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 2 

Abstract 36 

 High-throughput sequencing technology has revolutionized both medical and biological 37 

research by generating exceedingly large numbers of genetic variants. The resulting datasets 38 

share a number of common characteristics that might lead to poor generalization capacity. 39 

Concerns include noise accumulated due to the large number of predictors, sparse information 40 

regarding the 𝑝 ≫ 𝑛  problem, and overfitting and model mis-identification resulting from 41 

spurious collinearity. Additionally, complex correlation patterns are present among variables. As 42 

a consequence, reliable variable selection techniques play a pivotal role in predictive analysis, 43 

generalization capability, and robustness in clustering, as well as interpretability of the derived 44 

models.     45 

 𝐾-dominating set, a parameterized graph-theoretic generalization model, was used to 46 

model SNP (single nucleotide polymorphism) data as a similarity network and searched for 47 

representative SNP variables. In particular, each SNP was represented as a vertex in the graph, 48 

(dis)similarity measures such as correlation coefficients or pairwise linkage disequilibrium were 49 

estimated to describe the relationship between each pair of SNPs; a pair of vertices are adjacent, 50 

i.e. joined by an edge, if the pairwise similarity measure exceeds a user-specified threshold. A 51 

minimum 𝑘-dominating set in the SNP graph was then made as the smallest subset such that every 52 

SNP that is excluded from the subset has at least k neighbors in the selected ones.  The strength of 53 

𝑘-dominating set selection in identifying independent variables, and in culling representative 54 

variables that are highly correlated with others, was demonstrated by a simulated dataset. The 55 

advantages of 𝑘 -dominating set variable selection were also illustrated in two applications: 56 

pedigree reconstruction using SNP profiles of 1,372 Douglas-fir trees, and species delineation for 57 

226 grasshopper mouse samples. A C++ source code that implements SNP-SELECT and uses 58 

Gurobi™ optimization solver for the 𝑘-dominating set variable selection is available 59 

 (https://github.com/transgenomicsosu/SNP-SELECT). 60 

  61 
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 3 

Introduction 62 

With the rapid advancement of DNA sequencing technology, the volume and dimension of 63 

biological and medical data have been increasing at an unprecedented rate. Accompanying such 64 

high volume genetic data, the ‘curse of dimensionality’ has not only hindered genetic discovery 65 

by the demanding computing resource required; model noise also accumulates due to a large 66 

number of predictors. The spurious collinearity of the large number of predictors that causes 67 

over-fitting and mis-identification of models raises serious concerns. As a result, variable 68 

selection methods are playing pivotal role in predictive analyses, clustering, and classification. 69 

For example, Song et al. (1) showed that with a selected subset of 1,500 SNP, comparable 70 

predictability for traits like grain yield could be achieved without using the entire SNP dataset 71 

(>10K SNPs). In a closely related wheat population, predictability obtained using 34,749 SNPs 72 

could be attainable with as few as 1,827 SNPs (2). Research in a bi-parental bread wheat 73 

population genotyped with 485 SNP markers showed prediction accuracy plateaued with 128-256 74 

markers, beyond which accuracy started to decline (3). A similar benefit from SNP variable 75 

selection for prediction is also seen in dairy cattle and maize breeding programs (4, 5). In a 76 

genomic prediction study, where predictability of human height, high-density lipoprotein 77 

cholesterol (HDL) and body mass index (BMI) was examined for approximately 3,000 individuals, 78 

supervised variable selection was recommended in the GBLUP (genomic best linear unbiased 79 

prediction) framework (Bermingham et al. (6)).    80 

 Crucial to both analyzing and interpreting high dimensional datasets, significant effort 81 

has been directed towards exploring variable selection processes by removing features that might 82 

be either redundant or irrelevant to the problem, for better predictability, or computational 83 

efficiency and informativeness (7). This effort includes the logistic regression method (8), the 84 

penalized regression method (9-11), partial least squares regression (PLSR) (12), sure 85 

independence screening strategy (13), multi-stage regression methods (14), sorted l-one 86 

penalized estimation (SLOPE) via convex optimization (15), recurrent relative variable 87 

importance measure (r2VIM) (16), to name a few. However, these methods were designed to 88 

reduce variables from a statistical perspective in order to ease the process of prediction or assist 89 

GWAS (genome-wide association study) analysis, in which knowledge of phenotypic data is 90 

required.  91 

 In the era of population genomics (17), many Fst-based genome-scan methods utilize large 92 
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datasets such as SNP chips or genome complexity reduction approaches like RAD tags (18) and 93 

genotyping-by-sequencing (GBS) (19, 20), to estimate genetic parameters (21). Identifying 94 

adaptive evolution and candidate genomic regions under selection is increasingly feasible, thanks 95 

to the development of sophisticated analytical tools for genome-scale polymorphism data (22-25). 96 

