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ABSTRACT 
Natural killer (NK) cells are part of the innate immune system and 
are capable of killing diseased cells. As a result, NK cells are being 
used for adoptive cell therapies for cancer patients. The activation of 
NK cell stimulatory receptors leads to a cascade of intracellular 
phosphorylation reactions, which activates key signaling species 
that facilitate the secretion of cytolytic molecules required for cell 
killing. Strategies that maximize the activation of such intracellular 
species can increase the likelihood of NK cell activation upon con-
tact with a cancer cell, and thereby improve efficacy of NK cell-
based therapies. However, due to the complexity of intracellular 
signaling, it is difficult to deduce a priori which strategies can en-
hance species activation. Therefore, we constructed a mechanistic 
model of the CD16, 2B4 and NKG2D signaling pathways in NK cells 
to simulate strategies that enhance signaling. The model predictions 
were fit to published data and validated with a separate dataset. 
Model simulations demonstrate strong network activation when the 
CD16 pathway is stimulated. The magnitude of species activation is 
most sensitive to the receptor concentration and the rate at which 
the receptor is deactivated. Co-stimulation of CD16 and NKG2D in 
silico required fewer ligands to achieve half-maximal activation than 
other combinations, suggesting co-stimulating these pathways is 
most effective in activating the species. We applied the model to 
predict the effects of perturbing the signaling network and found two 
strategies that can potently enhance network activation. When the 
availability of ligands is low, it is more influential to engineer NK cell 
receptors that are resistant to proteolytic cleavage. In contrast, for 
high ligand concentrations, inhibiting phosphatase activity leads to 
more activation. The work presented here establishes a framework 
for understanding the complex, nonlinear aspects of NK cell signal-
ing and provides detailed strategies for enhancing NK cell activation. 
 

1 INTRODUCTION  
Natural killer (NK) cells are immune cells that can eliminate 
cancer cells upon cell contact (1–3). NK cells express a rep-
ertoire of stimulatory receptors that mediate the release of 
cytotoxic chemicals when stimulated by antibodies or by 
cells that express stimulatory ligands. The activation of such 
receptors induces intracellular signaling through a cascade 
of phosphorylation reactions, which ultimately leads to NK 
cell activation, degranulation and cancer cell death. This 
innate ability for cancer cell elimination has spurred an inter-
est in research (3–5) to better understand NK cell activation. 
It is believed that enhancing NK cell activation could propor-
tionally enhance cancer cell killing and thereby improve pa-

tient outcomes in the clinic. Given that cancer cell killing is 
initiated via activation of NK cell stimulatory receptors, it is 
important to understand how the signal propagates and acti-
vates the downstream species that contribute to NK cell acti-
vation. Therefore, researchers (1–4,6,7) have studied NK 
cell signaling and reported which species are activated 
downstream of the stimulatory receptors. Such findings are 
crucial in understanding how NK cell activation proceeds on 
the molecular level. 

However, due to the natural complexity and nonlinearity 
underpinning intracellular signaling, it is difficult to deduce 
how NK cell signaling can be modulated to enhance cell ac-
tivation. Mathematical models are valuable in these contexts 
in that they enable us to untangle such complicated system 
behavior and predict the system’s response to a wide variety 
of perturbations (8–14). For example, work by Das demon-
strated how receptor-ligand interactions impact NK cell acti-
vation and the various NK cell responses induced by strong 
and weak stimulatory ligands (9). Mesecke and colleagues 
showed that the physical association of Src family kinases 
(SFK) with a stimulatory receptor is essential for NK cells to 
promote a cytotoxic response, and that the activation of the 
signaling species Vav correlates with NK cell cytotoxicity 
(10). Nevertheless, the question of which strategies enhance 
NK cell signaling (and why) remains open. Additionally, the 
previous models did not determine which molecular pertur-
bations or which pathways should be co-stimulated to opti-
mally activate the NK stimulatory network. 

Here, we developed a molecularly detailed, experimen-
tally validated mechanistic model of NK cell signaling to ad-
dress the above questions. The CD16, 2B4 and NKG2D 
stimulatory pathways were modeled in this study as these 
pathways contribute to NK cell activation in different ways 
(4,15,16). CD16 is an Fc receptor that binds to the constant 
region of antibodies. This implicates CD16’s activation in 
antibody-dependent cell-mediated cytotoxicity (ADCC). Its 
cytoplasmic domain is associated with CD3𝜁, which contains 
immunoreceptor tyrosine-based activation motifs (ITAM). 
2B4 is part of the signaling lymphocytic activation molecule 
(SLAM) family of receptors, and its cytoplasmic tail contains 
four immunoreceptor tyrosine-based switch motifs (ITSM). 
The ligand for 2B4, CD48, is expressed by cells of hemato-
poietic origin. This suggests 2B4 may play a role in regulat-
ing hematopoietic processes. NKG2D belongs to the family 
of C-type lectin-like receptors. It associates with the adaptor 
protein DAP10, which has an activation motif that is similar 
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to the CD28 T cell co-receptor. NKG2D binds to ligands typi-
cally expressed by cells that have undergone transformation, 
which implicates this receptor in the elimination of tumors.  

