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Abstract 

Necroptosis of intestinal epithelial cells has been indicated to play an important role 

in the pathogenesis of inflammatory bowel disease (IBD). The identification of 

dysregulated proteins that can regulate necroptosis in dextran sulfate sodium 

(DSS)-induced colitis is the key to the rational design of therapeutic strategies for 

colitis. Through Tandem Mass Tag (TMT)-based quantitative proteomics, HtrA2 was 

found to be downregulated in the colon of DSS-treated mice. UCF-101, a specific 

serine protease inhibitor of HtrA2, significantly alleviated DSS-induced colitis as 

indicated by prevention of body weight loss and decreased mortality. UCF-101 

decreased DSS-induced colonic inflammation, prevented intestinal barrier function 

loss and inhibited necroptosis of intestinal epithelial cells. In vitro, UCF-101 or 

silencing of HtrA2 decreased necroptosis of HT-29 and L929 cells. UCF-101 

decreased phosphorylation of RIPK1 and subsequent phosphorylation of RIPK3 and 

MLKL during necroptosis. HtrA2 directly interacted with RIPK1 and promoted its 

degradation during a specific time phase of necroptosis. Our findings highlight the 

importance of HtrA2 in regulating colitis by modulation of necroptosis and suggest 

HtrA2 as an attractive target for anti-colitis treatment. 
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Introduction 

Inflammatory bowel diseases (IBD), namely Crohn’s disease and ulcerative colitis, 

affect about 3.7 million people in the United States and Europe (Ananthakrishnan, 

2015). However, its etiology remains elusive, as complex interactions between genetic 

susceptibility, microbial dysbiosis, and environmental factors are involved in its 

pathogenesis (Maloy et al, 2011). Intestinal epithelium provides a physical barrier that 

modulates microbial colonization and prevents their penetration of the epithelium 

(Nowarski et al, 2015). Epithelial cell death is a hallmark of intestinal inflammation 

and leads to intestinal barrier disruption, which contributes to the pathogenesis of IBD 

(Luissint et al, 2016). Necroptosis, a newly recognized programmed cell death, of 

intestinal epithelial cells led to disruption of the intestinal barrier and resulted in 

spontaneous colitis or terminal ileitis in mice (Gunther et al, 2011; Welz et al, 2011). 

Intervening in necroptosis has been indicated as a promising therapeutic strategy for 

IBD. However, the role of deregulated genes that contribute to necroptosis in IBD 

remains largely unexplored. 

  Necroptosis is typically considered a highly pro-inflammatory mode of cell death, 

due to release of intracellular ‘‘damage-associated molecular patterns’’ that promote 

inflammation (Kearney et al, 2017). Necroptosis is a caspase-independent cell death 

and can be initiated by death receptors including TNFR1, TLR3, TLR4 and IFNRs 

(Kearney et al, 2017; Weinlich et al, 2017). Signal transduction during necroptosis has 

been well studied in the context of TNF-α. Upon TNF-α stimulation, RIPK1, FADD 

and CYLD are recruited to TNFR1 to form a protein complex. Subsequent 

deubiquitylation and phosphorylation events lead to RIPK1 phosphorylation and 

activation (de Almagro et al, 2017; Moquin et al, 2013). When caspase-8 activity is 

absent or inhibited, the phosphorylated RIPK1 regulates the formation of a necrosome 

which consists of RIPK1, RIPK3 and MLKL (Grootjans et al, 2017). Via RIP 

homotypic interaction motif-domain (RHIM) interactions, RIPK1 promotes 

oligomerization and subsequently autophosphorylation of RIPK3 (Orozco et al, 2014; 

Wu et al, 2014). MLKL is then recruited to the RIPK1/RIPK3 complex and 
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phosphorylated by p-RIPK3. Phosphorylated MLKL forms oligomers and translocates 

to the intracellular plasma membrane where it binds to phosphatidylinositol lipids and 

cardiolipin, leading to the formation of pores and finally disrupting cellular membrane 

integrity (Wang et al, 2014a). As an essential factor for necroptosis in the context of 

TNF-α, RIPK1 is reported to regulate necroptosis positively in a kinase dependent 

manner, and negatively in a kinase independent manner whereby the scaffolding 

function of the RHIM domain prevents ZBP1 from activating RIPK3 and thus 

represses necroptosis (Dannappel et al, 2014; Newton et al, 2016b; Orozco et al, 

2014). 

  HtrA2 is a serine protease located in mitochondria and involved in apoptosis 

regulation (Suzuki et al, 2001). Upon apoptotic stimuli, HtrA2 translocates from 

mitochondria to cytosol, where it binds to and cleaves IAPs, thus releasing caspases 

from their natural inhibitors (Yang et al, 2003). Independently, HtrA2 can cleave 

anti-apoptotic proteins ped/pea 15 and Hax-1 and thereby promote apoptosis (Liu et al, 

2017; Trencia et al, 2004). In addition to apoptosis, HtrA2 is also reported to have a 

role in necroptosis. In IL-13 deprivation induced cell death, HtrA2 was able to cleave 

RIPK1 and enhanced cell death in a caspase independent manner (Vande Walle et al, 

2010). According to the references, HtrA2 promotes necroptosis in a serine protease 

dependent manner (Blink et al, 2004; Sosna et al, 2013). UCF-101, a serine protease 

inhibitor of HtrA2, could inhibit TNF-α plus Z-VAD induced necroptosis in 

neutrophils, L929Ts and Jurkat I42 cells, as well as TNF-α plus Z-VAD and 

cycloheximide induced necroptosis in HT-29 cells (Blink et al, 2004; Sosna et al, 

2013). Nonetheless, the exact mechanism for HtrA2 in necroptosis regulation and 

IBD pathogenesis still remains unknown and needs further investigation. 