Given the data volume, most of these Bayesian approaches suffer from extended computational 97 

time requirement (21) due to tedious numerical approximation procedures like Markov chain 98 

Monte Carlo (MCMC) (24) or reverse jump (RJ)-MCMC (23). Furthermore, accurate inference of 99 

demographic parameters such as effective population sizes, migration rates, and divergence times 100 

between populations depends largely on the use of neutral marker data (26-28). In other words, 101 

SNP variable selection methods without the use of phenotypic data are desirable for the purpose of 102 

reducing the bias caused by confounding variables, for minimizing computational load, and for 103 

avoiding the potential problem of allele frequency correlations in, for example, the Lewontin and 104 

Krakauer (LK) test (21, 29). 105 

 In this paper, we present SNP-SELECT, a variable selection algorithm based on a graph-106 

theoretic approach that uses generalized dominating sets for a large volume of SNP data without 107 

the use of phenotypes. Application of graph theory to variable selection or data reduction has been 108 

seen in many data mining applications (30-32). Typically, this involves clustering the data points 109 

into groups and using one point to represent each cluster, from which the network clustering (33) 110 

procedure would derive a much smaller number of clusters, resulting in variable selection. In our 111 

cases, data points (SNPs) are represented by vertices and an edge exists if two data points (two 112 

SNPs) are similar or related in a certain way (i.e., in linkage disequilibrium (LD) or in correlation). 113 

We show the use of LD with an example; it is, however, important to note that the similarity 114 

criterion used to construct the network model can be based on any relationship measurement. The 115 

advantage and robustness of SNP-SELECT is also demonstrated with simulated datasets, and with 116 

empirical datasets for a Douglas-fir (Pseudotsuga menziesii) breeding population and for 117 

populations of three grasshopper mouse species (Onychomys spp.).  118 
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Material and Methods 119 

Generalized Graph Domination 120 

Let 𝐺 = (𝑉,𝐸) be a graph with vertex set 𝑉 and edge set 𝐸 ⊆ [𝑉]! (see (34) for basic graph 121 

theory concepts and notations). The open neighborhood of a vertex 𝑣 is the set 𝑁(𝑣) of vertices 122 

adjacent to vertex 𝑣. Note that 𝑣 ∉ 𝑁(𝑣) and the closed neighborhood of vertex 𝑣 is denoted by 123 

𝑁 𝑣 = 𝑣 ∪ 𝑁(𝑣).  124 

 125 

Definition 1 (35) Given a positive integer 𝑘 and a graph 𝐺 = (𝑉,𝐸), a subset of vertices 𝐷  is 126 

said to be 𝑘-dominating if 𝑁 𝑣 ∩ 𝐷 ≥ 𝑘 for every vertex 𝑣 ∉ 𝐷. 127 

 If 𝐷 is a 𝑘-dominating set, then every vertex in 𝑉 − 𝐷 is said to be 𝑘-dominated. A 128 

minimum 𝑘-dominating set is one of smallest cardinality in the graph and this cardinality is 129 

called the 𝑘-domination number of the graph, denoted as 𝛾! 𝐺 . Note that the k-domination 130 

number of a graph increases as parameter 𝑘 increases and the model becomes more restrictive as 131 

more neighbors are needed for each vertex outside the set to be 𝑘-dominated. Hence, every 2-132 

dominating set is also a 1-dominating set, but the converse is not true.  Intuitively, as the 133 

parameter 𝑘 increases, we expect the 𝑘-dominating set to be a more reliable representation of the 134 

dataset as each point has at least 𝑘 similar points in the 𝑘-dominating set. Hence, the choice of 𝑘 135 

must balance two conflicting criteria: solution fidelity (how well the dataset is represented) and 136 

solution size (how many data points are selected). To illustrate, graphic presentations of 𝑘-137 

dominating sets for 𝑘 = 1 and 𝑘 = 2  were showed in Figure 1(a); and Figure 1(b) illuminated 1-138 

dominating set using neural network data for the nematode, C. elegans (36, 37). Neurons are 139 

represented by vertices in this neural network and as long as two neurons communicate with 140 

each other, an edge exists between them. The big dots in Figure 1(b) mark a 1-dominating set, 141 

and all the small dots (vertices) have at least one neighbor of the same color, which identifies the 142 

cluster.  143 

 144 

Fig 1. (a) Illustration of 1-dominating set and 2-dominating set; (b) Illustration of 1-dominating 145 

set using the neural network data of C. elegans (36, 37): the big nodes mark a 1-dominating set, 146 

and all the small nodes have at least 1 same color neighbor.   147 

 148 

 Clustering a graph via 𝑘-dominating sets, especially with 𝑘 = 1, is a popular technique in 149 
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 6 

telecommunication and wireless networks (38). If 𝐷 is a 1-dominating set, then for each vertex 150 