Ligand binding to the CD16, 2B4 and NKG2D receptors 
initiates intracellular signaling. The PI3K-Akt, SLP76-Vav-Erk 
and PLC𝛾 networks are all activated upon CD16, 2B4 and 
NKG2D stimulation (17). In NK cell biology, the PI3K-Akt 
pathway promotes cell survival, while Erk activation is corre-
lated with cell proliferation. SLP76 and Vav activation are 
necessary for actin remodeling and the formation of the im-
munological synapse. Lastly, PLC𝛾 activation induces the 
release of intracellular calcium ions, which subsequently 
contributes to cell activation. The combination of these intra-
cellular reactions is necessary to activate NK cells. Many of 
the downstream reactions are common between the path-
ways with only subtle differences. For example, 2B4 does 
not induce Akt phosphorylation (6,7). Additionally, 2B4 and 
NKG2D specifically lead to phosphorylation of the Y113 and 
Y128 sites on SLP76, respectively, while CD16 induces 
phosphorylation of both sites (6). Also, CD16 induces ZAP70 
and LAT activation, while 2B4 and NKG2D do not. Thus, 
these pathways are interconnected, and understanding the 
dynamics of the concentrations of the molecular species 
involved in the signaling pathways requires in-depth anal-
yses. 

In the present study, we use mathematical modeling to 
characterize and compare the signaling dynamics of the 
CD16, 2B4, and NKG2D pathways with respect to their 
magnitude of activation of the network. Furthermore, we 
identify which signaling species and parameters influence 
the magnitude of network activation and which combinations 
of receptor co-stimulation most potently activate the network. 
In silico perturbations of the stimulatory network demonstrate 
the strategies that effectively increase network activation, 
including which signaling species to target and how to modify 
the species. In total, the model predictions can be used for 
engineering NK cells with enhanced signaling, which is 
needed for cell activation and ultimately target cell killing. 

2 METHODS 
Model construction. We constructed an ordinary differential equa-
tion (ODE) model to predict the concentrations of the molecular 
species in the CD16, 2B4, and NKG2D pathways in NK cells (Fig-
ure 1). The model is provided in Supplementary File S1 and the list 
of model species, reactions and parameters are provided in Sup-
plementary File S2. The rates of the biochemical signaling reactions 
were represented using Michaelis-Menten reactions. Arriving at the 
current model structure was an iterative process where we fitted 
several model types (e.g., Michaelis-Menten kinetics vs. Mass Ac-
tion kinetics, including vs. excluding the phosphatases, including vs. 
excluding non-specific decay rate) to the experimental data and 
selected the model structure that generated the lowest error. We 
constructed the model using BioNetGen (18) and simulated it in 
MATLAB (MathWorks).  

The final model contains 83 parameters and 36 species, includ-
ing the three NK cell receptors. Each receptor binds to its ligand and 
forms a receptor-ligand complex that allows the receptor to become 
phosphorylated by basally active Src family kinases (SFK). Then, 
the ligand-bound phosphorylated receptor serves as the catalyst for 
converting SFK from a basally the active state to a fully active state 

(pSFK). Fully active SFK mediates the phosphorylation (activation) 
of a number of downstream signaling species, including LAT, 
ZAP70, PLC𝛾, Vav, SLP76, Akt, and the phosphatases SHP and 
SHIP. Moreover, the stimulation of 2B4 can lead to activation of the 
phosphatases independent of pSFK (17). Phosphorylated ZAP70 
promotes activation of LAT. The inhibitory species, phosphatases 
SHP and SHIP, provide negative feedback to prevent overactivation 
(19). The catalysts for Erk phosphorylation are the phosphorylated 
forms of SLP76 and Vav. These species are upstream inputs to the 
MAPK pathway (9,10).  

The initial concentrations of the species in our system were ex-
tracted from the literature (20–23). We simulate the dynamics of the 
signaling network for 60 minutes, to focus on the initial stimulus. 
Given this time scale, we assume that the synthesis of species is 
negligible compared to the rates of the phosphorylation and 
dephosphorylation reactions (9,10). Lastly, we included a non-
specific degradation reaction of the phosphorylated species in the 
system to account for degradation, dilution and disappearance of the 
active species (6,24–27). 
 
Data collection and processing. We trained and validated the 
mathematical model using experimental data extracted from the 
literature. The raw data and our data processing procedure are pro-
vided in Supplemental File S3. To control for variations in the exper-
imental conditions, we only used data from published studies where 
(1) the antibodies used for CD16, 2B4 and NKG2D stimulation were 
of the same concentration (10 𝜇g/mL) and from the same vendor, 
and (2) the cell types used in these studies were primary NK cells. 
Immunoblot images from these published studies were analyzed 
and processed using ImageJ (28). Specifically, ImageJ provides a 
measure of the optical density for any pre-defined rectangular space 
of an image in grayscale, where the estimated optical densities 
range from 0 – 225 (black to white, respectively). Protein bands in 
Western blots were analyzed to estimate their optical density. To 
control for immunoblot variations across the experiments, we sub-
tracted the optical density measurement of the Western blot gel 
background from the optical density measurements of all protein 
bands in the same gel. Furthermore, for a single protein, the optical 
density measurement of the zeroth time point was also subtracted 
from the optical density measurements of the remaining time points. 
This procedure, which follows the documented ImageJ usage proto-
col, standardizes the experiments for comparison and controls for 
the background and zeroth time point measurements. In total, the 
model was trained to 64 data points. Additionally, the model was 
validated against 32 data points. The signal intensity (Q%𝐗') of a 
given phosphorylated species (p𝐗) at the 𝑗,- time point is calculated 
as: 

Q%𝐗' =
OD%𝐗'

OD123,425'
 

where OD%𝐗' and OD123,425' are the optical density values of the 

phosphorylated species and a loading control, respectively, at the 𝑗,- 
time point. Furthermore, the signal intensity (Q%𝐗) was normalized to 
a single (reference) time point (Q%𝐗678) by calculating the percent 
change (%Δ%𝐗) as follows: 

 

%Δ%𝐗' =
Q%𝐗' − Q%𝐗678

Q%𝐗678
× 100%. 