  Based on high throughput proteomic analysis, we found significant downregulation 

of HtrA2 in colons of DSS treated mice. Moreover, the pathological symptoms and 

animal motility were ameliorated by UCF-101 treatment. Mechanism investigation 

suggested that HtrA2 could interact with RIPK1, promote its degradation and finally 

enhance necroptosis. Our study raises the possibility of HtrA2 as a potential 
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therapeutic target for anti-colitis treatment. 
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Results 

HtrA2 is downregulated in colons of DSS-treated mice 

To identify important proteins that are dysregulated in the inflamed colon that could 

be used as novel potential therapeutic targets, we utilized a DSS-induced colitis 

mouse model for quantitative proteomics. Control mice were given distilled water for 

10 days while DSS-treated mice were given 3% DSS for 7 days that was replaced 

with distilled water for the following 3 days. Based on daily monitoring, the 

DSS-induced mice slowly began to lose weight and have bloody stools. On day 7, the 

symptoms were most severe and some of the mice died. The surviving mice recovered 

gradually and eventually returned to normal. Thus, we harvested the colon tissues on 

day 7 and day 10 to detect protein levels by TMT quantitative proteomics. Compared 

with the distilled water-treated control mice, HtrA2 protein levels were significantly 

decreased in the colons of DSS-treated mice (Fig EV1 and Fig 1A). In addition, the 

downregulation of HtrA2 in the colons of DSS-treated mice was confirmed by 

immunoblotting and immunohistochemical (IHC) staining (Fig 1B-1C). These data 

show that the protein level of HtrA2 was significantly reduced as colitis progressed. 

Further study is needed to determine whether the downregulation of HtrA2 is the 

cause of colitis development or whether the negative feedback protective mechanism 

is initiated by the colon tissue. 

Pharmacological inhibition of HtrA2 ameliorates DSS-induced colitis 

To determine the role of HtrA2 in DSS-induced colitis, UCF-101 was used to inhibit 

the serine protease activity of HtrA2 in vivo. In the DSS-induced colitis mouse model, 

UCF-101 was given daily by intraperitoneal injection from day 0 to day 9. Compared 

to the control treatment (DMSO) in which DSS treatment led to a rapid body weight 

loss from day 5 to day 12, UCF-101 completely blocked body weight loss (Fig 1E). 

Furthermore, UCF-101 dramatically reduced DSS-induced mortality and shortening 

of colon length (Fig 1F and Fig 1D). Taken together, these results imply that 

inhibition of HtrA2 prevents DSS-induced colitis in mice, suggesting that 
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downregulation of HtrA2 is a protective mechanism utilized by the host in the context 

of colitis. 

UCF-101 decreased inflammation in colon 

Next, we examined whether UCF-101 decreased inflammation in DSS-induced colitis. 

HE staining showed that UCF-101 significantly decreased tissue damage and 

infiltration of inflammatory cells in colons of DSS-treated mice (Fig 2A). Enhanced 

tissue damage in DMSO treated control mice was accompanied with augmented 

expression of pro-inflammatory cytokines, including TNF-α, IL-6 and IL-1β, which 

was significantly restrained in UCF-101 treated mice (Fig 2B-2D). In DSS-induced 

colitis, large numbers of myeloid cells (Cd11b positive), including macrophages 

(F4/80 positive) and neutrophils (MPO positive), infiltrated into the mucosa and 

epithelial layer of the damaged colon (Fig 3A-C). The infiltration of Cd11b, F4/80 

and S100a9 positive cells in the colon was dramatically suppressed in 

UCF-101-treated mice (Fig 3A-C). The same phenomenon was observed with the 

infiltration of S100a9 positive cells, a marker of inflammation (Fig 3D). Taken 

together, these results confirm that the protease function of HtrA2 plays an important 

role in DSS-induced colonic inflammation. 

UCF-101 decreases intestinal barrier disruption and necroptosis in colons of 

DSS-treated mice 

The intestinal barrier function is crucial for intestinal homeostasis. Intestinal 

inflammation is possibly due to the destruction of barrier function. We further 

explored the protective effect of UCF-101 on intestinal barrier function in colitis. 

Intestinal permeability was detected by intragastrical injection of FITC-Dextran 

tracker on day 8 of DSS induction. Increased FITC-Dextran was found in the colon 

and serum of control mice, but it was significantly reduced in UCF-101-treated mice 

(Fig 4A-4B), suggesting that the increased intestinal permeability seen after DSS 

induction could be diminished by UCF-101. Moreover, compared with the control 

treatment, UCF-101 significantly decreased the incidence of bacterial spreading to the 
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spleens of DSS-treated mice (Fig 4C). These data prove that treatment with UCF-101 

can protect the barrier function of the colon in DSS-induced colitis. 

