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 27 
 28 

Abstract 29 

Technological advances have facilitated an exponential increase in the amount of 30 

information that can be derived from single cells, necessitating new computational 31 

tools that can make this highly complex data interpretable. Here, we introduce 32 

DEPECHE, a rapid, parameter free, sparse k-means-based algorithm for clustering of 33 

multi- and megavariate single-cell data. In a number of computational benchmarks 34 

aimed at evaluating the capacity to form biologically relevant clusters, including 35 

flow/mass-cytometry and single cell RNA sequencing data sets with manually curated 36 

gold standard solutions, DEPECHE clusters as well or better as the best performing 37 

state-of-the-art clustering algorithms. However, the main advantage of DEPECHE, 38 

compared to the state-of-the-art, is its unique ability to enhance interpretability of the 39 

formed clusters, in that it only retains variables relevant for cluster separation, thereby 40 

facilitating computational efficient analyses as well as understanding of complex 41 

datasets. An open source R implementation of DEPECHE is available at  42 

https://github.com/theorell/DepecheR. 43 

 44 

 45 

Author summary 46 

DEPECHE-a data-mining algorithm for mega-variate data 47 

Modern experimental technologies facilitate an array of single cells measurements, 48 

e.g. at the RNA-level, generating enormous datasets with thousands of annotated 49 

biological markers for each of thousands of cells. To analyze such datasets, 50 

researchers routinely apply automated or semi-automated techniques to order the cells 51 
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into biologically relevant groups. However, even after such groups have been 52 

generated, it is often difficult to interpret the biological meaning of these groups since 53 

the definition of each group often dependends on thousands of biological markers. 54 

Therefore, in this article, we introduce DEPECHE, an algorithm designed to 55 

simultaneously group cells and enhance interpretability of the formed groups. 56 

DEPECHE defines groups only with respect to biological markers that contribute 57 

significantly to differentiate the cells in the group from the rest of the cells, yielding 58 

more succinct group definitions. Using the open source R software DepecheR on 59 

RNA sequencing data and mass cytometry data, the number of defining markers were 60 

reduced up to 1000-fold, thereby increasing interpretability vastly, while maintaining 61 

or improving the biological relevance of the groups formed compared to state-of-the-62 

art algorithms.  63 

  64 
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Introduction 65 

Since the introduction of the first single colour flow cytometers in the 1960s, there 66 

has been a remarkable increase in the complexity of data that can be generated with 67 

single-cell resolution. Currently, flow and mass cytometers able to simultaneously 68 

assess up to 40 cellular traits are becoming widely available [1].  In parallel, the 69 

development of high-throughput sequencing technology has facilitated deep single-70 

cell transcriptomic analyses [2]. Furthermore, development of high-resolution single-71 

cell proteomic analyses are underway [3]. 72 

These technological advances necessitate new computational approaches to 73 

analyses of multi- and megavariate single cell data [4–7]. Previous algorithms have 74 

contributed to automating analyses, thereby enhancing reproducibility and avoiding a 75 

need for a priori biological knowledge for design of manual gating analysis strategies. 76 

Automated analysis algorithms, not restricted to uni- or bivariate displays of the data, 77 

have also made it possible to display much more of the information embedded in 78 

multivariate data. To date, however, manual gating strategies are still dominantly 79 

used, which in part is likely due to that it is easy to interpret what population a certain 80 

gate refers to, as it is defined by few markers. In an attempt to combine the 81 

objectiveness and reproducibility of automated analysis pipelines with the high 82 

interpretability of manual gating strategies, we have developed an algorithm termed 83 

Determination of Essential Phenotypic Elements of Clusters in High-dimensional 84 

Entities (DEPECHE). DEPECHE simultaneously clusters and simplifies the data by 85 

identifying the variables that contribute to separate individual clusters from the rest of 86 

the data. We have implemented DEPECHE in R (in the open source package 87 

DepecheR), providing a complete software suite for statistical analysis and 88 

visualization of single cell omics data. 89 
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Results and Discussion 90 

DEPECHE uses a penalized k-means clustering algorithm, related to the standard k-91 

means algorithm [8]. In penalized k-means, a penalty term is introduced to the 92 

clustering algorithm. The value of the penalty, 𝜆, determines the clustering resolution. 93 

Low clustering resolution implies that few clusters defined by few variables (high 94 

sparsity) are produced, and vice versa [9] (see online methods). Note that if k is high 95 

enough not to be limiting, the resolution of the emerging clusters depends entirely on 96 

the magnitude of 𝜆 and not on k, since DEPECHE annihilates all clusters that are 97 

pulled to the origin by the penalty. In DEPECHE, the penalty 𝜆 is tuned to identify 98 

the most reproducible clustering resolution, here termed the “optimal resolution”[10]. 99 

