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Abstract 

Background In Latin America (LA), there is a high incidence rate of breast cancer (BC) in 

premenopausal women, and the genomic features of these BC remain unknown. Here, we aim to 

characterize the molecular features of BC in young LA women within the framework of the 

PRECAMA study, a multicenter population-based case-control study on breast cancer in 

premenopausal women. 

Methods Pathological tumor tissues were collected from incident cases from four LA countries. 

Immunohistochemistry (IHC) was performed centrally for ER, PR, HER2, Ki67, EGFR, CK5/6 and 

p53 protein markers. Targeted deep sequencing was done on genomic DNA extracted from 

formalin-fixed paraffin-embedded (FFPE) tumour tissues and their paired blood samples to screen 

for somatic mutations in eight genes frequently mutated in BC. A subset of samples was analyzed 

by exome sequencing to identify somatic mutational signatures.    

Results The majority of cases were positive for ER or PR (168/233; 72%) and there were 21% triple 

negative (TN) cases, mainly of basal type. Most tumors were positive for Ki67 (189/233; 81%). In 

126 sequenced cases, TP53 and PIK3CA were the most frequently mutated genes (32.5% and 

21.4%, respectively), followed by AKT1 (9.5%). TP53 mutations were more frequent in HER2-

enriched and TN IHC subtypes, while PIK3CA/AKT1 mutations were more frequent in ER positive 

tumors, as expected. Interestingly, a higher proportion of G:C>T:A mutations was observed in TP53 

gene in PRECAMA cases compared to TCGA and METABRIC breast cancer series (27% vs 14%). 

Exome-wide mutational patterns in 10 TN cases revealed alterations in signaling transduction 

pathways and major contributions of mutational signatures caused by altered DNA repair pathways.  

Conclusions This pilot results on PRECAMA tumors gives a preview of the molecular features of 

premenopausal BC in LA. Although, the overall mutation burden was as expected from data in other 

populations, mutational patterns observed in TP53 and exome-wide suggested possible differences 

in mutagenic processes giving rise to these tumors compared to other populations. Further omics 

analyses of a larger number of cases in the near future will allow investigating relationships between 

these molecular features and risk factors.  
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Introduction 

 

Breast cancer (BC) incidence is increasing sharply in countries in economic transition with a 

large number of cases in premenopausal women. In Latin America (LA), the frequency of BC in 

women younger than 45 years is close to twice the frequency seen in developed countries, an 

increase only partly explained by population age-structure [1]. Behavioural, reproductive and 

lifestyle factors typical of the Western populations are becoming more prevalent in LA and may play 

a role in the increased BC incidence in this population, but the reason for the sharp increase in 

premenopausal women remains to be established [2].  

BC is a heterogeneous disease in terms of biology and outcome. It is clinically classified into 

four subtypes (Luminal A, Luminal B, HER2 positive, Triple-negative) based on the expression of 

the oestrogen receptor (ER), progesterone receptor (PR), HER2 receptor and the proliferation 

marker Ki67 [3]. More sophisticated classifications based on genomic and transcriptional analyses 

provide a better description of the tumor biology and outcome [4, 5]. The two most frequently 

somatically mutated genes in BC are TP53 and PIK3CA. Mutations in PIK3CA, which renders cells 

dependent on PI3K pathway signalling, are the most common genetic abnormality identified in 

hormone receptor positive breast cancer, while mutations in the tumour suppressor gene TP53 are 

more prevalent in HER2-enriched and triple-negative (TN) subtypes.  

Genomic analyses can also provide information related to tumor aetiology. Indeed, somatic 

mutational signatures can reveal the contribution of specific mutational processes to the 

development of cancer. For example, TP53 mutation patterns specific to exposure to exogenous 

mutagens have been reported in several cancer types [6], and at the genome-wide level, over 30 

mutational signatures have been described in cancer tissues and some have been linked to 

endogenous mechanisms of mutagenesis or to exposure to human carcinogens [7, 8].  