Previous studies suggest that necroptosis of epithelial cells is an important process 

that leads to disruption of the intestinal barrier and contributes to the development of 

IBD. Based on our results, we found that compared with their littermate wild type 

mice, Mlkl
-/-

 mice were completely protected from DSS-induced colitis as indicated 

by prevention of body weight loss and reduced mortality (Fig EV2), thus suggesting a 

critical role of necroptosis in DSS-induced colitis. Massive death of intestinal cells 

was found in DSS-treated mice as shown by TUNEL staining, but treatment with 

UCF-101 significantly decreased TUNEL positive cells in the colon (Fig 5A-5B). 

Since TUNEL staining is not able to distinguish necroptosis from apoptosis, we 

further checked the evidence of necroptosis in the colon via immunoblotting with 

specific necroptotic and apoptotic markers; p-MLKL (promoter of necroptosis) and 

cleaved caspase-3 (indicator of apoptosis). In the colons of DSS-treated mice, 

p-MLKL was increased on day 7 and day 10, but little cleaved caspase-3 was detected 

(Fig 1B and Fig 5C), suggesting that necroptosis, but not apoptosis, contributed to 

DSS-induced colitis. As mice were observed to finally recover from DSS-induced 

colitis, immunoblotting results showed that p-MLKL decreased to basal levels on day 

13 (Fig 5C). In UCF-101 treated mice, much less p-MLKL was detected, 

demonstrating a suppression of necroptosis by UCF-101 (Fig 5C). Interestingly, the 

level of cleaved caspase-3 was much greater in UCF-101-treated mice than in control 

mice (Fig 5C). This is not surprising given the fact that there is competition between 

necroptosis and apoptosis, because, in vitro, necroptosis is observed when apoptosis is 

blocked by caspase inhibition (Grootjans et al, 2017). This may explain why, in 

UCF-101-treated mice, necroptosis was suppressed and then apoptosis arose. 

Collectively, all of these results suggest that UCF-101 can decrease the symptoms of 

colitis by preventing necroptosis of colonic epithelial cells and protecting intestinal 

barrier function. 

Inhibition of HtrA2 decreases necroptosis of epithelial cells in vitro 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2018. ; https://doi.org/10.1101/395897doi: bioRxiv preprint 

https://doi.org/10.1101/395897
http://creativecommons.org/licenses/by-nc-nd/4.0/


To find the mechanism by which HtrA2 regulates necroptosis, we treated HT-29, a 

type of colorectal adenocarcinoma cell, with TNF-α plus Smac and Z-VAD (T/S/Z) in 

vitro. T/S/Z-induced necroptosis of HT-29 cells was measured by PI/Hoechst staining 

and cell viability analysis (Fig 6A-6B and Fig EV3). The necroptotic cell death was 

further confirmed using Nec-1 (RIPK1 inhibitor) as a positive control where Nec-1 

treatment completely blocked T/S/Z-induced necroptosis of HT-29 cells (Fig 6A-6B 

and Fig EV3). The results showed that necrosis induced with T/S/Z in HT-29 cells 

was decreased after treatment with UCF-101 in a dose dependent manner (Fig 6A-6B 

and Fig EV3). Similar results were obtained in L929 cells treated with T/S or T/Z (Fig 

EV4). To confirm the role of HtrA2 in necroptosis, shRNAs against HtrA2 were used 

to decrease the protein level of HtrA2 (Fig 6C). Consistent with the above observation, 

silencing of HtrA2 inhibited necroptosis of HT-29 cells as indicated by decreased PI 

positive cells and increased cell viability (Fig 6D-6E). These results suggest that 

HtrA2 contributes to necroptosis by its serine protease activity. 

HtrA2 contributes to necroptosis by degrading RIPK1 

To find the target of HtrA2, we examined the effect of UCF-101 on important factors 

involved in necroptosis, including RIPK1, RIPK3, MLKL and their phosphorylated 

status. Immunoblotting results showed that HT-29 cells treated with T/S/Z showed an 

increase in p-RIPK1, p-RIPK3 and p-MLKL in a time dependent manner (Fig 7A). 

These necroptotic indicators were decreased when HT-29 cells were treated with 

UCF-101, a result consistent with the analysis of PI staining and cell viability (Fig 

6A-6B and Fig EV3). UCF-101 also decreased MLKL trimer formation in T/S-treated 

L929 cells, which is seen in the execution phase of necroptosis (Fig EV5). Moreover, 

immunoblotting results also showed that the total RIPK1 protein level was decreased 

upon T/S/Z stimulation, but degradation of RIPK1 was inhibited by UCF-101 

treatment (Fig 7A, the second panel). The same phenomenon was detected in colons 

of DSS-treated mice (Fig 5C, the third panel). Interestingly, immunoblotting results 

showed that under T/S/Z culture conditions, there was a unique protein band of about 

35 kDa detected by RIPK1 antibody, and the appearance of this protein coordinated 
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with the degradation of RIPK1 (Fig 7B, marked with arrowhead). This protein band 

dissipated in cells treated with UCF-101 (Fig 7B). This data further confirmed RIPK1 

as the target of HtrA2 that could be degraded at a special site. 