To illustrate what we mean by reproducible, we constructed a show case, featuring a 100 

bi-variate dataset 𝐷 (Fig 1a). Visually, the dataset 𝐷 contains three clusters, where the 101 

centers of the two larger clusters are located close to either axis. For these two 102 

clusters, one variable is sufficient to define their position. Now, if multiple datasets 103 

were generated from the same data source as 𝐷, for example by repeated experiments, 104 

we assume that they would contain the same clusters. Hence, imposing the optimal 105 

penalty 𝜆#  (that corresponds to the optimal resolution of 𝐷 ) on all these datasets 106 

should ideally always result in the same clusters (high reproducibility). Contrarily, 107 

when clustering the same datasets with a penalty 𝜆 that differ significantly from the 108 

optimal penalty, the stochastic differences between the datasets are likely to induce 109 

solutions that deviate in cluster number, number of defining variables, and cluster 110 

center positions. In practice, DEPECHE tests a range of penalty values (𝜆% < ⋯ <111 

𝜆(), each on a collection of dataset pairs which are generated by sampling 𝑁+ data 112 

points from 𝐷  (Fig 1b) with resampling. The optimal resolution is defined as the 113 

penalty 𝜆# , which yields the lowest average variability within each dataset pair, as 114 
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measured by the Adjusted Rand Index (ARI) [11] . In our example, this corresponds 115 

to the penalty 𝜆# that yields 3 clusters, since 3 similar clusters are identified in each 116 

resampled dataset of 𝐷 (Fig 1c). The penalties 𝜆% and 𝜆( are considered suboptimal, 117 

since with these penalties, the stochastic differences in the resampled datasets lead to 118 

less coherent clustering results compared to results obtained with the optimal penalty 119 

𝜆#. From here (Fig 1c) DEPECHE uses two alternative routes. If the number of data 120 

points in the dataset 𝐷  is high (as default > 10/ ), the most generalizable cluster 121 

centers that were produced using the optimal penalty are chosen (see online methods) 122 

and the data points of 𝐷 are allocated directly to their closest cluster center (Fig 1d). If 123 

the dataset 𝐷 has few data points, the full dataset 𝐷 is clustered using the optimal 124 

penalty 𝜆# (Fig 1e). 125 

 126 

Fig 1: Illustration of the DEPECHE workflow: a) The original dataset 𝐷. b) 𝑛 127 

resampled datasets with 𝑁+ data points per dataset, are generated by sampling data 128 

points from 𝐷 with resampling. Each resampled dataset has a corresponding penalty 129 

𝜆# (𝑖 = 1, , , 𝑛). c) Each dataset in b is clustered with sparse k-means, using its 130 

corresponding penalty 𝜆#. The red frame highlights the clustering with the strongest 131 

attractors, i.e. the most generalizable solution (see online methods). d, e) Finally, the 132 

full dataset is clustered by allocating each data point to its closest cluster center, using 133 

the most generalizable cluster center solution produced in b.  134 

 135 

 To evaluate how biologically accurate DEPECHE clustering is on mass 136 

cytometry data, a 32-variate mass cytometry bone marrow dataset [12] was clustered, 137 

and the overlap to 14 manually pre-defined cell populations was quantified using the 138 

ARI. With this dataset, DEPECHE identified 7 clusters at the optimal resolution, 139 
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corresponding to all large pre-defined cell populations and to agglomerates of smaller 140 

cell populations, rendering an average ARI of 0.96, where an ARI of 1 corresponds to 141 

exact reproduction and an ARI of 0 means that the produced clusters are no more 142 

accurate than random allocation. (Fig 2a-b, S Fig 1a). Furthermore, using DEPECHE, 143 

the number of variables defining each cluster was reduced from 32 to a range from 8 144 

to 28, thereby enhancing interpretability (Fig 2d). When comparing to other state-of-145 

the-art clustering algorithms [12–17], DEPECHE obtained similar ARI as the best 146 

algorithms for both the 32-variate dataset and another 14-variate, 24 population, mass 147 

cytometry dataset [18]  (S Fig 2a, Table 1).  148 

 149 

 150 

Single-cell transcriptomic datasets feature tens of thousands of variables. 151 

Thus, the need to exclude irrelevant variables is even more pressing, as compared to 152 

cytometry datasets. We therefore evaluated DEPECHE’s ability to cluster and extract 153 

the key transcripts defining clusters of a previously published single-cell 154 

transcriptomic dataset (Fig 2d-f) [19]. In this dataset, a total of 648 ILC1, ILC2, ILC3 155 

and NK cells from three donors’ tonsils were index-sorted prior to RNA sequencing. 156 

Hence, these cell types, manually defined by protein expression, can be compared to 157 

clusters unbiasedly determined by RNA expression profiles [19]. In the DEPECHE 158 

analysis, no pre-selection of transcripts was performed, and hence, 35177 unique 159 