While BC genomic subtypes have been associated with different patient outcomes, how 

specific genomic alterations relate to risk factors or aetiology remains largely unknown. Moreover, 

knowledge of the genomic features of premenopausal BC, particularly in countries in economic 

transition, is limited. The PRECAMA study was initiated to investigate the molecular, pathological, 
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and risk factor patterns of premenopausal BC in LA (http://precama.iarc.fr/). It is the largest case-

control study conducted in four Latin American countries that systematically collects both, extensive 

information on life-style and risk factors, and different biological samples (tumor tissues, blood 

fractions and urines) according to standardized procedures. PRECAMA is thus a powerful 

framework for investigating relationships between BC tumor biology and aetiology.  

Here, we investigate the tumor genomic features of premenopausal BC (preBC) in Latin 

American women using the first set of samples collected within the framework of the PRECAMA 

study.  

 

Materials and Methods 

Study population 

Subjects were women age 20-45 years diagnosed with BC as part of the PRECAMA case-

control study (http://precama.iarc.fr). Recruitment was conducted at major general or cancer 

dedicated hospitals in Chile, Colombia, Costa Rica and Mexico which cover populations with a wide 

range of socio-economic status. Women having a positive biopsy for BC were recruited prior to any 

treatment. Women were invited to a home or hospital visit during which a trained nurse presented the 

informed consent, collected biological samples and anthropometric measurements (height, weight, hip 

and waist circumferences) and administered a standardized questionnaire on clinical, reproductive, 

and life-style risk-factors. All participants gave written informed consent before enrolment, and the 

study protocols were approved by the institutional review boards of Chile (Oncologic Institute 

Foundation Arturo Lopez Pérez and National Cancer Institute), Colombia (Cancer Institute Las 

Americas  and University of Antioquia), Costa Rica (Costa Rican Institute of Clinical Research 

(ICIC) and Center for Strategic Development and Information in Health and Social Security 

(CENDEISSS) of the Costa Rican Social Security Fund (CCSS)), Mexico (National Institute of 

Public Health and the Social Security Mexican Institute), and the International Agency for Research 

on Cancer (IARC). 
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Biological specimens 

Each study site applied common standardized protocols for specimen collection. Protocols 

have previously been developed and extensively used by IARC [9, 10], and subsequently fine-tuned 

based on a detailed review of the conditions at each center. Blood samples were obtained by 

venipuncture using vacutainers at recruitment and buffy coats were prepared and stored at -80°C 

within less than 6 hours after blood drawn. Buffy coats were shipped to IARC for genomic DNA 

extraction. Tumor samples were fixed in formalin and paraffin-embedded (FFPE) according to 

SOPs. Paraffin blocks and H&E sections were stored at the local pathology service facilities. 

Sections from tumor tissues were sent to Fred Hutchinson Cancer Research Center (FHCRC) for 

centralized immunohistochemistry (IHC) analyses and tumor DNA extraction. 

 

Pathology Review and IHC analyses  

 Histology sections from tumor biopsy obtained prior to any treatment were reviewed for 

histological diagnosis and grade, lympho-vascular invasion and stromal and lymphocyte response. 

IHC was conducted for ER (SP1, LabVision, Fremont CA), PR (PgR 636, DAKO, Denmark), HER2 

(AO485, DAKO, Denmark), EGFR (31G7 Invitrogen, Camarillo CA), CK5/6 (D5/16 B4, DAKO, 

Denmark), p53 (Pab 1801, Calbiochem, La Jolla CA), Ki-67 (MIB-1, DAKO, Denmark) according to 

standardized and optimized protocols that included antigen retrieval when required. BCs were 

classified into subtypes according to ER, PR and HER2 IHC results. Triple negative (ER-, PR-, 

HER2-) were additionally subtyped using EGFR and CK5/6 staining to define basal-like cancers. ER 

and PR positivity were defined as staining score >1%, and Ki67 positivity as staining >14% as 

recommended by the St Gallen International Breast Cancer Conference [3]. 

 

DNA extraction and sequencing  

 Tumor genomic DNA was extracted from 3 to 9 sections of 6um using the QIAamp DNA FFPE 

Tissue Kit (Qiagen) following manufacturer’s recommended protocol, with the following modification. 

The tissue was incubated in ATL buffer and proteinase K overnight at 56°C with agitation, with an 

additional 20 uL of proteinase K addition after the first four hours. Constitutive genomic DNA was 
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isolated from buffy coats at IARC with the Autopure LS system (Qiagen) using the "frozen buffy 

coat" protocol and following manufacturer instructions. DNA was quantified by PicoGreen® 

(ThermoFisher Scientific).  