𝑣 ∈ 𝐷 the closed neighborhood 𝑁 𝑣  forms a cluster that altogether cover 𝑉. Since by definition, 151 

every vertex not in the 1-dominating set has a neighbor in it and hence, is assigned to at least one 152 

cluster. Since the problem of finding a minimum 𝑘-dominating set is NP-hard (39), heuristic 153 

approaches and approximation algorithms have been proposed to find a small 𝑘-dominating set 154 

in the given graph (40). However, the approach employed in this article to solve this 155 

combinatorial optimization problem was to formulate it as an integer program (41), implement 156 

and solve it using a state-of-the-art solver that employs a branch-and-cut algorithm with built-in 157 

primal heuristics and other presolve reductions among others. Given a positive integer 𝑘 and a 158 

graph 𝐺 = (𝑉,𝐸), the problem of finding a minimum 𝑘-dominating set can be formulated as the 159 

following linear integer program in binary variables. 160 

𝛾! 𝐺 = min 𝑥!
!∈!

 

                      subject to:                                       161 

𝑥!
!∈! !

≥ 𝑘 1− 𝑥! , ∀𝑖 ∈ 𝑉 

𝑥! ∈ 0,1 , ∀𝑖 ∈ 𝑉 

In any feasible solution 𝑥 to this formulation, the binary variable 𝑥! = 1 if and only if vertex 𝑖  is 162 

included in the 𝑘-dominating set 𝐷, which is given by 𝐷 = {𝑖   ∈ 𝑉 ∶   𝑥! = 1}. The constraints 163 

ensure that if a vertex 𝑖 is excluded from the 𝑘-dominating set 𝐷, i.e. 𝑥! = 0, at least 𝑘 of its 164 

neighbors must be included.  165 

 166 

Pairwise Relationship between SNPs  167 

The pairwise relationship (similarity or distance) between SNP variables primarily determines the 168 

structure of the graph 𝐺, and different ways for quantifying the pairwise relationship can influence 169 

the structure of the graph 𝐺, especially the sets of edges. Currently, many methods exist to measure 170 

the pairwise relationship of SNPs, for example, Hamming distance (42), mutual information (43, 171 

44), allele sharing index (45, 46), and linkage disequilibrium (LD) (47-49), to name a few. We 172 

chose to use the frequently used LD approach to describe the pairwise relationship between SNP 173 

variables in this study, although the proposed approach continues to work with other similarity 174 

measures as well. The square of correlation coefficients (𝑟!) for SNP variables were calculated to 175 
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 7 

represent the values in the LD matrix (refer to (50) for the details). Since haplotype frequencies for 176 

each pair of SNPs are unknown, the expectation maximization algorithm (51) was applied to infer 177 

the haplotype frequencies in the LD calculation. 178 

 With a user-defined threshold (𝜆), an edge exists only if the pairwise relationship between 179 

the two SNPs (vertices) is greater than 𝜆. Thus, for any given pairwise relationship measurement, 180 

as 𝜆 increases, the number of edges in the graph decreases, and consequently the number of 181 

isolated (independent) vertices in a graph can increases. For any positive integer 𝑘, an isolated 182 

vertex in the graph cannot be 𝑘-dominated by any other vertex, and must be included in any 𝑘-183 

dominating set. In fact, this observation holds more generally for any vertex with fewer than 𝑘 184 

neighbors in the graph. 185 

 186 

Scheme of SNP-SELECT  187 

The details of SNP-SELECT are summarized as follows: 188 

Step 1: Construct a graph model 𝐺 = (𝑉,𝐸): Let 𝑉 be the set of all SNPs and 𝐸 is initially 189 

empty;  190 

Step 2: Calculate linkage disequilibrium 𝑤!" for each pair of SNPs 𝑖, 𝑗 ∈ 𝑉; 191 

Step 3: An edge between SNPs 𝑖 and 𝑗 is created if 𝑤!" > 𝜆; 192 

Step 4: Identify isolated SNPs 𝐼 ← {𝑖 ∈ 𝑉 ∶ 𝑁(i) = ∅}; 193 

Step 5: Find a minimum 𝑘-dominating set in 𝐺 − 𝐼.  194 

  195 

 All experiments/analyses reported in this article were conducted on a 64-bit Linux 196 

compute node of a high performance computing cluster with 96GB RAM and Intel Xeon E5620 197 

2.40GHz processor. The algorithm was implemented using C++, and the integer programming 198 

formulation for the minimum 𝑘 -dominating set problem was solved using the GurobiTM 199 

optimizer 6.0 with default settings (52). Given a running time limit, GurobiTM either returned an 200 

optimal solution, or a feasible solution with a gap to a lower bound on the optimal solution. 201 