To confirm that RIPK1 is the direct target of HtrA2, we detected their interaction by 

Co-IP. A HT-29 cell line which expressed HtrA2 fused with 3×Flag was constructed 

by lentivirus (Fig EV6). HtrA2 was immunoprecipitated with Flag antibody, and the 

co-immunoprecipitated proteins were detected by immunostaining with RIPK1 

antibody. After T/S/Z stimulation, increased interaction between HtrA2 and RIPK1 

was detected (Fig 7C). These results suggest that HtrA2 enhances necroptosis by 

directly interacting with RIPK1 and promoting its degradation. RIPK1 promotes 

necroptosis in a kinase dependent manner, while its kinase independent scaffolding 

function inhibits necroptosis (Newton et al, 2016b; Orozco et al, 2014). These results 

imply that HtrA2 enhances necroptosis by degrading RIPK1 at a specific time phase. 

The details of the mechanism whereby RIPK1 induces necroptosis needs to be further 

investigated. 
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Discussion 

In this article, we reveal that HtrA2 is an important regulator of necroptosis; it 

enhanced necroptosis by degrading RIPK1 in a serine protease dependent manner at a 

specific time phase. Inhibiting the protease function of HtrA2 by treatment with 

UCF-101 ameliorated DSS-induced colitis in vivo. Our findings indicate HtrA2 

downregulation as a protective mechanism to suppress necroptosis of colonic 

epithelial cells and maintain colon barrier function in DSS-induced colitis. Targeting 

HtrA2 may be a potential therapy for IBD treatment.  

Necroptosis has been thought to play an important role in the pathogenesis of IBD 

(Pierdomenico et al, 2014). However, previous evidence has not definitively 

demonstrated a critical role for necroptosis in DSS-induced colitis. According to 

published data, the RIPK1-RIPK3-MLKL signaling pathway is the critical regulatory 

mechanism for necroptosis (Shan et al, 2018). Nec-1, a RIPK1 inhibitor, suppresses 

DSS-induced colitis, but it’s also an inhibitor of indoleamine 2,3-dioxygenase, which 

contributes to development of colitis (Harrington et al, 2008; Liu et al, 2015). RIPK3 

deficiency had no effect on or even exacerbated DSS-induced colitis since RIPK3 

deficiency compromised injury-induced tissue repair by impairing the IL-1β, IL-23, 

and IL-22 cytokine cascade (Moriwaki et al, 2014; Newton et al, 2016a; Xu et al, 

2017). Herein, we provide direct evidence for the critical role of necroptosis in 

DSS-induced colitis. MLKL is a promoter of necroptosis and p-MLKL has been used 

for the detection of necroptosis (Cai et al, 2014; Wang et al, 2014b). In this study, we 

found that p-MLKL was significantly increased in colons of mice with DSS-induced 

colitis and that MLKL deficiency completely protected mice against DSS-induced 

colitis. All of these results suggest that necroptosis has a critical role in the 

pathogenesis of colitis. 

A substantial number of studies have found that HtrA2 promotes apoptosis by 

degrading IAP and other anti-apoptotic proteins (Suzuki et al, 2001; Yang et al, 2003). 

However, its role in necroptosis and IBD remains unclear. Herein, we found that 

HtrA2 was significantly downregulated in the colons of DSS-treated mice and was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2018. ; https://doi.org/10.1101/395897doi: bioRxiv preprint 

https://doi.org/10.1101/395897
http://creativecommons.org/licenses/by-nc-nd/4.0/


associated with the pathological process. Moreover, UCF-101 treatment in vivo 

depressed necroptosis rather than apoptosis, thus protecting intestinal barrier function 

and inhibiting inflammation in DSS-induced colitis. In vitro, HtrA2 deficiency or 

UCF-101 treatment inhibited T/S/Z induced necroptosis in HT-29 cells and T/Z 

induced necroptosis in L929 cells, respectively. Therefore, HtrA2 promotes 

necroptosis in a serine protease dependent manner and leads to epithelial damage of 

the colon in DSS-induced colitis. 

In this study, we are the first to report that HtrA2 promotes necroptosis by degrading 

RIPK1. As a key player in the induction of necroptosis, RIPK1 utilizes two opposing 

mechanisms in necroptosis regulation. It promotes necroptosis in a kinase dependent 

manner to further promote RIPK3 activation and MLKL phosphorylation (Orozco et 

al, 2014). On the other hand, RIPK1 negatively inhibits necroptosis in a kinase 

independent manner (Newton et al, 2016b; Orozco et al, 2014). RIPK1 deficiency or 

kinase inactive mutation blocks necroptosis in the context of TNF-a induction 

(Polykratis et al, 2014), suggesting a critical role of RIPK1 kinase activity in 

mediating necroptosis. RIPK1 could also inhibit necroptosis by preventing ZBP1 

from activating RIPK3 through its RHIM domain (Newton et al, 2016b). Herein, our 

findings showed that RIPK1 was phosphorylated upon T/S/Z stimulation in a time 

dependent manner. Interestingly, RIPK1 was gradually degraded during necroptosis, 

followed by phosphorylation of RIPK3. These findings suggest that RIPK1 is required 

for signaling transduction upon T/S/Z induction and degradation of RIPK1 further 

enhances necroptosis. Moreover, UCF-101 inhibited degradation of RIPK1 and 

subsequently decreased phosphorylation of RIPK3 and MLKL (Fig 7A and 7C). 