Table 1: background information on all datasets
Dataset Data origin n cells n variables in analysis n clusters in original
Levine Mass cytometry 104184 32 14
Bendall Mass cytometry 81747 14 24
Björklund scRNAseq 648 35177 4
Biase scRNAseq 56 19571 3
Deng scRNAseq 268 13867 10
Goolam scRNAseq 124 15487 5
Kolodziejczyk scRNAseq 704 15117 3
Pollen scRNAseq 301 13860 11
Yan scRNAseq 90 13608 7
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transcripts were included for each of the 648 cells. With the optimal penalty 𝜆, four 160 

clusters were identified (Fig 2e). These corresponded well to the cell types as defined 161 

by protein expression; 84, 97, 91 and 97 percent of ILC1, ILC2, ILC3 and NK cells 162 

sorted into separate clusters, respectively (Fig 2d, e, S Fig 1b), leading to an average 163 

ARI of 0.78. Notably, cluster 1-4, corresponding to ILC1, ILC3, NK cells and ILC2, 164 

were defined by 27, 27, 108 and 10 transcripts, respectively (Fig 2f and Table 2), 165 

leading to a 99.9% average decrease in the number of variables. The transcripts 166 

identified to define the clusters in our analysis were among those most differentially 167 

expressed according to the original study [19] (Fig 2f). Thus, by identifying a finite 168 

number of variables, DEPECHE analysis increases interpretability and aides down-169 

stream analyses. When DEPECHE clustering was compared to that of state-of-the-art 170 

algorithms [5–7] on the aforementioned dataset and six others (see  Table 1), it 171 

performed consistently well as indicated by ARI (S Fig 2b). Thus, when applied to 172 

megavariate data, DEPECHE produces biologically relevant clusters and reduces the 173 

complexity of the result thousand-fold. 174 

 175 

Fig 2: DEPECHE performance with real datasets with 32 or 35177 variables. a-176 

b) bi-variate t-distributed stochastic neighbor embedding (tSNE) representation of the 177 

32-variate mass cytometry data. A: distribution of manually defined cell populations 178 

over the tSNE field. B: distribution of DEPECHE clusters over the tSNE field. c) 179 

Heatmap showing which variables that define each cluster. Red color indicates a 180 

higher expression in the cluster than the most common expression for all 181 

observations. Blue color conversely indicates lower expression than the geometric 182 

mean for all observations. Grey color indicates that the variable in question does not 183 

contribute to defining the cluster. For Fig a-c all, 104184 cells have been clustered. d-184 
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e) tSNE representation of the 137-variate data subset that could efficiently distinguish 185 

the clusters in the 35177-variate single-cell transcriptome dataset. d) distribution of 186 

the cell types defined by index-sorting and manual gating on protein expression 187 

profiles shown over the tSNE field. e) distribution of DEPECHE clusters over the 188 

tSNE field. f) Violin plots illustrating the overlap between the original analysis by 189 

Björklund et al and the DEPECHE analysis. For each subplot, the left and right side 190 

illustrate the distribution of the transcripts defining the clusters, and all other 191 

transcripts, respectively. The y-axis shows the log10 of the p-values in the original 192 

analysis adjusted for multiple comparisons. For Fig d-f, all 648 cells have been 193 

clustered.  194 
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 195 

In conclusion, DEPECHE turns the penalized k-means methodology into a 196 

parameter free analysis technique guided by efficient calculation of the optimal 197 

clustering resolution. By doing so, it addresses the simultaneous problem of clustering 198 

and identification of biologically important variables that separate clusters. This is 199 

crucial in order to comprehend the noisy and often over-complicated data generated 200 