Experiments/analyses reported in this study were performed with a 1-hour running time limit for 202 

GurobiTM. The solution returned by GurobiTM was used to identify the representative subset of 203 

the original dataset. 204 

 In our preliminary analyses, we found that when 𝜆  is small, the graph model tends to be 205 

very dense with an extremely large number of edges. When several thousands of SNPs are 206 
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 8 

involved, such graphs can exceed memory limits during computation and result in a memory 207 

crash, before a feasible solution can be derived. Also, very small thresholds may not necessarily 208 

be realistic to capture similarities between SNPs. To address this issue, a stepwise search was 209 

implemented in SNP-SELECT for large SNP datasets as follows: 210 

 211 

Step 1: Construct a threshold set 𝑇 = {𝜆!, 𝜆!,… , 𝜆!}, where 𝜆! > 𝜆! > ⋯ > 𝜆!, and 𝜆!is the 212 

desired threshold, 𝜆! ← 𝜆, and 𝜆! − 𝜆!!! equals a predefined step; Let  ℎ = 1, and 𝑉! be 213 

the set of all SNPs; 214 

Step 2: Construct 𝐺! on 𝑉! using 𝜆!; 215 

Step 3: Identify isolated SNPs  𝐼! ← {𝑖   ∈ 𝑉! ∶ 𝑁 i = ∅}; 216 

Step 4: Find a minimum (or a small) 𝑘-dominating set 𝑆! in  𝐺! − 𝐼!, let 𝑌!   ←   𝑆! ∪ 𝐼!; 217 

Step 5: If ℎ =   𝐿, return 𝑌!, STOP; else 𝑉!!! ← 𝑌!, ℎ   ← ℎ + 1, go to Step 2. 218 

  219 

 In brief, this step-wise search of SNP-SELECT first finds a minimum 𝑘-dominating set 220 

𝑌!  (or the best solution available) on a graph model based on a larger threshold. Then the 221 

threshold is lowered to focus on the graph induced by 𝑌!. The data size of current step is the 222 

output of previous step. This process is repeated until a desired low threshold is reached. The 223 

feature selection problem of large datasets is thus solved by iteratively reducing the value of 224 

threshold. 225 

 226 

Simulation Studies 227 

To demonstrate the capacity of the 𝑘-dominating set algorithm to identify independent variables, 228 

and to select proxy variables among highly correlated ones, a simulated dataset that included 10 229 

synthetic undirected networks with 𝑛 = 1000  vertices were used to represent SNPs. In this 230 

synthetic network dataset, the pairwise relationships between SNPs (vertices), the weighted edge 231 

(𝑤!") between each pair of vertices (𝑖, 𝑗), were generated using a uniform distribution over [0, 1]. 232 

The randomly chosen edge weights, denoted by 𝑎!, where 𝑙 ∈ {1, 2,… , !
!!!
!

}, and without loss of 233 

generality assumed to be in increasing order, were assigned to edges using the following 234 

algorithm such that 𝑤!,! < 𝑤!,!!! and 𝑤!,! < 𝑤!!!,!.  235 

Step 1: Initialize 𝑙   ← 1;  236 
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Step 2: for 𝑖 = 1 to 𝑛 − 1 237 

Step 3: for 𝑗 = 𝑖 + 1 to 𝑛 238 

Step 3:   𝑤!" ← 𝑎!; 239 

Step 4:   𝑙   ← 𝑙 + 1; 240 

Step 5:  end-for 241 

Step 6: end-for 242 

  243 

 A correlative relationship among SNP variables, or linkage disequilibrium (LD), is the 244 

non-random association between SNP alleles. The distribution of these relationships among 245 

SNPs in a given genome tends to be greater when SNPs are closely located; this correlation 246 

diminishes quickly as genomic distance between SNPs gets larger, e.g. LD decay (53). As a 247 

result, the distribution of correlative relationships among SNPs is a mixture of a small number of 248 

highly correlated SNPs with a large number of SNPs in low correlations. Assigning edge weights 249 

in increasing order is a simple way to guarantee that only part of the vertices has low edge 250 

weights close to 0, which can be used to define the independent variables. Meanwhile, we can 251 

also identify a subset of vertices with edge weights higher than a predefined threshold within this 252 

set, which could be used to define the independent variables and highly correlated variables.  253 