Direct interaction between HtrA2 and RIPK1 during necroptosis was also 

demonstrated by Co-IP (Fig 7B). Similarly, there is a report in the literature that 

HtrA2 can also cleave RIPK1 upon IL-3 withdrawal-induced cell death in the pro-B 

cell line Ba/F3 (Vande Walle et al, 2010). Interestingly, a 36 kDa cleaved fragment of 

RIPK1 was detected in T/S/Z-treated HT-29 cells, which differs from a 25 kDa 

cleaved fragment of RIPK1 in the pro-B cell line Ba/F3 upon IL-3 withdrawal. These 
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results suggest that HtrA2 promotes necroptosis by degrading RIPK1. However, how 

HtrA2 is activated upon T/S/Z stimulation and the subsequent regulation of RIPK1 

phosphorylation and degradation need further study. 

In addition to the anti-necroptosis function of UCF-101 in vitro, we also found that 

UCF-101 could ameliorate DSS-induced colitis by preventing necroptosis of intestinal 

epithelial cells. Intestinal barrier breakdown, increased infiltration of inflammatory 

cells and production of pro-inflammatory cytokines are major characteristics of IBD 

(Luissint et al, 2016; Neurath, 2014), but all of these symptom could be alleviated in 

DSS-induced colitis when mice were treated with UCF-101. This is the first time that 

treatment with UCF-101 has been shown to suppress intestinal epithelial permeability, 

infiltration of macrophages and neutrophils, and production of TNF-α, IL-6 and IL-1β 

in the colons of DSS-treated mice. In addition, UCF-101 decreased DSS-induced 

body weight loss, colon length shortening and mortality of mice. All of these results 

suggest UCF-101 as a potential candidate for anti-colitis therapy in the future. 
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Materials and Methods  

Cell lines 

Human colorectal adenocarcinoma cell line HT-29 was maintained in McCoy's 5a 

Medium Modified (GIBCO, USA) supplemented with 10% fetal bovine serum (FBS, 

GIBCO, USA), penicillin (100 U/mL) and streptomycin (100 U/mL). Mouse 

fibroblast L929 was maintained in Dulbecco's modified Eagle's medium (DMEM, 

GIBCO) supplemented with 10% FBS, penicillin (100 U/mL) and streptomycin (100 

U/mL).  

Mice 

Mlkl
-/-

 mice were a generous gift from Dr. Jiahuai Han (State key laboratory of 

Cellular Stress Biology and School of life sciences, Xiamen University, China). 

Heterozygous Mlkl mice were further bred for age-matched wild type littermate and 

Mlkl deficient homozygous experimental mice. C57BL/6J mice were purchased from 

Jinan Peng Yue Laboratory Animal Breeding Company Limited (China). All mice 

were housed in specific SPF facility with a 12:12-hour light/dark cycle and ambient 

temperature of 22 ± 2°C. All protocols involving animals were conducted in 

accordance with the Guide for the Care and Use of Laboratory Animals (NIH 

publications Nos. 80–23, revised 1996) and under the approval of the Ethical 

Committee of Guangdong Provincial Animal Experiment Center.  

Reagents 

The antibodies used for immunoblotting included: mouse monoclonal antibody 

against GAPDH (RM2002, Beijing Ray, China); rabbit monoclonal antibodies against 

HtrA2 (ab75982, Abcam, USA), p-RIPK1 (65746, CST, USA), RIPK1 (3493, CST), 

p-RIPK3 (93654, CST), human p-MLKL (91689, CST), human MLKL (ab184718, 

Abcam), and mouse p-MLKL (ab196436, Abcam); rabbit polyclonal antibodies 

against RIPK3 (ab56164, Abcam) and mouse MLKL (ab172868, Abcam); and goat 

anti-mouse (R3001, Beijing Ray) or goat anti-rabbit (R3002, Beijing Ray) 

HRP-conjugated secondary antibody. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2018. ; https://doi.org/10.1101/395897doi: bioRxiv preprint 

https://doi.org/10.1101/395897
http://creativecommons.org/licenses/by-nc-nd/4.0/


The antibodies used for immunohistochemical staining included: CD11b (ab133357, 

Abcam), S100a9 (73425, CST, USA), HtrA2 (ab75982, Abcam), MPO (ab9535, 

Abcam) and F4/80 (ab111101, Abcam). 

Other reagents included: DSS (36,000–50,000 kD, MP Biomedicals, USA), UCF-101 

(Cayman Chemical, USA), Nec-1, BV-6, Z-VAD (Selleck, USA), mouse TNF-α 

(R&D, USA), Cell Counting Kit-8 (CCK-8, MCE, USA), FITC-dextran (4 KDa, 

Sigma, USA). 

Induction of experimental DSS-induced colitis 

Male C57BL/6 mice weighing 21 to 24 grams were used. DSS (3% wt/vol) was 

administered in drinking water ad libitum for 7 days (from day 0 to day 7). DSS 

solution was replaced twice on day 2 and day 4. For UCF-101 intervention 

experiments, mice were injected intraperitoneally with UCF-101 (10mg/Kg mice, 

dissolved in distilled water containing 10% DMSO) or same amount of 10% DMSO 

as control, from day 0 to day 9. Mice weight and survival were recorded daily. 