with current single cell technologies. 201 

Table 2: transcripts defining clusters in Björklund et al  dataset

Transcript

Log10 of 
adjusted
original
p-value

Cluster
center

Transcript

Log10 of 
adjusted
original
p-value

Cluster
center

Transcript

Log10 of 
adjusted
original
p-value

Cluster
center

Transcript

Log10 of 
adjusted
original
p-value

Cluster
center

CMC1 -8.95 0.23 A2M -7.08 0.23 CD3G -9.66 -0.06 PCDH9 -9.66 1.25
CST7 -8.95 0.17 AC092580.4 -9.17 -0.89 CD63 -6.03 0.21 PDCD4 -3.37 -0.02
GNLY -8.95 1.82 CD2 -9.17 -2.69 CNN2 -9.66 -0.61 PECAM1 -9.66 0.06
GZMA -8.95 0.23 CD300LF -9.17 -0.06 COTL1 -8.04 -0.25 PRR5 -9.66 0.38
GZMK -8.95 0.09 CD3E -4.21 -0.40 CPNE7 -6.13 0.25 PTPN22 -4.79 0.05
KLRC1 -8.95 0.57 EMP3 -2.86 0.31 CTSA -5.65 0.25 RBPJ -5.14 0.07
KLRD1 -8.95 1.89 FCER1G -7.08 -0.59 DCAF11 -6.48 0.04 RHOC -9.66 0.76
KLRF1 -8.95 1.29 GATA3 -8.33 0.34 DHRS3 -3.72 0.02 RP11-264B17.3..1 -1.41 -0.18
NKG7 -8.95 1.93 GSN -9.17 -0.40 DOCK5 -9.66 0.30 RP11-330A16.1 -9.47 0.01
PRF1 -8.95 0.14 HPGDS -9.17 0.37 ELOVL6 -9.66 0.31 RP11-466H18.1 -0.35 -0.02

Cluster 2/ILC1 IL10RA -8.84 0.03 EMP3 -7.26 -0.94 RP11-845M18.6 -9.66 0.44
Log10 of IL17RB -9.17 0.14 ENPP1 -9.66 0.17 RPS8 -1.54 -0.06

Transcript adjusted Clluster IL23R -9.17 -0.47 FAIM3 -3.79 -0.23 S100A6 -6.94 -0.16
original center IL2RB -9.17 -0.64 FAM65B -3.38 -0.47 S1PR1 -9.66 -0.08
p-value IL32 -9.10 1.04 FCER1G -9.66 1.02 SELL -8.49 -0.97

AE000661.37 -8.67 -0.08 KLRC1 -9.17 -0.51 FES -9.66 0.11 SELPLG -7.57 -0.37
CCR7 -9.25 0.69 KLRG1 -9.17 0.50 GIMAP4 -7.49 -0.38 SERINC5 -9.66 -0.13
CD27 -9.25 0.97 KRT1 -9.17 0.21 GIMAP7 -5.46 -0.39 SH2D1B -9.66 0.90
CD3D -9.25 3.50 SH2D1B -9.17 -0.64 GSN -9.66 1.24 SLA -5.90 0.16
CD3E -4.13 0.48 TESPA1 -6.02 0.01 HCST -0.34 -0.11 SLC38A1 -1.48 -0.06
CD3G -9.25 2.56 TMIGD2 -9.03 -0.11 HDAC9 -9.66 0.30 SLC4A10 -9.66 0.32
CD4 -9.25 0.55 TRAC -9.17 -0.54 HLA-DRB1 -3.19 0.34 SORL1 -8.48 -0.23
CD6 -9.25 0.76 TXK -8.53 -1.21 IL10RA -9.66 -0.97 SPINK2 -9.66 0.67
CNN2 -7.04 0.01 TYROBP -9.17 -1.40 IL1R1 -9.66 0.42 SPRY1 -8.67 0.11
COTL1 -9.25 0.63 VWA5A -9.17 -0.32 IL23R -9.66 1.67 STARD3NL -9.66 0.23
CTSW -7.82 -0.02 XCL1 -9.17 -0.62 IL32 -9.66 -0.85 TC2N -6.72 -0.66
FCER1G -9.25 -0.81 XCL2 -9.17 -0.12 IL4I1 -9.66 1.50 TCIRG1 -7.11 0.10
KLRB1 -9.25 -0.96 ISG20 -2.10 -0.01 TLE3 -9.66 0.06
LITAF -9.25 0.08 Log10 of ITGB2 -6.95 -0.76 TMIGD2 -9.66 1.09
LST1 -9.25 -0.57 Transcript adjusted Cluster ITM2C -9.66 0.41 TNFRSF18 -9.66 0.79
RNU2-6P -7.67 -0.07 original center KIAA1324 -9.66 1.07 TNFRSF25 -3.37 0.30
RP11-466H18.1 0.00 0.20 p-value KIT -9.66 1.30 TNFRSF4 -7.13 0.04
SH2D1B -9.25 -0.29 A2M -9.52 -0.04 KLRG1 -9.66 -0.26 TNFSF11 -9.66 0.31
SIT1 -9.25 1.06 AC092580.4 -9.66 0.78 KRT81 -9.66 1.00 TNFSF13B -9.66 1.02
TC2N -9.08 1.02 ADAM10 -6.38 0.15 LAT2 -6.18 0.16 TOX -9.66 0.35
TNFRSF18 -9.25 -0.21 ADAM28 -9.66 0.05 LDHB -9.35 -0.18 TOX2 -9.66 0.69
TOB1 -2.23 0.23 AFF3 -9.66 0.80 LINC00299 -9.66 1.43 TRAC -0.80 0.46
TRDC -9.25 -1.71 AHR -8.27 0.24 LITAF -9.66 -0.20 TRAJ45 -8.56 0.70
TRDJ2 -9.25 -0.55 AMICA1 -9.66 1.33 LST1 -9.66 1.68 TRAT1 -7.81 -0.12
TYROBP -9.25 -0.71 ARL4C -4.37 -0.02 LTA4H -9.66 0.89 TRDJ2 -6.30 0.07
U2..37 -9.03 -0.30 ATP8B4 -9.66 0.10 LY6E -3.30 -0.27 TRGJP1 -7.31 0.11
U2..55 -9.16 -0.39 BST2 -8.28 0.44 MPG -8.65 0.49 TXK -5.59 0.14