 A vertex 𝑖 that has all neighbors with 𝑤!" < 0.1, where 𝑗   ∈ 𝑉 and 𝑗 ≠ 𝑖, was defined as 254 

an independent variable. The subset generated by SNP-SELECT has to include all the 255 

independent variables to confirm that the 𝑘-dominating set based approach is able to identify 256 

independent variables. Highly correlated variables were defined as a subset (𝑃) of the variables 257 

where P ⊂ V, and the edge weights (𝑤!"! ) within this subset are greater than a predefined 258 

threshold. In this simulation, we selected 0.8, 0.6, 0.4, and 0.3 as the predefined thresholds for 259 

the purpose of illustrating the capability of the proposed approach to select the highly correlated 260 

variables. If SNP-SELECT includes at least one of the predefined highly correlated variables, the 261 

performance of the algorithm in selecting proxy variables among the highly correlated ones is 262 

considered fulfilled. 263 

 264 

Douglas-fir Breeding Populations 265 

The Douglas-fir breeding population was established by the Ministry of Forests, Lands and Natural 266 

Resource of British Columbia, Canada in 1975 and consists of 165 full-sib families generated from 267 
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 10 

structured paired-matings among 54 parents. The 1,372 individual trees used in this study consist 268 

of a subset of the full population and contains 37 full-sib families from 38 parents (see (54), for 269 

complete details). SNP genotypes for these 1,372 trees were generated using exome capture (55), 270 

resulting in 106,099 SNPs with missing ratio threshold less than 25% and minimum minor allele 271 

frequency (MAF) greater than 5% which comprises the ‘original’ data set.  272 

 The average numerator relationship matrix (A-matrix) of the DF dataset is known due to 273 

the structured pedigree, and was used as a baseline for comparison. We calculated the genomic 274 

estimated relatedness (G-matrix) using R package “rrBLUP” (56) using the mean imputation 275 

option on the original SNP dataset, as well as the five k-dominating SNP subsets. The pedigree-276 

based relatedness (A-matrix) elements were compared to those of the G-matrices of the selected 277 

subsets for validation. 278 

 279 

Grasshopper Mouse SNP Data 280 

Grasshopper mouse (genus, Onychomys) are cricetid rodents that inhabit prairies, deserts and 281 

desert grasslands throughout the western United States, northern Mexico, and south-central Canada 282 

(57). Whereas O. leucogaster is readily distinguished based on body size, the two smaller species, 283 

O. arenicola and O. torridus, are morphologically cryptic and were treated as a single species until 284 

1979 (58). The SNP dataset analyzed here was generated using genotyping-by-sequencing, GBS 285 

(19), as part of a study designed to test for evidence of hybridization at a site in southwestern New 286 

Mexico where all three species come into contact (59), and at other sites in New Mexico and 287 

Arizona where O. leucogaster is sympatric with O. arenicola and O. torridus, respectively. SNPs 288 

were called using a reference-free SNP discovery protocol (UNEAK pipeline (60)), and filtered 289 

based on a minor allele frequency (5%) and missing ratio (10%).  290 

 291 
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Results 292 

Simulation Studies 293 

When the SNP-SELECT algorithm was applied to the synthetic network with 𝑘 ∈ {1, 2, 3, 4, 5}, 294 

all the 𝑘-dominating sets found included the predefined independent variables. The performance 295 

of the 𝑘-dominating set model in the selection of proxy variables is presented in Figure 2, with 296 

the predefined highly correlated variable thresholds 𝜆 ∈ {0.8, 0.7, 0.6, 0.5, 0.4, 0.3}.    As shown 297 

in Figure 2(a), the definition of highly correlated variables was strict (𝑤!"! > 0.8); under this 298 

condition of few, highly connected variables, the use of larger values of either 𝑘 or 𝜆 was 299 

encouraged. Also shown in Figure 2(b), 2(c) and 2(d), when relationships between variables are 300 

a mixture of high and low correlations, our results suggest the use of smaller values in 𝑘 and 𝜆 to 301 

capture all relationships. By varying on 𝑘 and 𝜆, we demonstrate the flexibility and strength of 302 

SNP-SELECT in choosing proxy variables from highly correlated variables.   303 

 304 

Fig 2. The capability of 𝑘-dominating set in selecting proxy variables among highly correlated 305 
variables. Ten synthetic undirected networks with 𝑛 = 1,000 vertices (𝑉) were simulated. (a) 306 

highly correlated variables defined as 𝑤!"! > 0.8; (b) highly correlated variables defined as 307 

𝑤!"! > 0.6; (c) highly correlated variables defined as 𝑤!"! > 0.4; (d) highly correlated variables 308 

defined as 𝑤!"! > 0.3.  309 

 310 

Pedigree Recovery for Douglas-Fir Breeding Populations 311 

The SNP-SELECT algorithm was applied to select the influential SNPs to reconstruct the known 312 

pedigree for a Douglas-fir (DF) breeding population. Four 𝑘-dominating sets (DF107, DF105, 313 

