsana). Four breeds (Surti, Pandharpuri, 284 

Jaffarabadi and Banni) were able to get distinctly separate while two breeds (Murrah and 285 

Mehsana) showed greater admixture. These two breeds have been most popular amongst 286 

the buffalo breeds in terms of high milk yield. Murrah semen has been extensively and 287 

indiscriminately used for artificial insemination (AI) across the country while Banni, 288 

Jaffarabadi and Pandharpuri are less in number and been less utilized for insemination 289 

throughout the country, which has led to a steady decline in the genetic diversity present in 290 

the non-descript or less characterized populations. Kumar et al. [25] evaluated the breed 291 

admixture using microsatellite markers and results revealed that the 3 different clusters 292 

contributed mainly from the Toda, Jaffarabadi and Pandharpuri animals, with a very high 293 

membership coefficient. In case of cattle using microsatellite markers [41], the 294 

differentiation of Dangi, Khillar and Kenkatha cattle breeds was performed while Kankrej 295 

showed greater admixture with other breeds. 296 

The probable cause of drastic decline is too large distribution of population from 297 

which only small proportion of population of superior germplasm being used for breeding 298 

purpose through AI. Moreover, in past, before 100-150 generations, farmers had adapted 299 

the intensive selective breeding based on some characters and use of elite animals from 300 

certain areas in absence of AI. Murrah has higher average allele frequencies while 301 

Pandharpuri and Surti breeds has lower values can be interpreted as higher allele frequency 302 

can be ascertained biasness to SNP selection from Murrah reference.  303 

LD decay used to study the linkage of markers with increase in intermarker 304 

distance and was to decide appropriate intermarker distance for different populations. The 305 

magnitude of LD and its decay with genetic distance determine the resolution of 306 

association mapping and are useful for assessing the desired numbers of SNPs on arrays. 307 

The results of LD decay illustrate Surti breed showing early decay as compared to other 308 

breeds while Mehsana and Murrah breeds showed late decay together which could be 309 

assumed as they are under strong selection pressure. Similar results were obtained by Dash 310 

et al. [29] for Indian cattle breeds where Sahiwal and Tharparkar breeds showed late 311 

decay. These results reflected that the Surti breed has smaller population size as it got 312 

decayed earlier. Other breeds also exhibited LD decay as per their available breedable 313 

population. Larger the population size, longer the LD decay. Effective population size of 314 

Murrah and Mehsana has drastically declined over last 100 generations. It is believed that 315 

Mehsana breed has been developed a couple of centuries ago from Murrah and Surti 316 

buffalo (might have completed less than 100 generations). Hence, the results should be 317 

viewed in light of theoretical expectations. It gives information regarding effective 318 

population size of ancestors. Shin et al. [43] estimated the effective population size in 319 

Korean cattle which revealed rapid increase in effective population size over the past 10 320 

generations with the values increasing fivefold (close to 500) by 10 generations. Santana et 321 

al. [44] also reported small effective size (40) from several Murrah herds. An effective 322 

population size of at least 50 animals is enough to prevent inbreeding depression, the 323 

minimum level recommended by the FAO (2007).  324 
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The haplotype block structure and its distribution in the genome of cattle, 325 

especially studies based on high density SNPs, have been rarely reported [45]. Thus, the 326 

current analysis was performed to construct the haplotype structure in the buffalo genome 327 

and to detect the relevant genes affecting quantitative traits. Jiang et al. [46] identified the 328 

milk trait QTL specific SNPs in cattle and found a large proportion of the significant SNPs 329 

(61 out of 105) were located on BTA14 and that were also located within the reported 330 

QTL regions. In our study, 76 QTLs (mostly of milk protein percentage, milk yield and 331 

milk fat per cents) on chromosome 20 concordant with 13 LD blocks. Mai et al. [47] 332 

recognized total 98 QTLs for milk production trait, which included 30 for milk index, 50 333 

for fat index, and 18 for protein index. The density of QTLs of body weight was higher on 334 

chromosome 23 along with other productive traits. Mai et al. [47] reported a greater  335 

number of significant SNPs associations for production (54) than for fertility traits (29) 336 

with 22 QTL regions associated with fertility traits and 14 with production traits. The 337 

concordance study of meat and carcass trait revealed that the largest QTL of shear force 338 

was observed on chromosome 6 and QTL of tridecylic acid content located on 339 

chromosome 15. Wu et al. [48] studied the carcass trait of Simmental cattle, and identified 340 

the genes in the beef cattle genome significantly associated with foreshank weight and 341 

triglyceride levels. A total of 12 and 7 SNPs in the bovine genome were significantly 342 

associated with foreshank weight and triglyceride levels, respectively.  343 

In concordance analysis of exterior traits, majorly the QTLs were associated with 344 

udder traits (udder swelling score QTL, udder depth QTL, udder attachment QTL, teat 345 

length QTL etc.). This information of genotypes could be used to associate phenotypes and 346 