C1orf162 -8.83 -0.69 NCR2 -9.66 1.00 TYROBP -9.66 1.15
CAT -9.66 0.69 NKG7 -1.82 -0.04 VWA5A -9.66 1.61
CD2 -7.77 0.44 NRP1 -9.66 0.35 XCL1 -9.66 0.80
CD300LF -9.66 1.30 NSMCE1 -9.66 0.64 XCL2 -9.66 0.03
CD3D -9.65 -0.36 OTUD5 -9.66 0.73

Cluster 4 (ILC2) Cluster 3/ILC3 Cluster 3/ILC3

Cluster 3/ILC3

Cluster 1/NK cells
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Methods 202 

Clustering with DEPECHE 203 

Clustering in DEPECHE is performed using a penalized version of the k-means 204 

algorithm, which is related to the k-means algorithm[8]. In this section, the k-means 205 

algorithm is outlined first, followed by an explanation of how it is extended to 206 

penalized k-means. 207 

The k-means algorithm clusters data by fitting a mixture of normal 208 

distributions to the data with k equal mixture components and unit variance. 209 

Formally, 𝑘  𝑑 -dimensional cluster centers, denoted 𝜇#,8  where 𝑖 = 1…𝑘  and 𝑗 =210 

1…𝑑 , are fitted to the 𝑛	𝑑 -dimensional datapoints 𝑥=,8 , where 𝑙 = 1…𝑛 , by 211 

maximizing the score function 212 

 213 

 
𝑄 = 𝑧#,= 𝑥=,8 − 𝜇=,8

B
C

8D%

(

=D%

,
E

#D%

 
( 1 ) 

 214 

where 𝑧#,= is 1 if the 𝑙th data point belongs to the 𝑖th cluster and zero otherwise. The 215 

score 𝑄 is optimized using an Expectation Maximization (EM) algorithm [20], i.e. so 216 

called E- and M-steps are iterated alternatingly until the score 𝑄 stops improving. In 217 

the E-step, the allocation variables 𝑧#,= are updated so that each data point is allocated 218 

to its closest cluster. In the M-step, each cluster center 𝜇#,8 is moved to the center of 219 

the data points allocated to it. When no more reallocation occurs in the E-step, the 220 

algorithm has converged. 221 

In order to reduce the influence of uninformative dimensions that only 222 

contribute with noise, penalized k-means introduces an L1-penalty for each element 223 
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of each cluster center 𝜇#,8 to the optimization objective. Formally, the score function 224 

𝑄 in Eq. ( 1 ), is updated: 225 

 226 

 
𝑄 = 𝑧#,= 𝑥=,8 − 𝜇=,8

B
C

8D%

(

=D%

− 𝜆 |𝜇#,8|
C

8D%

E

#D%

,
E

#D%

 
( 2 ) 

where 𝜆  is a positive penalty term. The additional term in the score function, 227 

introduced in Eq. ( 2 ) results in a change in the M-step of the original EM-algorithm 228 

of the k-means algorithm. Keeping 𝑧#,= for all 𝑙	fixed and optimizing 𝑄 with respect to 229 

𝜇#,8, the M-step is: 230 

 
𝜇#,8 = 𝑠𝑖𝑔𝑛

𝑧#,=𝑥=,8(
=D%

𝑧#,=(
=D%

⋅ max
𝑧#,=𝑥=,8(

=D%

𝑧#,=(
=D%

−
𝜆

2 𝑧#,=(
=D%

, 0 . 
( 3 ) 

Depending on the choice of the penalty parameter 𝜆 , some components of some 231 

clusters centers will be set to 0 in the M-step. Note that penalized k-means with 232 

penalty 𝜆 = 0 reduces to the original k-means algorithm. 233 

In DEPECHE, cluster centers that are moved to the origin in the M-step are 234 

eliminated and not assigned any data points in the E-step. Due to the elimination of 235 

clusters, the number of produced clusters is independent of k and dependent on the 236 

penalty 𝜆 as long as at least one cluster is eliminated. In DEPECHE, k is always 237 

chosen to be so large that at least one cluster is eliminated. 238 

Eq. ( 2 ) is a special case of the penalized model based clustering algorithm by 239 