For proteomic analysis, colon tissues from control mice and 3% DSS treated mice (n= 

3 for each group) were collected and colonic proteins were extracted using the cold 

acetone method. Proteins were then tryptic digested with sequence-grade modified 

trypsin at 37°C overnight. The resultant peptide mixture was labeled with TMT tags. 

The combined labeled samples were subjected to a SCX fractionation column 

connected with a high-performance liquid chromatography (HPLC) system. Peptide 

fractions were resuspended with 30μl solvent C (water with 0.1% formic acid), 

separated by nanoLC and analyzed by on-line electrospray tandem mass spectrometry. 

The fusion mass spectrometer was operated in the data-dependent mode to switch 

automatically between MS and MS/MS acquisition. The mass spectrometry data were 

transformed into MGF files with Proteome Discovery 1.2 (Thermo, Pittsburgh, PA, 

USA) and analyzed using Mascot search engine (Matrix Science, London, UK; 

version 2.3.2). The Mascot search results were averaged using medians and quantified. 

Proteins with a fold change > 1.3 or < 0.77 and with a P value <0.05 were considered 
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statistically significant. 

For histologic scoring, H&E stained colonic tissue sections were used.(Chassaing et al, 

2014) Histologic scoring was performed based on the degree of epithelial damage and 

inflammatory infiltration into the mucosa, submucosa and muscularis/serosa (score 

0-3). Each of the four scores was multiplied by 1-3 depending on whether the change 

was focal, patchy or diffuse, respectively. A total scoring range of 0–36 per mouse 

was obtained by adding up the 4 individual scores. 

Measurement of intestinal permeability 

The mice treated with DSS for 7 days were deprived of food for 4 hours, given 

FITC-dextran (4 KDa, 0.6mg/g body weight, dissolved in 0.1 ml PBS) intragastrically 

and hemolysis-free sera were collected 3 hours later. Intestinal permeability correlates 

with fluorescence intensity of serum (excitation, 488 nm; emission, 520 nm; 

Multi-Mode Microplate Reader). 

To detect the bacterial load in spleen, spleen lysates (100mg/ml in PBS) were 

centrifuged for 3 minutes at 300 g. The same volume of each supernatant was plated 

on non-selective agar plates in 5 serial 10-fold dilutions. Colonies of bacteria were 

observed 24 hours later. Results were calculated from at least 8 plates prepared from 

each sample. 

Immunohistochemical (IHC) staining 

As described previously,(Fang et al, 2015) mice subjected to different treatments were 

sacrificed and the same part of their colons were fixed in 4% paraformaldehyde for 12 

hours. The tissues were sliced to 5 µm thickness and deparaffinized with xylene, 

rehydrated through graded ethanol, followed by quenching of endogenous peroxidase 

activity in 0.3% hydrogen peroxide, and antigen retrieval by microwave heating in 10 

mM citrate buffer (pH 6.0) for HtrA2, CD11b and S100a9 or in EDTA buffer (pH 9.0) 

for MPO and F4/80. Sections were incubated at 4°C overnight with rabbit polyclonal 

antibody against CD11b, S100a9, HtrA2, MPO and F4/80, then immunostained by 

ChemMate DAKO EnVision Detection Kit, Peroxidase/DAB, Rabbit/Mouse 
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(DakoCytomation, Denmark). Subsequently, sections were counterstained with 

hematoxylin and mounted in non-aqueous mounting medium.  

To detect the number of CD11b, F4/80, MPO or S100a9 positive cells, ten random 

fields (200×) of each section were photographed to calculate the positive cells. The 

average numbers of positive cells per field are presented. 

Immunoblotting 

20 μg cell protein or 50 μg tissue protein were separated in a 10% polyacrylamide gel 

and transferred to a methanol activated PVDF membrane (Millipore, MA, USA). The 

membrane was blocked for 1 hour in Tris-buffered saline plus Tween-20 (TBST) 

containing 3% bovine serum albumin, and then immunoblotted subsequently with 

primary and secondary antibodies. The protein level was detected using a Pierce ECL 

Western blotting Substrate (Thermo, USA).  

Measurement of cytokine secretion 

For detecting cytokine levels, colon tissues were homogenated and sonicated in M2 

buffer. 300 μg of colon protein were used to measure TNF-α，IL-6 and IL-1β levels. 

BioLegend’s ELISA MAX™ Deluxe Sets for TNF-α，IL-6 and IL-1β were used. The 

experiments were conducted according to manufacturer’s instructions. 

TUNEL (terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end 

labeling) staining 

Sections of formalin-fixed, paraffin-embedded tissues were deparaffinized with 

xylene and rehydrated through graded ethanol. Sections were digested with Proteinase 

K at 55°C for 1 hour and stained using a TUNEL Apoptosis Detection Kit (FITC) 

(Yeasen, China) according to manufacturer’s instructions. Ten random fields (200×) 

were photographed and FITC positive cells were counted. The average number of 

FITC positive cells per field are presented. 