perform the selection. Based on the above results, we can assumed that exterior traits are 347 

less important for association of QTL with LD block or haplotypes due to insufficient size 348 

of QTL and low proportion of concordant QTL with LD blocks. van den Berg et al. [49] 349 

studied the concordance for a leg conformation trait in dairy cattle and QTL status was 350 

used in a concordance analysis to reduce the number of candidate mutations. In the 351 

concordance study of health trait, QTLs associated with somatic cell count were observed 352 

almost on every chromosome. The larger size QTL of cold tolerance was observed on 353 

chromosome seven. Higher numbers of QTLs associated with Bovine tuberculosis 354 

susceptibility were found on chromosome 20 and QTLs for clinical mastitis found on 355 

chromosome 14 as well as on chromosome 24. Raphaka et al. [50] identified the markers 356 

associated with tuberculosis on Bos taurus autosomes (BTA) 2 and on BTA 23 and 357 

concluded a major role of BTA 23 for susceptibility to bovine Tuberculosis. 358 

Conclusion 359 

The study of population structure analysis in Indian buffalo based on SNPs 360 

revealed that the distribution of SNP markers across the buffalo genome of all breeds 361 

studied was almost similar. Minor differences were observed in various genetic parameters 362 

(HE, HO, FIS, FST). The levels of SNPs variation in this study could be insufficient to 363 

differentiate the other local breed except Pandharpuri and Jaffarabadi (phenotypically 364 

distinct breeds), so there is a need to develop SNP chip based on SNP markers identified 365 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 19, 2018. ; https://doi.org/10.1101/395681doi: bioRxiv preprint 

https://doi.org/10.1101/395681


11 

 

by sequence information of local breeds. LD block-QTLs concordance study could explore 366 

a new window for genomic selection in animals. 367 

The cattle genome-based SNP information (UMD_3.1) does not offer an optimal 368 

coverage for buffalo genome, thereafter the development of new SNP chip based on 369 

information of buffalo genome and buffalo-specific genetic technologies is warranted. 370 
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Figure captions: 517 

Fig 1:Alternate allele distribution (A) Distribution of alternate allele frequency in studied 518 

buffalo breed (B) Breed-wise average alternate allele frequency distribution (C) 519 

Breed wise proportion and distribution of alternate allele with allele frequency > 520 

0 (SNPs removed which are monomorphic)  521 

(BBN: Banni, BJF: Jaffarabadi, BMR: Murrah, BNR: Nili-Ravi, BMS: Mehsana, 522 

BPN: Pandharpuri, BST: Surti) 523 

Fig 2: Dendrogram of breed differentiation based on pair-wise FST values 524 

Labelled tree with name of breed at each leaf (BBN: Banni, BJF: Jaffarabadi, 525 

BMR: Murrah, BNR: Nili-Ravi, BMS: Mehsana, BPN: Pandharpuri, BST: Surti) 526 

Fig 3: 2D PCA plot of all seven buffalo breeds together up to principal components 5 527 

(BBN: Banni, BJF: Jaffarabadi, BMR: Murrah, BNR: Nili-Ravi, BMS: Mehsana, 528 

BPN: Pandharpuri, BST: Surti) 529 

Fig 4: Estimated population structure by fastSTRUCTURE for K = 2 to K = 8 530 

Each individual is represented by a thin vertical line, and each breed is 531 

demarcated by a thick vertical black line. (BBN: Banni, BJF: Jaffarabadi, BMR: 532 

Murrah, BNR: Nili-Ravi, BMS: Mehsana, BPN: Pandharpuri, BST: Surti) 533 

Fig 5: Linkage Disequilibrium study of Buffalo breeds: (A) Linkage disequilibrium 534 

(LD) decay plot based on all pairwise comparisons between adjacent loci of 535 

all seven breeds The horizontal axis depicts the intermarker distance in base pair 536 

and vertical axis shows the average R
2
 values (B) Effective population size (Ne) 537 

of different breeds with respect to generation time (BBN: Banni, BJF: 538 

Jaffarabadi, BMR: Murrah, BNR: Nili-Ravi, BMS: Mehsana, BPN: Pandharpuri, 539 

BST: Surti) 540 

Fig 6: LD blocks distribution based on size of block in respective class of size (in kb)  541 

Fig 7: Concordance of LD blocks with QTLs (A) Milk production traits (B) Production 542 

traits (C) Reproduction traits (D) Meat and carcass traits (E) Health trait 543 

and (F) Exterior traits  544 

Vertical axis shows the chromosome number, horizontal axis shows the base pair 545 

position, thick middle black bar shows physical length of chromosome, thin 546 

orange colored bars over black bars shows LD blocks and the colored segments 547 

reflects the physical length of QTLs. 548 

Fig 8: Trait based dendrogram of studied buffalo breeds (A) Dendrogram of studied 549 

buffalo breeds based on markers covered by fat percentage QTLs (Fat 550 

percentage was sourced from INAPH data, NDDB and ICAR) (B) 551 

Dendrogram of studied buffalo breeds based on markers covered by body 552 

weight QTLs (Body weight was sourced from ICAR) (BBN: Banni, BJF: 553 

Jaffarabadi, BMR: Murrah, BNR: Nili-Ravi, BMS: Mehsana, BPN: Pandharpuri, 554 

BST: Surti)  555 
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Tables: 556 