 For targeted sequencing, exonic regions of the selected gene panel (AKT1, CDH1, ERBB2, 

NOTCH1, PIK3CA, PTEN, RB1, TP53) were amplified from 80 ng of genomic DNA using 

GeneRead DNAseq Mix-n-Match Panel V2 (Qiagen) following manufacturer’s instructions. Libraries 

were prepared with NEBNext reagents ( New England Biolab) following manufacturer’s 

instructions. Libraries were quantified by PicoGreen® (ThermoFisher Scientific), pooled in equal 

quantities and the library pool was quantified by Qubit fluorometer (ThermoFisher Scientific) and 

quality checked with the Bioanalyzer (Agilent Technologies). 800pM of the library pool was used for 

sequencing on a Ion Proton sequencer (Life Technologies) according to manufacturer’s instructions, 

aiming at a minimum of 100X coverage for blood DNA and 1000X coverage for tumor DNA. Tumor 

samples were processed in duplicates to control for artefactual mutations from FFPE fixation (see 

bioinformatics analyses below). 

 For whole-exome sequencing (WES), exonic regions and splice junctions of tumor-blood DNA 

samples pairs were captured using the SeqCap EZ MedExome kit (Roche Diagnostics France) 

following manufacturer’s instructions. This assay captures exonic regions covering 47Mb of protein-

coding bases. Libraries were prepared with the KAPA Hyper Prep Kit (Roche Diagnostics France) 

following manufacturer’s instructions and sequenced by 150-base paired-end massively parallel 

sequencing on an Illumina HiSeq 4000 sequencer at the New York University Langone Medical 

Center according to manufacturer instructions.  

 

Bioinformatic analyses 

 Data from the Ion Proton were processed with the Ion Torrent built-in pipeline (TorrentSuite V4) 

to generate BAM files and variant calling was done with the built-in ITVC in the somatic mode and 

with a minimum allelic frequency threshold of 4%. Variants were annotated with Annovar and 

filtered to eliminate known SNPs (variants present in ExAC or 1000G databases at frequency 

>0.001) and sequencing artefacts using our MutSpec Galaxy package developed in-house [11]. 
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Further manual checks of BAM files using IGV were done when appropriate. All non-synonymous 

mutations found in the targeted regions and present in both duplicates of tumor samples but not in 

any blood sample were retained for analysis.  

Exome data from the HiSeq4000 were analysed with a pipeline developed in-house and based on 

standards tools for quality control and processing (FastQC 0.11.3, AdapterRemoval 2.1.7, BWA-

MEM 0.7.15, Qualimap 2, GATK 3.5, Picard 1.131). Somatic variant calling was done on tumor-

blood sample pairs with Strelka [12] using default parameters. Variant annotation and filtering was 

done as described above with MutSpec [11] and only somatic indels and SNVs in coding regions 

were retained and analysed. Pathway analysis of mutated genes was done with ConsensusPathDB 

(r32) using KEGG, Biocarta, Reactome and Wikipathways databases and a minimum of 3 

overlapping genes and q-value <0.05 as settings [13]. To define cancer genes, we used COSMIC 

Cancer Gene Census (v82)[14], and genes identified as drivers in breast cancer in the IntOGen 

database (r2014.12)[15]. 

 

Public data on somatic mutations in breast cancer 

 Data from TCGA breast and METABRIC genomic studies [16, 17] and from the IARC TP53 

Database [18] were used as comparison datasets. Gene-specific mutation files (AKT1, CDH1, 

ERBB2, NOTCH1, PIK3CA, PTEN, RB1, TP53 genes) and related clinical files for TCGA and 

METABRIC studies were retrieved from cBioportal [19, 20] in February 2017. MAF files from exome 

sequencing data of TCGA breast cancer cases were retrieved on 26 March 2015 via a https 

protocol at https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/. Gene-

specific data from TCGA and Metabric  were combined, including only cases with documented age 

and ER, PR and HER2 status, and stratified by age (under 45 or above 55 years old). For TCGA 

exome data, only data with documented age and ER, PR and HER2 status were selected resulting 

in a dataset of 453 samples including 96 preBC and 357 postBC. Version R18 of the somatic 

dataset of the IARC TP53 Database was used selecting for mutations reported in primary breast 

cancers in women <=45 years old and in studies using Sanger sequencing. 
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Statistical analyses 