Pan and Shen with unit variance and equal mixture components [9]. By imposing the 240 

penalty for each dimension and each cluster, penalized k-means identifies the 241 

dimensions that do not distinguish a particular cluster from the rest of the data, thus 242 

leaving these dimensions out of the definition of that cluster.  This differs from the 243 

sparse k-means algorithm by Witten and Tibshirani [21] and the regularized k-means 244 
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algorithm by Sun et al [10], that only identify dimensions that do not contribute to 245 

distinguish any cluster from the rest of the data. 246 

Penalized k-means, as well as k-means, relies on a procedure for initializing 247 

the positions of the cluster centers. Cluster initialization is particularly delicate in 248 

DEPECHE, due to the elimination of clusters at the origin in the E-step. Poor 249 

initialization of the clusters might lead to elimination of too many clusters in the early 250 

E-steps, yielding fewer clusters in the end result than necessary to optimize 𝑄. To 251 

avoid early elimination of clusters, DEPECHE initializes the cluster positions using 252 

the seed generation algorithm of k-means++ by Arthur and Vassilvitskii[22] and 253 

always starts clustering with penalty 𝜆 = 0. The penalty is then increased linearly 254 

over a number of E-steps until it reaches the predetermined value.  255 

The EM-algorithm guarantees convergence to an optimum of the score 𝑄, but 256 

not necessarily to the global optimum. In order to diminish the influence of the 257 

starting state, the EM-algorithm is run several times with random initialization, and 258 

the solution with optimal 𝑄 is chosen. In addition, k is set considerably higher than 259 

the expected number of final clusters, which also diminishes the sensitivity to the 260 

starting state. In the extreme case where k is set equal to the number of data points n, 261 

the outcome of penalized k-means is deterministic. 262 

 263 

Tuning the penalty 264 

In this section, we describe the optimization scheme which is used for tuning the 265 

linear penalty 𝜆. The outline of the algorithm: 266 

 267 

1. Choose a range of penalty terms 𝜆#, 𝑖 = 1. . 𝑁N  that are considered for 268 

clustering the dataset D 269 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 20, 2018. ; https://doi.org/10.1101/396135doi: bioRxiv preprint 

https://doi.org/10.1101/396135
http://creativecommons.org/licenses/by/4.0/


2. Create 2 datasets per penalty term 𝜆#, called 𝐷%,# and 𝐷B,#, by sampling 𝑁O data 270 

points from 𝐷 with replacement. 271 

3. Run the penalized k-means algorithm on the datasets 𝐷%,#  and 𝐷B,# , yielding 272 

sets of cluster centers, denoted Μ%,# and ΜB,#. 273 

4. Create the partitions 𝑃%,# and 𝑃B,#, by allocating all data points of the dataset 𝐷 274 

to their nearest cluster center of the sets Μ%,# and ΜB,#.  275 

5. Determine the Adjusted Rand Index (ARI), denoted  𝑟 𝜆#  from 𝑃%,#  to 𝑃B,# 276 

[11]. 277 

6. Repeat step 2-5 times and average the obtained ARIs 𝑟(𝜆#) penalty wise until 278 

a stopping criteria regarding the statistical certainty of the obtained ARIs 𝑟(𝜆#) 279 

is met. 280 

7. Choose the optimal penalty 𝜆# , which is the penalty with the largest 281 

ARI	𝑟(𝜆#). 282 

 283 

Some remarks to the parameter tuning procedure: The repetition Step 6 is necessary, 284 

since the obtained ARI 𝑟(𝜆#) is a random variable, due to the random procedure for 285 

creating the datasets 𝐷%,#  and 𝐷B,#  and the random procedure for initializing the 286 

penalized k-means algorithm. DEPECHE uses two stopping criteria: The first 287 

criterion creates an interval of width 2 standard errors around the obtained mean of 288 

𝑟(𝜆#) and checks if the interval around the optimal ARI 𝑟(𝜆#) has a zero overlap with 289 

the other intervals. The second criterion checks whether the standard error of the 290 

mean of 𝑟(𝜆#) for the optimal penalty 𝜆# is below a threshold. 291 

Step 2 requires a samples size 𝑁O. A natural choice is to set 𝑁O equal to the number of 292 

data points, n. However, in cases where n is very large, so that the computational load 293 

of the optimization scheme becomes limiting, it is preferable to choose a smaller 𝑁O. 294 
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In DepecheR, 𝑁O = 10/  by default, in case 𝑛 ≥ 10/ . Notice that when an optimal 295 

penalty 𝜆# is discovered using sample size 𝑁O ≠ 𝑛, the corresponding optimal penalty 296 

when sampling the full dataset 𝐷 with magnitude n is (approximately) 𝜆# ⋅
(
TU

, since 297 

the attraction force of a cluster is proportional to the number of data points in it. 298 

Exact calculation of the ARI in step 5 is computationally intractable for large datasets. 299 