DF103, DF102) with 𝑘 = 1, and 𝜆 ∈ {0.7, 0.5, 0.3, 0.2} were generated. Among the four 1-314 

dominating sets, DF103 has the best performance as shown in Table 1. To further investigate the 315 

impact of 𝑘 on variable selection, another 𝑘-dominating set, DF203, with 𝑘 = 2 and 𝜆 = 0.3 was 316 

generated to compare with DF103. The number of selected SNPs in DF107, DF105, DF103, 317 

DF102 and DF203 is 80,735, 67,062, 51,415, 41,539, and 68,188, respectively. 318 

 319 

 320 

 321 

 322 

 323 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/396085doi: bioRxiv preprint 

https://doi.org/10.1101/396085
http://creativecommons.org/licenses/by/4.0/


 12 

Table 1:  The average difference of the upper triangle and the diagonal between pedigree-based 324 

relatedness (A-matrix) and genomic estimated relatedness (G-matrix). The best selected-subset 325 

for pedigree reconstruction (subset DF103) is highlighted. 𝝀 is linkage disequilibrium estimate. 326 

  327 

 
 

𝒌 
 

𝝀 Num. of  
SNP 

Ave. difference 
upper triangle 

Ave. difference 
diagonal 

 

Original Data 
 

- 
 

- 
 

106,099 
 

0.034353 
 

0.180374 

DF107 1 0.7 80,735 0.034240 0.103673 

DF105 1 0.5 67,062 0.034139 0.055994 

DF103 1 0.3 51,415 0.034018 0.019769 

DF102 1 0.2 41,539 0.034249 0.123494 

DF203 2 0.3 68,188 0.034180 0.123950 

Random subset - - 51,415 0.034498 0.180419 

COR03 - 0.3 39,768 0.034774 0.234326 

LRTag03 - 0.3 51,022 0.034292 0.135324 

 328 

 The performance of the five 𝑘-dominating sets generated better results than the original 329 

dataset for both average absolute upper triangle and diagonal differences from the genomic 330 

relationship matrix (G-matrix) to the traditional pedigree-based average numerator relationship 331 

matrix (A-matrix) (Table 1). Comparing the five 𝑘-dominating sets indicated that the DF103 332 

subset performed best on pedigree recovery, especially for the diagonal pedigree information 333 

recovery. Figure 3 further illustrates the efficiency of the DF103 subset on pedigree 334 

reconstruction, and indicates that the G-matrix generated from the DF103 subset was closer to 335 

the known A-matrix as compared with the original dataset’s G-matrix. Additionally, we 336 

randomly selected 10 subsets with the same SNP number as DF103 from the original dataset and 337 

used the average results of these 10 subsets to represent the performance of the randomly 338 

selected subset. The results indicated that all five 𝑘-dominating sets outperformed the randomly 339 

selected subset (Table 1). 340 

 341 

Fig 3: (a) Heatmap of the absolute difference between pedigree-based relatedness (A-matrix) and 342 
genomic estimated relatedness (G-matrix) generated from original data; (b) Heatmap of the absolute 343 
difference between pedigree-based relatedness (A-matrix) and genomic estimated relatedness (G-344 
matrix) generated from DF103 subset. The color of Figure 3(b) is lighter than Figure 3(a). The lighter 345 
the color, the closer the relationship between A- and G-matrices of Douglas-fir breeding population.  346 

 347 
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 The effectiveness of SNP-SELECT was also examined by the conventional approach that 348 

filters for SNP variables by pairwise correlation coefficients, as well as the LRTag algorithm that 349 

applies minimum set covering for SNP selection (61). The discrepancy between A- and G-350 

matrices resulted from using correlation coefficient of 0.3 and 𝜆 = 0.3 was listed in Table 1 as 351 

COR03 and LRTag03, for pairwise correlation coefficient method and LRTag algorithm, 352 

respectively. Among all tests, the DF103 from SNP-SELECT remained the best SNP subset for 353 

estimating genetic relationship of Douglas-fir breeding population. Consider computing time 354 

requirement, when values of distance or pair-wise linkage disequilibria were pre-computed, SNP 355 

variable selection for SNP-SELECT could be complete in 8-10 minutes, while LRTag required 356 

about 18 hours for the same datasets.  357 

 358 

Clustering Analysis for Grasshopper Mouse Populations 359 

To investigate parameters influencing population genetics of grasshopper mouse populations, 360 

85,812 SNPs were used to genotype 226 samples representing three species: O. arenicola 361 

(𝑛 = 76), O. leucogaster (𝑛 = 67), and O. torridus (𝑛 = 83), collected at 12 geographic 362 

locations (Table 2). The dataset was pre-filtered based on a maximum of 10% missing data, and 363 

minimum MAF (minor allele frequency) of 5%. The SNP-SELECT was applied to generate three 364 