 
Parameter estimation. The parameters were estimated using a 
Bayesian perspective (29), where we maximized the posterior densi-
ty (𝑓(𝛉|𝐃𝐚𝐭𝐚)) of the parameters (𝛉) given the data (𝐃𝐚𝐭𝐚) via the 
Metropolis-Hastings algorithm (29,30). Briefly, as the parameters in 
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the present model are known to follow a lognormal distribution 
(29,30), we used this distribution as our prior (𝑓(𝛉)). Moreover, to 
simplify estimation, we assume parameters of the same kind (e.g., 
kcat parameters) are independent and drawn from an identical distri-
bution (IID). We further assume the error between the model predic-
tions and the data (i.e., the likelihood function 𝑓(𝐃𝐚𝐭𝐚|𝛉)) follows a 
Gaussian distribution centered at zero with some variance (𝜎G). 
Since the proposal distribution from which the parameters are sam-
pled from must have proper support, we again utilized the lognormal 
distribution as it has domain over the positive real line. We ran this 
fitting algorithm 200 times using randomized initial guesses, with 
each independent run simulated for 10,000 iterations. We discarded 
the first 9,000 iterations, where the algorithm searches the parame-
ter space to maximize the posterior density. The last 1,000 iterations 
are where we begin to sample from the posterior distribution, and we 
used those 1,000 iterations to identify the best fit parameter sets 
(i.e., those with the lowest error between model predictions and 
experimental data). The best fit parameter sets were used for model 
simulations. 
 
Construction of magnitude of network activation metric. We 
defined network activation to allow us to compare the magnitude of 
signaling across the three pathways (CD16, 2B4 and NKG2D). 
While the individual phospho-species are known to contribute to 
specific cellular functions involved in NK cell activation (6,17,26,31–
34), the scope of the current work is to compare the effectiveness of 
stimulating one pathway versus another. Thus, we first determine 
which species are important to consider in terms of activation of the 
network. 

Based on literature evidence, we determined the following five 
species, which are common to all three pathways, are crucial for 
activating the NK cell based on experimental studies: (1) pErk, (2) 
pAkt, (3) pPLC𝛾, (4) pVav and (5) pSLP76. The magnitude of net-
work activation must relate to the magnitude of activation of the 
above species. Hence, we concatenate the above species’ concen-
trations over time into a vector, 

 
𝐠(𝑡) = JpErk(𝑡), pAkt(𝑡), pPLC𝛾(𝑡), pVav(𝑡), pSLP76(𝑡)Z. 

 
Since the phospho-species’ concentrations are continuous with 

respect to time 𝑡, 𝐠(𝑡) is also continuous with respect to 𝑡 and thus 
measurable (35). By construction, the arc 𝐠 is a function that maps 
the time interval (in minutes) [0,60] in a subset of ℝ^; more specifi-
cally, 𝐠: [0,60] ⟶ ℝ^. We used the Bochner-norm to define the mag-
nitude of 𝐠(𝑡) (i.e., ‖𝐠(𝑡)‖). Here, the Bochner-norm of 𝐠(𝑡) is de-
fined by: 

 
‖𝐠(𝑡)‖bc(d,ed) ≝ gh ‖𝐠(𝑡)‖ℝi

j
ed

d

𝑑𝑡l

m jn

. 
 
Since all norms in ℝo form equivalence classes (36), we set 

𝑝 = 1 and use the 𝐿m norm on ℝ^ for simplicity. In addition, each 
component 𝑔s(𝑡) is non-negative and has finite measure, and the 
sum of the components, for all 𝑡 ∈ [0,60], is finite. Therefore, Fubi-
ni’s theorem applies (35) and we can switch the order of summation 
and integration. Finally, the Bochner-norm (in 𝐿m) of 𝐠(𝑡) defined 
here is 

‖𝐠(𝑡)‖ = ‖𝐠(𝑡)‖bu(d,ed) = h vw𝑔s(𝑡)
^

sxm

y 𝑑𝑡
ed

d

=wh 𝑔s(𝑡)𝑑𝑡
ed

d

^

sxm

. 

Thus, we arrive at the above metric for the magnitude of network 
activation, which is simply the sum of the magnitude of activation of 
the individual phospho-species, as given by the area under the 
curve for the species’ concentration profile. We used the MATLAB 

function trapz (which uses trapezoidal numerical integration) to es-
timate the area under the curve for each component of 𝑔(𝑡). 
 
Clustering and principal component analysis. We used the built-
in MATLAB functions kmeans and pca to perform k-means cluster-
ing and principal component analysis, respectively. Briefly, k-means 
clustering (37) allows us to partition a given dataset into k clusters 
using the (default) Euclidean distance metric. Principal component 
analysis (38) enables us to project a given dataset on to a new co-
ordinate system where each coordinate is a linear combination of 
the original variables in the dataset. Moreover, the principal compo-
nents (i.e., new coordinates) are selected such that they maximize 
the total variance in the data. These approaches are used to deter-
mine which estimated parameter sets are similar to one another. 
 