Therefore, DEPECHE relies on an approximate ARI computation, based on 10/ 300 

random pairs of data points. 301 

 302 

Simultaneous Clustering and Parameter Tuning 303 

  For very large datasets (𝑛 > 10V), not only the penalty optimization, but also the 304 

final clustering once the optimal penalty has been found may be computationally 305 

intractable. However, increasing the size of the dataset, does not necessarily lead to an 306 

increase in number of clusters at the optimal resolution. In this case, it is feasible to 307 

cluster a subset of the full dataset 𝐷 to obtain cluster centers 𝑀 and then allocate the 308 

remaining data points of 𝐷	to their closest clusters in 𝑀. This boosts computational 309 

efficiency since allocation imposes a much smaller computational load than 310 

clustering. Since several subsets of 𝐷 are produced and clustered during the tuning of 311 

the penalty parameter 𝜆 , it seems natural to retrieve cluster centers 𝑀  that were 312 

produced during the parameter tuning and use them to cluster 𝐷.  313 

When picking a set of cluster centers 𝑀 from the penalty tuning, the question arises 314 

which set of centers 𝑀 to take, since several sets of centers, denoted 𝑀#,= (𝑙 = 1, , , 𝑝), 315 

are produced for the optimal penalty 𝜆#. In DEPECHE, the centers 𝑀#,8 that have the 316 

strongest similarity (on average) to the remaining 𝑝 − 1  centers is chosen and is 317 

referred to as the most generalizable cluster set.  The level of similarity between the 318 
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centers 𝑀#,8  and 𝑀#,=  is quantified using the ARI between the partitions 𝑃#,8  and 𝑃#,= , 319 

induced by allocating each data point of 𝐷 to its closest cluster center in 𝑀#,8 and 𝑀#,= 320 

respectively.  321 

 322 

Empiric Performance of the Penalty Tuning Scheme. Roughly speaking, 323 

DEPECHE combines a flavored penalized k-means algorithm with a parameter tuning 324 

scheme, which identifies an optimal resolution. A naturally arising question is then 325 

whether the parameter tuning scheme is able to determine a biologically relevant 326 

resolution or if other penalized k-means clustering resolutions outperform the 327 

resolution chosen by DEPECHE.  Using a range of datasets (Table 3), the biological 328 

relevance (measured in ARI to the manually curated solution) of the optimized 329 

DEPECHE partitions were compared to the biologically optimal partition among all 330 

partitions generated with 20 repetitions on each of a range of 11 penalties per dataset. 331 

Overall, the DEPECHE resolution-selection showed close to optimal performance, as 332 

the selected solutions only had a median of 0.02 lower ARI to the gold standard 333 

(range 0-0.065) than the best possible solution with all penalties (Table 3). 334 

 335 

 336 

 337 

 338 

Table 3: ARI between DEPECHE partitions and golden standard partitions
Dataset Median ARI in supplementary figure 2 Maximal ARI with any penalty Difference
Levine 0.961 0.975 0.015
Bendall 0.841 0.873 0.032
Biase 1 1 0
Björklund 0.782 0.842 0.06
Deng 0.827 0.848 0.021
Goolam 0.629 0.639 0.009
Kolodziejczyk 0.992 1 0.008
Pollen 0.863 0.928 0.065
Yan 0.626 0.691 0.064
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Scaling and Centering the Data 339 

The clusters produced by DEPECHE, as well as their interpretation, depends on the 340 

scaling and centering of the data. The scaling determines the relative importance of 341 

the measured variables, where variables with a larger spread have stronger influence 342 

on the clustering.  The centering defines where zero occurs in each variable, thereby 343 

influencing the clustering results due to the linear penalty.  344 

DEPECHE is applicable to a large range of datasets where the numbers of 345 

dimensions, d, and the number of data points, n, can vary with many orders of 346 

magnitude. The differing characteristics of these datasets require different treatments 347 

with respect to scaling and centering.  348 

 349 

Scaling. Empirically, a majority of single-cell transcriptome datasets tend to have a 350 

few variables where the variance is many orders of magnitude greater than in the 351 

other variables. In this case, the high-variance variables will de-facto determine the 352 

clustering, implying that the clustering will fail to take the majority of the measured 353 

information into account. To even out the influence of these high-variance variables 354 

on the clustering outcome, the data is log transformed when such variables are 355 

present.  In DepecheR, this data behavior is detected automatically by concatenating 356 

all variables into a one dimensional vector, for which the kurtosis is calculated. A 357 

high kurtosis, indicates that the variables differ greatly in their internal variance. For 358 

datasets with low kurtosis, refraining from the log transform is preferable, since 359 

transformation distorts the information.  360 

 361 
 362 
Centering. Centering the origin to be close to the bulk of the data is preferable, in 363 

order to have all biological clusters at approximately the same distance from the 364 
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origin. Having some biological clusters close to the origin and some far off is often 365 