SNP subsets (MICE103, MICE105 and MICE107) with 𝑘 = 1  and 𝜆 ∈ {0.3, 0.5, 0.7} , 365 

respectively; the number of informative SNPs retained in MICE103, MICE105 and MICE107 366 

was 2,144, 11,014, and 22,355, respectively. The missing data in the original dataset and the 367 

three 𝑘-dominating sets was imputed with the most frequent genotype. Before the geographic 368 

origin analysis, we split the 226 samples into 3 groups based on species identity. There were 5 369 

sampling locations in each species group (Table 2).  370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 
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 379 

Table 2: Geographic location of grasshopper mouse (Onychomys) samples 380 

 381 

Species Site Name (Sample Size) 

O. arenicola Animas/Rodeo, NM (20); 

Pancho Villa, Chihuahua, Mex (7); 

Organ Mountains, NM (27); 

Sevilleta National Wildlife Refuge, NM (14); 

 Hidalgo del Parral, Chihuahua, Mex (8). 

O. leucogaster Petrified Forest, AZ (13); 

Animas/Rodeo, NM (11); 

Sevilleta National Wildlife Refuge, NM (14); 

Felt, OK (19); 

Garden City, KS (10). 

O. torridus Lone Pine, CA (11); 

Carefree, AZ (8); 

Santa Rita Experimental Range, AZ (19); 

Animas/Rodeo, NM (28); 

Chiricahua Mountains, AZ (17). 

 382 

The performance of the three 𝑘-dominating sets’ ability to predict the geographic origin 383 

of samples within each species was first evaluated using the 𝑘-means clustering approach in R 384 

(62). Clustering was initiated with 𝑘 = 5, random seed at 20 and nstart = 100, where nstart 385 

specifies the initial configurations, and the algorithm will report on the best one (63, 64). The 386 

Adjusted Rand Index (ARI), a measure of agreement between clustering results and external 387 

criteria (65, 66), was used to evaluate the clustering results. As shown in Table 3, the clustering 388 

results for the largest SNP subset, MICE107, had the same performance as the original data of 389 

85,812 SNPs in recovering the geographic origin of O. arenicola and O. torridus samples; 390 

however, MICE107 subset outperformed the original SNP data in recovering the geographic 391 

origin of O. leucogaster samples. Moreover, the clusters resulting from MICE105 and MICE103 392 

exhibited larger ARI values than those from the original SNP data, indicative of a greater 393 
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agreement and reduced errors in the clustering reached by SNP-SELECT variable selection. 394 

Overall, the MICE105 SNP subset (11,014 SNPs) demonstrated the greatest agreement among 395 

all selected subsets (Table 3).  396 

 397 

Table 3: The adjusted rand index (ARI) shows the agreement between the computed clusters 398 

using 𝑘-means clustering algorithm and partitioning around medoids (PAM) algorithm with 399 

𝑘 = 5, using the original grasshopper mouse SNP data set and the 𝑘-dominating subsets. ARI 400 

values listed below show the agreement measurement between original sample locations and 401 

clustering results.  402 

 403 

Method Dataset SNP Number O. arenicola O. leucogaster O. torridus 

 Original data 85,812 0.3868 0.5981 0.5692 

𝑘-means MICE107 22,355 0.3868 0.7158 0.5692 

 MICE105 11,014 0.5256 0.7158 0.6003 

 MICE103 2,144 0.3963 0.7158 0.6003 

 Original data 85,812 0.0706 0.2229 0.2244 

PAM MICE107 22,355 0.0513 0.3852 0.1812 

 MICE105 11,014 0.1016 0.3509 0.2445 

 MICE103 2,144 0.1172 0.2902 0.2793 

 404 
 405 

 To confirm that the performance of SNP-SELECT was not the result of a specific 406 

clustering algorithm, the partitioning around medoids (PAM) algorithm (67) with 𝑘 = 5 407 

(random seed   = 20) was performed using samples’ dissimilarity matrix of each species. To 408 

describe the dissimilarity matrix, we first define the G-matrix as
𝑔!! … 𝑔!!
⋮ … ⋮
𝑔!! … 𝑔!!

. Then the 409 

dissimilarity matrix is defined as 
1− |𝑔!!| … 1− |𝑔!!|

⋮ … ⋮
1− |𝑔!!| … 1− |𝑔!!|

. In Table 3, clusters resulting from 410 

the PAM algorithm also demonstrated that the selected subsets perform better than the original 411 

data in predicting actual sampling localities. 412 

 413 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/396085doi: bioRxiv preprint 

https://doi.org/10.1101/396085
http://creativecommons.org/licenses/by/4.0/


Discussion 414 

Owing to technological advancement in DNA sequencing methods, life scientists are grappling 415 

with exceedingly large data sets (68). The most obvious challenge is the large amount of genomic 416 

variation that needs to be processed and quantified in a very short time period (69). Although 417 

various data techniques have been adopted, the resulting data sets have several characteristics that 418 

make downstream analyses challenging (70). The common ones are: the number of variables is 419 

often much larger than the number of individuals, and data sets are usually sparse regarding 420 

relevant information, i.e. only a small subset of variables is associated with the phenotypic 421 

variation (71). 422 

 In genetic analyses using high dimensional data sets where there are more parameters than 423 

observations, penalized regression techniques are often required to ensure stable estimates (72, 73). 424 