3 RESULTS AND DISCUSSION 
3.1 Model of NK cell signaling matches experi-

mental data 
We generated a mathematical model of NK cell signaling 
that includes three main pathways: CD16, 2B4 and NKG2D. 
When these receptors are stimulated, they activate the cell 
via cascades of phosphorylation reactions (Figure 1): activa-
tion of the Src family kinases (SFK), facilitated by the ligand-
bound phosphorylated receptors, catalyzes the activation of 
the Akt, SLP76-Vav-Erk, and PLC𝛾 pathways. We simulated 
these reactions in the form of nonlinear ordinary differential 
equations (ODEs) using established Michaelis-Menten kinet-
ics. The model is provided in Supplementary File S1. The 
model was calibrated to immunoblot data (6,24,25,27), 
where we quantified the temporal change in the optical den-
sity of protein bands from images of immunoblot experiments 
using ImageJ (28). Specifically, we used the normalized lev-
els of the following phosphorylated species: pSFK, pZAP70, 
pLAT, ppSLP76, pPLC𝛾, pVav, pErk, pAkt, and SLP76 

Fig. 1.  Model schematic. Reaction network for three stimulatory 
receptors expressed on the surface of NK cells: CD16, 2B4 and 
NKG2D. These receptors promote signaling species that mediate 
NK cell activation: SFK, Erk, Akt and PLC𝛾. Arrows indicate stimu-
lation, while red crossbars indicate inhibition. Orange arrows are 
specific to the NKG2D pathway; blue, CD16 pathway; purple, 2B4 
pathway; black, all pathways. 
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phosphorylated at Y113 and Y128. We calibrated the model 
predictions by estimating the parameter values using a 
Bayesian perspective (29), and by implementing the Metrop-
olis-Hastings algorithm (see Methods). In brief, the model 
parameters (83 in total) were estimated 200 times using ran-
domized initial guesses by fitting to experimental data. 
Moreover, the model predictions were validated using a sep-
arate dataset. The combined error for each run can be found 
in Figure S1. We proceeded with the 14 best parameter sets 
that provided the lowest total error and simulated the model 
using these sets. 

Interestingly, in initial simulations, we found that the 14 
parameter sets led to different responses with respect to 
network activation. To determine the dominant behavior 
generated by the model, we clustered the network activation 
predicted by the 14 sets using the kmeans and pca functions 
in MATLAB (see Methods). Our results are shown in Figure 
S2, where we identified three unique clusters that corre-
spond to the degree of species activation (i.e., response) 
predicted by the model. To ensure that the model predictions 
agree with experimental observations, we discarded the pa-
rameter sets that yielded predictions inconsistent with NK 
cell signaling and cytotoxicity studies (6,24–27,33,39,40). 
Specifically, we removed parameter sets that induced a low 
amount of species activation (i.e., < 1% of the species’ initial 
concentration was activated) and that did not show a dose-
dependent response when the ligand concentrations were 
changed. This refined the 14 parameter sets down to five, 
which are found in the medium response cluster in Figure 
S2. The parameter distributions for the best set (i.e., lowest 
total error) of the five are shown in Figure S3 using the final 
1,000 iterations, illustrating that the parameters are well be-

haved: the distributions are unimodal, and the values lie 
within a tight range. We used the last 1,000 iterations from 
parameter estimation to simulate the model. 

The simulated concentration profiles are consistent with 
the training data (Figure 2A – H).  These results demon-
strate the model predictions are in accord with the experi-
mental data for mono-stimulation of CD16 (blue lines), 2B4 
(purple lines) and NKG2D (orange lines). This is expected, 
since those data were used in model training to determine 
the parameter values.  

To validate the model, we compared the model predic-
tions to separate experimental data not used during training. 
In particular, we quantified the optical density of intracellular 
species from immunoblot images when 2B4 and NKG2D 
were simultaneously stimulated at equal ligand concentra-
tions (24,26,33,39,40). The results from model validation are 
shown in Figure 2I – L. The model captures the signaling 
dynamics of several species upon co-stimulation of 2B4 and 
NKG2D. Altogether, this validated model allows us to per-
form simulations and make meaningful comparisons 
amongst the pathways. 

3.2 Baseline network activation is greatest when 
the CD16 pathway is stimulated 

In addition to the amount of activation of the phosphorylated 
species, we were interested in quantifying the magnitude of 
activation of the network induced by each pathway. Here, we 
use the norm of the vector-valued function 𝐠(𝑡), where each 
component of this vector is the time evolution of the concen-
tration of the five species considered to be necessary for NK 
cell activation (pErk, pAkt, pPLC𝛾, pVav and pSLP76 (see 

Fig. 2.  Model calibration and validation. The model was fit to experimental data for (A) pSFK, (B) pZAP70, (C) pSLP76, (D) pLAT, (E) 
pPLC𝛾, (F) pVav, (G) pErk and (H) pAkt. The model predictions were validated against separate data for (I) pErk, (J) pAkt, (K) pPLC𝛾 and 
(L) pVav under co-stimulation of 2B4 and NKG2D. Blue: CD16 pathway. Purple: 2B4 pathway. Orange: NKG2D pathway. Green and 
Brown: 2B4 and NKG2D co-stimulation from separate experiments. Note that the green and brown lines represent independent Western 
blot experiments that only differ in the time-points of data collection.  Solid lines: mean model predictions from 1,000 parameter estimates. 
Shaded area: standard deviation of mean model predictions. Squares, circles and triangles: experimental data. 
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Methods for derivation)). The model was simulated for 60 
minutes using 6.67 × 10-2 𝜇M of ligand, the same concentra-
tion used in the experimental studies to train and validate the 
model (6,24–27,33,39,40). We used the last 1,000 iterations 
from the best set obtained from parameter estimation. 