unwanted, since the linear penalty then imposes a preference for creating clusters 366 

close to the origin. Apart from influencing the clustering, the centering also 367 

determines the interpretation of the obtained sparsity. Just as for scaling, which 368 

centering scheme to apply depends on the dataset. 369 

For low dimensional datasets (n>100), DEPECHE applies maximal density 370 

centering, which sets the zero in each dimension to coincide with the highest data 371 

density. The density it computed by collecting the data in equally spaced bins (default 372 

number of bins in DepecheR is the number of data points 𝑛 divided by 50), where the 373 

bin with the highest number of data points has the highest density. Using this scheme, 374 

sparsity (i.e. that a variable is non-contributing to the definition of a cluster) is 375 

interpreted as that the data points in the cluster do not deviate from the most common 376 

outcome. It also ensures that the origin is relatively close to the bulk of the data, since 377 

it is located at the most common outcome for each variable respectively. The benefit 378 

of this scheme is that it boosts sparsity, by declaring the most common outcome non-379 

defining.  However, for high dimensional datasets (𝑛 ≥ 100 ), maximal density 380 

centering can push the origin so far away from the center of mass of the dataset, that 381 

the penalty starts to impose an unwanted, artificial influence on the clustering, 382 

hampering the biological relevance of the clusters. To avoid this, DEPECHE imposes 383 

a mean centering scheme for such datasets, which locates the origin at the center of 384 

mass of the dataset. 385 

A potential complication, related to centering, occurs when a biologically relevant 386 

cluster is located very close to the origin, since DEPECHE creates no clusters in the 387 

origin and will then force the cluster to merge with other clusters. However, this 388 

scenario was never detected in real data.  389 
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 390 

Experimental procedures 391 

Preprocessing of mass cytometry data. The benchmark datasets from Levine et al 392 

[12] and Bendall et al[18] were transformed using the flowTrans package [23] before 393 

used in any clustering algorithm.  394 

Preprocessing of single-cell transcriptomic data. The dataset from Björklund et al 395 

[19] was normalized using the sva package [24] as in the original manuscript. For this 396 

dataset, doublet variables were removed, lowering the number of variables from 397 

64443 to 35177.  398 

The gold-standard datasets used for benchmarking in the publication by 399 

Kiselev et al [5] were obtained in a pre-processed state. Before clustering with any 400 

algorithm, the gene filter function used in the sc3 package was used [5], with settings 401 

removing the genes that were expressed in more than 90% of the cells. This resulted 402 

in the number of transcripts presented in Table 1 (range 13608-19571 transcripts). 403 

 404 

Code availability 405 

All code necessary to generate the figures and tables in the manuscript are included in 406 

supporting code 1. The software package DepecheR is available for download at 407 

(https://github.com/theorell/depecher). 408 
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Supporting information 497 

S1 Fig Heatmaps comparing the golden standard partitions to the DEPECHE 498 

partitions for a) the 32-variate Levine dataset and b) the 35166-variate 499 

Björklund dataset. Red color indicates large overlap, blue color indicates low 500 

overlap between a gold standard-vs-depeche cluster pair.  501 

 502 

S2 Fig Algorithm comparisons. For all graphs, the x-axis shows the algorithms and 503 

the y-axis shows the Adjusted Rand Index comparing the clustering result with the 504 

golden standard clustering. a) Subsamples with 20000 unique cells from two mass 505 

cytometry datasets published by Levine et al and Bendall et al were clustered with 506 

DEPECHE and six previously published algorithms. For each dataset and algorithm, 507 

clustering was performed on 20 unique subsamples. For flowClust, flowPeaks and 508 

SamSPECTRAL, that do not perform internal parameter tuning, a range of parameter 509 

values were evaluated and the parameter value sets generating the highest ARI values 510 

were selected for display. b) The full Björklund dataset, as well as six other datasets 511 

previously used for benchmarking by Kiselev et al were clustered 20 times with 512 
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DEPECHE and three other algorithms. The Björklund dataset was normalized to 513 

reduce batch effects, with the procedure described in the original publication. These 514 

six datasets were also automatically log2-transformed within DEPECHE, and thus, 515 

log2-transformation was applied also for Sincera and pcaReduce, whereas sc3 was fed 516 

both log2- and untransformed data.  The lower and upper hinges of all boxplots 517 

extend to the 25:th and 75:th percentile, whereas the line in the middle describes the 518 

median. The whiskers extend to the lowest and highest value no further than 1.5 times 519 

the distance between the 25:th and 75:th percentile. Outside of this range, the 520 

observations are considered outliers and are shown as dots.  521 

 522 
S1 File. The DepecheR software, for the review phase.  523 
 524 
S2 File. The code needed to generate all figures, for the review phase.   525 
 526 
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