Measurement of cell death 

HT-29 or L929 cells were pretreated with UCF-101 (50uM) for 1 hour, then 
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stimulated with 20 ng/mL TNF-α plus 2 μM Smac (BV-6) and 25uM Z-VAD (T/S/Z) 

for 8 hours or 20 ng/mL TNF-α plus 2 μM Smac (T/S) for 9 hours or 1 ng/mL TNF-α 

plus 25 μM Z-VAD (T/Z) for 3 hours, respectively. For PI staining, cells were 

digested with trypsin containing 0.25 M EDTA, washed with cold 1X assay buffer, 

stained with PI for 5 minutes and then analyzed by flow cytometry. For PI/Hoechst 

staining, cells were stained with PI and Hoechst for 20 minutes, then photographed 

with a fluorescence microscope and at least 300 cells were counted. The ratio of PI 

positive cells (%) = (PI positive cells) / (Hoechst positive cells) ×100%. For cell 

viability analysis, CCK-8 was add to the well and incubated for 1-2 hours and then 

OD450 was measured using a Multi-Mode Microplate Reader (Varioskan Flash, 

Thermo, USA). Cell viability = (ODtarget-ODblank)/(ODcontrol - ODblank) × 100%. Target 

= cells treated with T/S/Z or T/S or T/Z, control = cells with no treatment, blank = no 

cells. 

ShRNAs and gene knockdown 

HtrA2 shRNA (shHtrA2) and non-target control shRNA (shNC) constructs were 

purchased from Cyagen Biosciences (China). Sequences of shRNAs are list in Table 

EV1. Lentiviruses were generated by transiently co-transfecting HEK293T cells with 

the lentiviral expression vector (pLV-shHtrA2) and packaging plasmid (Lenti-X HTX 

Packaging Mix, Clontech, USA) using Lipofectamine 3000 (Life technologies, USA). 

Twelve hours after transfection, cells were refreshed with complete growth medium 

and incubated for another 36 hours. The lentiviral supernatants were then harvested 

and cellular debris was removed by centrifugation at 700 g for 10 minutes. HT-29 

cells were then infected with lentiviruses. Knockdown efficiency was determined by 

immunoblotting. To ensure knockdown efficiency, cells within six generations were 

used.  

Statistical analysis 

Data from at least three independent experiments are shown as the mean ± standard 

error of the mean (SEM). Unless otherwise noted, the differences between two groups 
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were analyzed by unpaired Student t test. Mouse survival curves were constructed 

using the Kaplan-Meier product limit estimator and log rank (Mantel-Cox) test. 

Analyses were performed with GraphPad Prism (Version 4.0, USA). P < 0.05 was 

considered statistically significant in all experiments. 
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Problem 

At present, the treatment of IBD still focus on the regulation of local immune system, 

but the current anti-inflammatory therapy has limited clinical applications. 

Necroptosis of intestinal epithelial cells has been indicated to play an important role 

in the pathogenesis of IBD. Targeting necroptosis is a promising strategy for IBD 

treatment. However, dysregulated proteins that can modulate necroptosis in IBD 

remain largely unexplored. 

Results 

HtrA2 was found to be downregulated in the colon of DSS-treated mice. UCF-101, a 

specific serine protease inhibitor of HtrA2, significantly alleviated DSS-induced 
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colitis as indicated by prevention of body weight loss, reduced mortality and 

decreased colon length shortening. UCF-101 decreased DSS-induced colonic 

inflammation, prevented intestinal barrier function loss and inhibited necroptosis of 

intestinal epithelial cells. In vitro, inhibition of HtrA2 decreased necroptosis of HT-29 

and L929 cells by inhibiting RIPK1 degradation and preventing phosphorylation of 

RIPK1, RIPK3 and MLKL. 

Impact 

Our study suggests that downregulation of HtrA2 may confer a protective role against 

DSS-induced colitis. Our findings highlight that targeting HtrA2 holds great potential 

in the fight against IBD.  
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Figure Legends 

Figure 1. Pharmacological inhibition of HtrA2 ameliorated DSS-induced colitis. 

A   Differentially expressed proteins in colons of control and DSS-treated mice. 3% 

DSS was administered in drinking water to C57BL/6 mice for 7 days and replaced 

with fresh water thereafter. On day 10, colons were collected and protein levels were 

measured by quantitative proteomics. Each dot represents one protein. HtrA2 is 

indicated by red dot. X axis represents P value and Y axis represents fold change of 

colonic protein level between control and DSS-treated mice. n = 3 mice/group.  

B, C   HtrA2 expression was decreased in colon of DSS-treated mice. 3% DSS was 

used to induce colitis as described in (A). On day 7 and day 10, colons were collected 

to analyze the protein levels of HtrA2, MLKL, phosphorylated MLKL and GAPDH 

by immunoblotting with corresponding antibodies (B) or immunohistochemical (IHC) 

staining with anti-HtrA2 antibody (C). Scale bar, 50 μm. 

D-F  3% DSS was used to induce colitis as described in (A), and UCF-101 

(10mg/Kg mice) or DMSO was injected intraperitoneally every day for 10 days. Mice 

were sacrificed on day 10 to measure the colon length (D); and body weight (E), and 

mortality rate (F) was determined.  

Data information: In (D and E), data are presented as means ± SEM. *, P < 0.05; **, 

P < 0.01; ***, P < 0.001 (two-tailed unpaired Student’s t test).  