Table 1: Genetic diversity parameters in Indian buffalo breeds from genotyped data 557 

Breed 

Observed Heterozygosity, 

Ho 

(Mean ±SE) 

Expected 

Heterozygosity, He 

(Mean ±SE) 

FIS (Mean±SE) 

Banni 0.3839± 0.0006 0.3738±0.0005 -0.0270±0.0036 

Mehsana 0.3857±0.0005 0.3830±0.0005 -0.0070±0.0033 

Nili-Ravi 0.3832±0.0006 0.3799±0.0005 -0.0089±0.0072 

Pandharpuri 0.3719±0.0006 0.3680±0.0005 -0.0107±0.0116 

Jaffarabadi 0.3839±0.0006 0.3738±0.0005 -0.0098±0.0031 

Murrah 0.3864±0.0005 0.3846±0.0005 -0.0046±0.0024 

Surti 0.3757±0.0007 0.3643±0.0005 -0.0314±0.0094 

  558 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 19, 2018. ; https://doi.org/10.1101/395681doi: bioRxiv preprint 

https://doi.org/10.1101/395681


17 

 

Table 2: Standard genetic distance or Mean pairwise FST values among various buffalo 559 

breeds 560 

Breed Murrah 
Nili-

Ravi 
Mehsana Jaffarabadi Banni Pandharpuri Surti 

Murrah 0 
      

Nili-Ravi 0.00221 0 
     

Mehsana 0.00402 0.00599 0 
    

Jaffarabadi 0.00947 0.01209 0.01794 0 
   

Banni 0.02143 0.00790 0.00442 0.01322 0 
  

Pandharpuri 0.01833 0.02330 0.02188 0.02156 0.02650 0 
 

Surti 0.02143 0.02430 0.01794 0.02122 0.02650 0.03097 0 
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Table 3: Chromosome wise LD block distribution statistics with total number of LD 562 

blocks, average block size, mean and maximum number of SNPs in blocks 563 

Chromosome Total LD blocks 
Mean number of 

SNPs per block 

Max. Number of 

SNPs in blocks 

1 99 3.48 7 

2 87 3.68 9 

3 59 3.25 6 

4 58 3.44 8 

5 63 3.73 15 

6 43 3.72 9 

7 44 3.72 15 

8 52 3.75 10 

9 39 4.00 8 

10 36 3.94 6 

11 54 3.51 9 

12 37 3.75 9 

13 38 3.34 9 

14 31 2.93 13 

15 33 3 6 

16 44 3.56 12 

17 30 3.83 16 

18 24 3.04 5 

19 31 4.54 11 

20 23 3.47 9 

21 36 3.94 11 

22 26 3.76 13 

23 22 3.72 7 

24 27 2.96 7 

25 29 2.75 9 

26 16 3.56 8 

27 23 3.34 8 

28 19 3.84 7 

29 22 3.77 10 

All 1145 3.56 
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Table 4: Chromosome-wise distribution of LD blocks and QTLs with its percentage of 565 

concordance and discordance 566 

Chromosome No. of QTLs 

No. of QTLs 

overlapped by 

LD blocks 

No. of LD 

blocks 

No. of LD 

blocks 

overlapped 

with QTLs 

Concordance 

between QTL 

and LD blocks 

in % 

1 2403 325 99 98 16.91 

2 2711 163 87 56 7.83 

3 2780 55 58 43 3.45 

4 4440 31 58 21 1.16 

5 3534 103 63 56 4.42 

6 10483 237 43 41 2.64 

7 2089 63 44 41 4.88 

8 1177 55 52 45 8.14 

9 1289 61 39 21 6.17 

10 1839 78 36 26 5.55 

11 3163 118 54 34 4.72 

12 1046 60 37 26 7.94 

13 1775 101 38 25 6.95 

14 7293 38 31 29 0.91 

15 1050 32 33 32 5.91 

16 1236 63 44 37 7.81 

17 1548 47 30 26 4.63 

18 1233 27 24 21 3.82 

19 1735 73 31 18 5.15 

20 2914 140 23 21 5.48 

21 1184 56 36 23 6.48 

22 946 38 26 17 5.66 

23 1004 120 22 21 13.74 

24 754 11 27 12 2.94 

25 1802 101 29 25 6.88 

26 3856 52 16 16 1.78 

27 747 27 23 19 5.97 

28 643 27 19 16 6.50 

29 1130 28 22 17 3.91 

Combined 67804 8912 1144 873 14.19 

 567 
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Supporting information captions 569 

S1 Table: Chromosome-wise distribution of LD-blocks, markers and QTLs for 570 

respective Traits 571 
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