The estimates of SNP marker effects are strongly affected by collinearity between predictors 425 

through a “grouping effect”- groups of variables highly correlated with other groups (of variables) 426 

sporadically (74). Such multicollinearity would further confound gene expression values obtained 427 

from DNA microarrays or determination of significance of SNP causality in genome-wide 428 

association (GWAS) or genomic selection (GS) studies (75-77). As a result, multiple-step GWAS 429 

analysis that includes SNP variable selection has been explored (16, 78, 79). While adoption of 430 

these methods might be an advantage when seeking functional variants associated with traits of 431 

interest, these fitness-associated SNP variables would bias inferences of gene flow, migration or 432 

dispersal (27, 80), and estimates of relatedness and inbreeding depression (81). 433 

 Without the dependency on phenotypes, SNP variable selection methods currently focus on 434 

pairwise correlations between variables (e.g. (82)). In principle, SNP variables are selected if the 435 

absolute value of a pairwise correlation (|𝑐𝑜𝑟𝑟 𝑖, 𝑗 |) is less than a predefined threshold 𝜆; or if 436 

|𝑐𝑜𝑟𝑟 𝑖, 𝑗 | is no less than the given threshold, only the second variable will be selected (e.g. if 437 

|𝑐𝑜𝑟𝑟 𝑖, 𝑗 | ≥ 𝜆, SNP 𝑗 will be selected). Here, we demonstrate the superior performance of the 438 

proposed 𝑘-dominating set variable selection over the conventional method of pairwise correlation 439 

coefficients (Table 1, COR03). As shown in Figure 3, diagonal values, indicative of the errors in 440 

estimating individuals’ genomic relationship based on markers, were minimized using SNP-441 

SELECT. The pairwise estimates of genomic relationships (off-diagonal elements) were, however, 442 

mostly preserved (Table 1), suggesting that both the hidden and historical relatedness among 443 

individuals could still be recovered by the set of SNP variables selected by SNP-SELECT.  444 
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 The use of genomic markers to uncover hidden relationships and potential pedigree errors 445 

in open-pollinated progeny has been effective in tree breeding programs (83, 84). Such pedigree 446 

reconstruction is a preferred method to determine the genealogical relationship among groups of 447 

related individuals, leading to improved estimation of genetic parameters (85-87). To maximize the 448 

advantage of using dense genomic markers, VanRaden (88) derived estimates of marker-based 449 

relationships between pairs of individuals as a genomic relationship matrix (G-matrix), which can 450 

be used as a substitute for the traditional pedigree-based average numerator relationship matrix (A- 451 

matrix) in Henderson’s animal model (4, 89, 90). Also, combining the A-matrix and the G-matrix 452 

into a single genetic relationship matrix (H-matrix) has proven to be an effective approach to 453 

improve the relationship coefficients for better genetic parameter estimation (91, 92) and marker 454 

effect estimation (93), and to leverage extra phenotypic information from the non-genotyped 455 

individuals (90). To ensure improved accuracy in such single-step methods, the G- and A-matrices 456 

should be compatible (94), and diagonal elements in  the G-matrix need to be consistent with the 457 

A-matrix diagonal elements; therefore rescaling A- and G-matrices would reflect the mean 458 

difference between these matrices (95), a context in which using SNP markers selected by SNP-459 

SELECT could be considerably beneficial.  460 

 A C++ source code that implements SNP-SELECT and uses Gurobi™ optimization solver 461 

for the 𝑘-dominating set variable selection 462 

 463 

Conclusions 464 

The 𝑘-dominating set model provides a flexible and effective method for selecting informative 465 

SNPs; a C++ source code (SNP-SELECT) that uses GurobiTM Optimization solver is also released 466 

with the manuscript. This approach is scalable through the use of integer programming solvers and 467 

graph preprocessing, and can be extended to other genomic applications. 468 

 Using pedigree reconstruction and cluster analysis, the capacity of SNP-SELECT was 469 

demonstrated for solving the variable selection conundrum of large datasets without any 470 

significant runtime considerations. Furthermore, SNP-SELECT does not depend on the use of 471 

LD to define threshold for edges; other similarity/distance measure would broaden its 472 

applicability beyond breeding science and ecological genetics. Future work on the algorithmic 473 

aspects of this approach could focus on the development of graph and model decomposition 474 

techniques, as well as preprocessing techniques to improve scalability in practice.  475 
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