 

Figure 2. UCF-101 decreased inflammation in colons of DSS-treated mice.  

3% DSS was administered in drinking water to C57BL/6 mice for 7 days and replaced 

with fresh water thereafter. UCF-101 (10mg/Kg mice) or DMSO was injected 

intraperitoneally every day for 8 days.  

A   Colon tissues from mice on day 8 were evaluated by H&E staining and 

histologic score analysis. Scale bar, 50 μm. 

B-D   Total colon tissues on day 8 were extracted and 300 μg protein were used to 

measure TNF-α, IL-6 and IL-1β levels by ELISA.  

Data information: In (A–D), data are presented as means ± SEM. *, P < 0.05 

(two-tailed unpaired Student’s t test). 
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Figure 3. UCF-101 decreased the infiltration of CD11b, F4/80, MPO and S100a9 

positive cells in colons of DSS-treated mice. 

A-D   3% DSS was administered in drinking water to C57BL/6 mice for 7 days and 

replaced with fresh water thereafter. UCF-101 (10mg/Kg mice) or DMSO was 

injected intraperitoneally every day for 8 days. Colons were harvested and sections of 

colon tissues were immunohistochemically stained for CD11b (A), F4/80 (B), MPO 

(C) and S100a9 (D) with corresponding antibodies. Scale bar, 50 μm. Ten random 

fields (200×) were photographed for each section. The average number of positive 

cells per field is presented. 

Data information: In (A–D), data are presented as means ± SEM. **, P < 0.01; ***, P 

< 0.001 (two-tailed unpaired Student’s t test). 

 

Figure 4. UCF-101 decreased intestinal barrier disruption in colons of 

DSS-treated mice.  

3% DSS was administered in drinking water to C57BL/6 mice for 7 days and replaced 

with fresh water thereafter. UCF-101 (10mg/Kg mice) or DMSO was injected 

intraperitoneally every day for 8 days.  

A, B   Intestinal barrier permeability was detected by intragastrical injection of 

FITC-Dextran. (A) Colon tissues were sliced and representative images of colons 

from indicated groups were detected by fluorescent microscope. (B) FITC-Dextran 

levels in hemolysis-free serum from indicated groups were detected with 

spectrophotometer.  

C   Bacterial load in the spleen was analyzed (see “Material and Methods” for 

details).  

Data information: In (B), data are presented as means ± SEM. **, P < 0.01; ***, P < 

0.001 (two-tailed unpaired Student’s t test). 

 

Figure 5. UCF-101 decreased necroptosis in colons of DSS-treated mice.  

3% DSS was administered in drinking water to C57BL/6 mice for 7 days and replaced 
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with fresh water thereafter. UCF-101 (10mg/Kg mice) or DMSO was injected 

intraperitoneally every day for 8 days.  

A, B   Sections of colon on day 8 were subjected to TUNEL staining. Representative 

images (A) and numbers of TUNEL positive cells (B) are presented.  

C   Colonic proteins on day 7, 10 and 13 were tested by immunoblotting to detect 

p-MLKL, MLKL, RIPK1 and cleaved caspase-3 with corresponding antibodies. 

GAPDH was used as an internal control.  

Data information: In (B), data are presented as means ± SEM. *, P < 0.05 (two-tailed 

unpaired Student’s t test). 

 

Figure 6. Inhibition of HtrA2 decreased necroptosis in TNF-α/Smac/Z-VAD 

(T/S/Z)-treated HT-29 cells.  

A, B   HT-29 cells were pre-treated with Nec-1 (10 μM) or different doses of 

UCF-101 for 1 hour, followed by stimulation with TNF-α (20 ng/mL)/Smac (2 

μM)/Z-VAD (25 μM) for 8 hours. PI positive cells were analyzed by PI/Hoechst 

staining (A), and cell viability was determined by CCK8 analysis (B).  

C-E   HT-29 cells were stably infected with lentiviruses carrying scramble shRNA 

(shNC) or two different shRNAs targeting two individual sites of HtrA2 (shHtrA2-1 

or shHtrA2-2). HtrA2 protein levels were detected by immunoblotting (C). Indicted 

cells were stimulated with T/S/Z for 8 hours. PI positive cells were analyzed by 

PI/Hoechst staining (D), and cell viability was determined by CCK8 (E).  

Data information: In (A, B, D and E), data are presented as means ± SEM. **, P < 

0.01; ***, P < 0.001 (two-tailed unpaired Student’s t test). 

 

Figure 7. HtrA2 enhanced necroptosis by degrading RIPK1.  

A, B   HT-29 cells were pre-treated with UCF-101 (50 μM) for 1 hour, followed by 

stimulation with T/S/Z for different times as indicated. Phosphorylation of RIPK1, 

RIPK3 and MLKL, as well as their protein levels, were analyzed by immunoblotting 

with corresponding antibodies (A). Longer exposure of immunoblotting was 

performed to detect the cleaved fragment of RIPK1 (B).  
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C   HT-29 cells stably expressing HtrA2-3×Flag fusion protein were stimulated with 

T/S/Z for indicated times. The association between RIPK1 and HtrA2-3×Flag was 

analyzed by immunoprecipitation with anti-Flag antibody, followed by 

immunoblotting. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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