The magnitude of network activation is greatest for the 
CD16 pathway compared to stimulation of 2B4 and NKG2D 
at equal ligand concentrations (Figure 3). Interestingly, each 
pathway activates the network differently (Figure S4). For 
example, CD16 induces more activation of pSLP76 (Figure 
S4A), whereas stimulation of the NKG2D pathway activates 
pVav (Figure S4B) and pPLC𝛾 (Figure S4C) to a greater 
extent. In contrast, the pathways show no significant differ-
ence with respect to pErk (Figure S4D) and pAkt (Figure 
S4E) activation. These results support our systems-level 
evaluation of the network, as focusing on a single species 
does not fully represent the effects of stimulating an NK re-
ceptor. The baseline model is useful in allowing us to quanti-
tatively interpret the results from the experimental studies 
used to train the model, where the signaling species concen-
trations were not measured directly. Overall, the baseline 
model predicts CD16 stimulation leads to a greater activation 
of the stimulatory network and that the magnitude of activa-
tion of the phosphorylated species varies depending on the 
pathway being stimulated. 

3.3 Receptor characteristics significantly influ-
ence the network activation 

The stimulation of NK cell receptors with ligands (model in-
put) leads to activation of the signaling species (model out-
put). Ultimately, we wish to understand the output of the sys-
tem as a function of its input. To achieve this, we varied the 
ligand concentration in silico from 6.67 × 10-5 𝜇M up to 66.7 
𝜇M and simulated the model for 60 minutes to observe how 
the magnitude of network activation changes. Such a wide 
range is typically implemented in experimental studies as it 
allows researchers to understand how a system behaves as 
its input changes in magnitude (12). As such, our results in 

Figure 4 show how the predicted magnitude of network acti-
vation changes as ligand concentrations change. We pre-
sent the mean model prediction (solid line) using the final 
1,000 iterations from the best parameter set, along with its 
standard deviation (shaded area). 

The model predicts that, in general, the magnitude of 
network activation increases as more ligands are introduced 
into the system (Figure 4). For all ligand concentrations we 
simulated, the model predicts that the magnitude of network 
activation is always greater when either the CD16 or NKG2D 
pathways are stimulated, compared to the stimulation of 
2B4. Our results suggest that mono-stimulation of 2B4 in-
duces weak activation of the stimulatory network.  

Interestingly, we observed an unexpected sharp peak in 
network activation (Figure 4; purple star) at approximately 
0.3	𝜇M of ligand during stimulation of 2B4. Given the detailed 
nature of the model, we could apply it to investigate the 
cause of the peak. The ligand concentration at which the 
peak occurs is numerically close in value to the concentra-
tion of 2B4 receptor in the model (0.353 𝜇M). Thus, we simu-
lated the model using different concentrations of 2B4 to de-
termine if the peak in network activation is due the receptor’s 
concentration (Figure S5A). Indeed, the concentration of 
2B4 sets the threshold for network activation since we ob-
serve more network activation when we increase the recep-
tor’s concentration accordingly. In addition, network activa-
tion induced by 2B4 is maximal when the ligand concentra-
tion reaches the same level as the receptor. 

Similar to 2B4-mediated network activation, the model 
predicts a peak in NKG2D-mediated network activation (Fig-
ure 4; orange star). Again, the peak occurs when the ligand 
concentration is approximately the same as the concentra-
tion of NKG2D in the model (0.303 𝜇M). We simulated the 
model using different concentrations of NKG2D as we did 
above (Figure S5B). We observed that the concentration of 
NKG2D sets the upper bound on network activation, where 
the peaks occur when the concentration of ligand is near the 
concentration of the receptor. 

In the case of NKG2D, unlike 2B4, there is a notable 
decrease in network activation once the ligand concentration 
is greater than the concentration of the receptor (Figure 4; 
orange star). To better understand this observation, we var-

Fig. 3. Baseline network activation of individual receptors. The 
magnitude of network activation induced by mono-stimulation of 
NKG2D (orange), CD16 (blue) and 2B4 (purple). Bars represent 
the mean model prediction from the 1,000 parameter estimates 
and the error bars represent one standard deviation. 
 

Fig. 4.  Network activation as a function of ligand stimulation. The 
mean value (solid line) of the magnitude of network activation from 
the 1,000 parameter estimates, along with one standard deviation 
(shaded area), is shown for stimulation of CD16 (blue), 2B4 (pur-
ple) and NKG2D (orange). 
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ied the parameters regulating NKG2D phosphorylation and 
dephosphorylation. The model predicts that the catalytic rate 
constant for phospho-NKG2D dephosphorylation 
(kcat_pNKG2D_pSHP in the model) is responsible for this 
behavior. Namely, once we increased the value of this pa-
rameter by 10-fold (Figure S5C) or 100-fold (Figure S5D) 
from its baseline value (14.75 min-1), the decrease in net-
work activation gradually disappears (compare Figure S5C – 
D to Figure S5B). Note that although the maximum in net-
work activation does not change, its shifts to the right, requir-
ing more ligands to reach maximal network activation (com-
pare dashed line in Figures S5B – D). 

Given the mechanistic detail of the model, we can ex-
plain the decrease in network activation observed upon 
mono-stimulation of NKG2D (Figure 4; orange star). As the 
ligand concentration increases, the velocity of phospho-
NKG2D activation increases proportionally due to Michaelis-
Menten kinetics. Based on the numerical value of 
kcat_pNKG2D_pSHP, the rate of dephosphorylation of phos-
pho-NKG2D will be slow (or fast) if the parameter is small (or 
large). If the rate of dephosphorylation is slow, then the con-
centration of phospho-NKG2D will increase rapidly as the 
ligand concentration increases, and since there is a first-
order degradation reaction for the phospho-species in our 
model, phospho-NKG2D will degrade proportionally to its 
concentration. Thus, when phospho-NKG2D activation is too 
fast, it will also decay rapidly, which will impede downstream 
signaling. This is why when the ligand concentration be-
comes too large, it has a suboptimal effect on network acti-
vation. Contrastingly, if the rate of dephosphorylation is fast, 
then the concentration of phospho-NKG2D will increase very 
slowly, which in turn will delay phospho-NKG2D decay and 
enable downstream signaling to continue. 

Overall, these results suggest the magnitude in network 
activation is dependent on the receptor concentrations. 
Moreover, the ligand concentration needed to attain the max-

imal response is sensitive to the rate of phospho-receptor 
dephosphorylation, where the faster the phospho-receptor is 
dephosphorylated, the greater the ligand concentration 
needs to be to reach maximal activation. Taken together, the 
results presented here underscore the model’s utility in ex-
plaining and characterizing the system’s response to varia-
tions in input intensity.   

3.4 Co-stimulation of CD16 and NKG2D potently 
activates the network 

The impact on network activation induced by the co-
stimulation of NK cell receptors has not been completely 
characterized. This knowledge gap obscures our under-
standing of how signals from multiple pathways are integrat-
ed and influence the downstream species. Thus, we simulat-
ed the model to better understand how co-stimulation affects 
network activation in a dose-dependent manner. Similar to 
the previous section, we varied the ligand concentration from 
6.67 × 10-5 𝜇M up to 66.7 𝜇M and simulated the model for 
60 minutes to observe how the magnitude of network activa-
tion changes. 

Interestingly, the co-stimulation of CD16 and NKG2D 
(Figure 5A, red line) achieves greater network activation 
when compared to other combinations at equal ligand con-
centrations. With the exception of 2B4 and NKG2D co-
stimulation (Figure 5A, magenta line), all combinations at-
tain maximal network activation (116 𝜇M × min). In addition, 
we wanted to determine how much ligand is required to 
reach half-maximal network activation (Figure 5A, dashed 
line), akin to half-maximal effective concentration (EC50). We 
applied the model to predict the ligand concentration needed 
to reach this level of network activation for each combination 
(Figure 5B). The co-stimulation of CD16 and NKG2D (Fig-
ure 5B, red bar) required 26%, 27% and 51% fewer ligands 
on average compared to the ligand concentration needed for 
half-maximal activation with co-stimulation of all pathways 

Fig. 5.  Receptor co-stimulation. Each receptor combination is stimulated with varying concentrations of ligands. (A) The co-stimulation 
of 2B4 and NKG2D (magenta), CD16 and 2B4 (green), CD16 and NKG2D (red) as well as the stimulation of all three receptors (black) are 
shown. The solid line represents the mean value from the 1,000 parameter estimates and the shaded area is one standard deviation. 
Network activation was scaled onto a range of [0,100] by normalizing the network activation by the maximum value across all three path-
ways. (B) The ligand concentration required to reach half-maximal activation (dashed line in panel A). Bars represent the mean model 
prediction from the 1,000 parameter estimates and the error bars represent one standard deviation. 
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(Figure 5B, black bar), 2B4 and NKG2D (Figure 5B, ma-
genta bar), and CD16 and 2B4 (Figure 5B, green bar), re-
spectively. At first glance, one may think that stimulating all 
pathways together would require the lowest ligand concen-
tration to reach half-maximal network activation. However, 
since phospho-2B4 can activate phosphatases in addition to 
the kinase pSFK (Figure 1), co-stimulation of all three path-
ways is less effective than the co-stimulation of CD16 and 
NKG2D due to more phosphatase activation. In summary, 
we found that the co-stimulation CD16 and NKG2D in silico 
is more potent in activating the stimulatory network than all 
other combinations.  

3.5 In silico perturbations highlight the role of 
phospho-receptors and phosphatases in en-
hancing network activation 

Mathematical models are instrumental in studying the trajec-
tory of dynamical systems, especially when perturbations are 
considered. For example, model parameters can be varied to 
understand the system’s response to specific alterations. 
Therefore, we simulated the following perturbations to un-
derstand which changes augment network activation: (1) 
decreasing the rate of pSFK deactivation, (2) inhibiting pSHP 
activity, (3) increasing receptor-ligand affinity and (4) de-
creasing the decay rate of the phospho-receptors. 

The first perturbation is inspired by experimental results 
(41,42) where a mutation of the activation-loop tyrosine 
(Y394) of lymphocyte-specific protein kinase (LCK), a mem-
ber of the Src family kinase (SFK), disables the kinase from 
being inactivated in the context of T cell receptor signaling. 
This mutation evidently enhances T cell activation. Likewise, 
inhibiting the rate at which pSFK is deactivated (i.e., de-
creasing kcat_pSFK_pSHP) in the model may increase NK 
cell network activation by the same reasoning. It is known 
that phosphatases play an integral role in inhibiting NK cell 
activation (31,43–45) by dephosphorylating the downstream 
species. Therefore, inhibiting phosphatase activity (i.e., de-
creasing kcat_pX_pSHP, where pX is a substrate for pSHP) 
is another mechanism that can increase network activation. 
Moreover, increasing the binding affinity between the ligand 
and the receptor should increase the velocity at which the 
receptor-ligand complex is formed, and thereby allow signal-
ing to proceed more rapidly and possibly increase the magni-
tude of network activation. We simulated this effect by de-
creasing the koff constant between the receptor and the lig-
and in the model. Finally, we decreased the decay rate of the 
phospho-receptors (i.e., kdeg), as another means of modulat-
ing the network activation. This is inspired by Spran et al. 
(46), where they inhibited the shedding of CD16 receptors by 
introducing a point-wise amino acid mutation (S197P) that 
renders the receptor insusceptible to ADAM17-mediated 
cleavage. This engineered receptor induced more perforin 
degranulation upon stimulation, which is a downstream re-
sponse of network activation. Although each of the perturba-
tions should increase network activation in their own right, it 
is not obvious which perturbation (and to which extent) is the 
best approach. Thus, we simulated each case to determine 

which method is optimal for augmenting the magnitude of 
network activation. 

We varied the parameters regulating the four perturba-
tions from their baseline values up to 10-fold. The model was 
simulated for 60 minutes using various ligand concentra-
tions. As before, we used the last 1,000 iterations from the 
best parameter set to simulate the model. Moreover, we 
simulated each perturbation separately for each pathway in 
order to observe any differences (or similarities) in the ef-
fects each perturbation imposes on each pathway. The simu-
lated results can be found in Figure 6, where the percent 
change in network activation from baseline via mono-
stimulation of NKG2D (Figure 6A – C), CD16 (Figure 6D – 
F) and 2B4 (Figure 6G – I) is plotted as a function of the 
change in the strength of the perturbation. The circles, trian-
gles, squares and diamonds in Figure 6 correspond to de-
creasing pSFK deactivation, inhibiting pSHP activity, increas-
ing ligand affinity and inhibiting phospho-receptor decay, 
respectively.  

The model provides detailed insight into the effects of 
perturbing the signaling network. Firstly, when the ligand 
concentration is low (Figure 6A, D and G), the percent 
change in network activation is more sensitive to phospho-
receptor decay (diamonds). In contrast, when the ligand 
concentration is moderate (Figure 6B, E and H) to high 
(Figure 6C, F and I), the percent change in network activa-
tion is influenced more by phosphatase activity (triangles). 
These results hold true for all pathways, suggesting the per-
turbations qualitatively impact the pathways in a similar 
manner. Interestingly, when considering the NKG2D and 
CD16 pathways, the relative effect of the perturbations de-
creases as the concentration of the input increases (com-
pare Figure 6C to Figure 6B and compare Figure 6F to 
Figure 6E). Surprisingly, the relative impact of decreasing 
pSFK deactivation (circles) and increasing ligand affinity 
(squares) on network activation is almost negligible. In some 
cases, increasing ligand affinity can even decrease network 
activation. 

These data suggest network activation is tightly con-
trolled by the phospho-receptors and the phosphatases. 
Based on the model predictions, when input levels are low, it 
is more important to engineer receptors that are resistant to 
proteolytic cleavage, as this enables the activated receptor 
to induce continued intracellular signaling. Alternatively, 
when the input to the system is plentiful, inhibiting phospho-
receptor decay is not influential since the large concentration 
of input can enable continued intracellular signaling. In this 
scenario, it is more influential to inhibit phosphatase activity, 
which allows the phospho-species to remain activated, 
thereby increasing the magnitude of species activation. In 
summary, the model predicts that the phospho-receptors and 
phosphatases strongly regulate the magnitude of network 
activation, and that the optimal strategy for enhancing net-
work activation is dependent on the level of stimulation. 
Thus, our simulations provide quantitative insight into mech-
anisms that can augment the activation of the stimulatory 
network in NK cells. 
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DISCUSSION 
In the present study, we constructed a mathematical model 
of a subset of the signaling pathways that mediate NK cell 
stimulation. We interrogated the model to understand (1) 
how the stimulatory network is influenced by the different 
pathways, (2) which signaling species and parameters di-
rectly influence the magnitude of network activation, (3) 
which combination of receptors are more potent in activating 
the stimulatory network and (4) how the network can be per-
turbed to enhance activation. 

Our baseline model predictions demonstrate network 
activation is sensitive to both the receptor concentrations as 
well as the rate of receptor deactivation. Specifically, the 
receptor concentrations influence the magnitude of activation 
whereas the rate of receptor deactivation influences the lig-
and concentration needed to attain a certain level of network 
activation. From our perturbation studies, we observed that 
the phospho-receptors and the phosphatases control the 
system’s response to NK cell receptor stimulation. Inhibiting 
phospho-receptor decay is particularly important for enhanc-
ing network activation when the input to the system is 
scarce. Alternatively, when the input is abundant, it is more 
important to inhibit phosphatase activity. In the case where 
NK cells are directed to recognize specific tumor-associated 
antigen via engineered receptors such as chimeric antigen 
receptors (CARs), our simulations suggest engineering re-
ceptors to be resistant to proteolytic cleavage, as the antigen 
may not be abundantly expressed on the tumor cell surface. 
In monoclonal antibody therapies, which can expose NK 
cells to a large concentration of input, the model simulations 

indicate that pre-incubation of NK cells with pan-SHP inhibi-
tors may unbridle NK cell activation and allow for a strong 
response. Thus, our computational modeling of NK cell stim-
ulation is highly valuable and particularly useful. Besides the 
large amount of time and resources needed to complete 
such studies via experimentation alone, many of the nonlin-
ear properties embedded in the signaling network would be 
difficult to capture and effectively characterize without 
knowledge of the parameters regulating the system. Instead, 
when there is a healthy union between data and modeling, 
our understanding of biology benefits the most.  

Our modeling results provide a robust quantitative 
framework to study the effects of co-stimulation of NK cell 
receptors. These predictions are relevant for developing im-
munotherapeutic strategies. Researchers in recent years 
have designed CARs for NK cells that include intracellular 
signaling domains of CD16, 2B4 and NKG2D for anti-tumor 
therapy (47,48). Those studies found that CARs comprised 
of CD16, 2B4 and NKG2D signaling domains together out-
performed activation induced by the individual receptors. In 
addition, CAR-NK cell immunotherapies (49,50) that include 
intracellular domains from both CD16 and NKG2D are 
shown to be effective in eliminating tumors in pre-clinical 
studies. Through continued success in the pre-clinical stage, 
a few CAR-NK cell immunotherapies have entered clinical 
trials as potential therapeutics for cancer patients (51,52). 
Excitingly, our model predicts that co-stimulation of CD16 
and NKG2D activate the network strongly both individually 
and collectively. We infer from our results that CARs that 
express the signaling domains of CD16 (CD3𝜁) and NKG2D 
(DAP10) may promote strong activation of the signaling net-
work. Although the model presented here was not trained on 

Fig. 6.  Perturbations to the stimulatory network. The percent change of the magnitude of network activation from baseline for stimulation 
of NKG2D (A – C), CD16 (D – F) and 2B4 (G – I) is shown. The perturbations were simulated using a ligand concentration of 6.67 × 10-4 
𝜇M (left column), 6.67 × 10-2 𝜇M (middle column) and 6.67 𝜇M (right column). Circles: decreasing pSFK deactivation rate. Triangles: de-
creasing pSHP activity. Squares: increasing receptor-ligand affinity. Diamonds: decreasing phospho-receptor decay rate. Marker: mean 
value from 1,000 parameter estimates. Error bars: one standard deviation. 
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data from CARs, our results are in accord with those found 
by researchers in immunotherapy. This demonstrates the 
model’s utility in predicting which strategies can improve NK 
cell activation. Importantly, the modeling predictions go be-
yond observations from published experimental studies by 
providing detailed predictions about the magnitude of activa-
tion across a range of ligand concentrations and insight as to 
why certain combinations work better than others. 

We acknowledge some limitations that may affect the 
model predictions. Firstly, our model includes three important 
stimulatory receptors; however, several others could have 
been considered as well. Additionally, although multiple sites 
of phosphorylation and dephosphorylation can exist for each 
species, we have not included this level of detail in the mod-
el. This would increase the specificity of our model, but it 
would be at the expense of model simplicity. Since we are 
interested in understanding and comparing the dynamics 
between multiple pathways, we sought to retain a simplified 
model in order to effectively compare the pathways. In the 
future, researchers can adopt and improve the current model 
by considering site specific reactions and their importance in 
particular aspects of NK cell stimulation. Finally, although the 
initial concentrations of the signaling species were derived 
from literature (20–23), we expect that these values may 
differ based on the specific NK cell line or the donor for pri-
mary NK cells. Future research can address these limita-
tions, building upon the work presented here. In addition, 
questions within tumor immunology, in particular tumor and 
NK cell dynamics, can be studied by integrating the present 
signaling model with a cell-based model. Mahasa and 
coworkers provide an example of such a model that incorpo-
rates intracellular and intercellular dynamics (11). 

Despite these limitations, our mathematical model is rel-
evant in understanding NK cell signaling and how the stimu-
latory network can be enhanced. The results presented here 
lend support for multiple strategies to induce optimal cell 
activation, including (1) the co-stimulation of specific receptor 
combinations, which is relevant to the design of engineered 
receptors (e.g., CARs), (2) modifying such engineered re-
ceptors to be degradation-resistant to promote continued 
signaling and (3) inhibiting SHP activity, when input levels 
are sufficiently large, to disinhibit the activation of the signal-
ing species that contribute to cell activation. In conclusion, 
our work provides strategies and insight into engineering NK 
cells for enhanced activation. 
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