 For mutational signatures analyses, we used PRECAMA exome data (N= 12 samples) and 

TCGA exome data (N = 453). Mutations were classified into 96 types corresponding to the six 

possible base substitutions (C:G>A:T, C:G>G:C, C:G>T:A, T:A>A:T, T:A>C:G, T:A>G:C) and the 16 

possible pairs of flanking nucleotides immediately 5’ and 3’. Mutational signatures in these samples 

were then extracted using the non-negative matrix factorization (NMF) algorithm implemented in the 

NMF R package [8, 21]. NMF decomposition identifies signatures and estimates their contributions 

to each sample. Six signatures were identified using the cophenetic correlation coefficient [20] as a 

measure of stability of the signatures. We calculated, the cosine similarity between the six extracted 

signatures and those published in the Catalogue of Somatic Mutations in Cancer (COSMIC) and in 

other original reports [21, 26, 27], as described elsewhere [21].   

We wished to identify possible systematic differences of signature contributions both between IHC 

subtypes, by menopausal status and by study source (TCGA vs PRECAMA). Due to the small 

number of PRECAMA samples, we used 2000 permutations of samples to obtain an empirical 

distribution of the Kruskal-Wallis rank-sum statistic. This permutation test was applied to test for 

possible association of each signature with a) menopausal status; b) IHC subtype; c) Menopausal 

status stratified by IHC subtype; d) menopausal status adjusted for subtype by linear model; and e) 

study source, with partial adjustment for subtype (TN vs others) and also restricted to pre-

menopausal samples.  

All statistical analyses were performed using the R statistical software version 3.3.2. The statistical 

significance level was set to 0.05 without adjustment for multiple comparisons. 

 

Results 

 

IHC subtypes in PRECAMA tumors 

In the first consecutive cases recruited in PRECAMA and for which tumor pathological 

evaluation has been completed (N=229), most BC cases were ER positive (72%) and 16% were 

positive for HER2 (Table 1). Using ER/PR/HER2 IHC subtyping, the majority of cases were Luminal 
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A (58%), followed by TN (21), Luminal B (11%) and HER2 enriched-enriched (5%) (Table 1). The 

HER2+ rate overall was 16%. TN tumors were predominately basal-like (98%) (S1 Table). 

Proliferation status was assessed by Ki67 IHC. More than 80% (189/233) of cases had high Ki67 

staining (staining >= 14%) with a median percentage of 31.6 (not shown). Ki67 positive cases were 

less frequent among Luminal A cases than other subtypes (71.6% compared to 88-95%). 

 

 Table 1. Sample classification by IHC results 

 Sample number 
N (%) 

Ki67 positive 
N (%) 

ER   

Negative 65 (28%) 63 (97%) 

Positive 168 (72%) 126 (75%) 

PR   

Negative 71 (30%) 67 (94%) 

Positive 162 (70%) 122 (75%) 

HER2   

Negative 183 (79%) 144 (79%) 

equivocal 13 (6%) 12 (92%) 

Positive 37 (16%) 33 (90%) 

Total 233 189 (81%) 

IHC SUBTYPE**   

Luminal A 134 (58%) 96 (72%) 

Luminal B 26 (11%) 23 (88%) 

HER2 Enriched 11 (5%) 10 (91%) 

Triple Negative 48 (21%) 47 (98%) 

Of basal type 45 (94%) 42 (93%) 

Undetermined*** 14 (6%) 13 (93%) 
 

     

* 20 cases were excluded due to no invasive tumor present or insufficient tissue for testing.  

** Tumor Subtype definitions: Luminal A: ER+/HER2-; Luminal B: ER+/HER2+; HER2 Enriched: ER-

/HER2+; Triple Negative: ER-/PR-/HER2-; TN of basal type: EGFR and/or CK5/6 positive.  

*** 14 cases were not assigned a subtype: 13 cases have equivocal HER2 results and no 

confirmatory FISH; 1 case is ER-/PR+/HER2- with a weak PR positivity. 
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Somatic mutations in premenopausal BC  

Tumor genomic DNA was extracted from FFPE tissue sections prepared in each collecting 

Centre according to a standardized protocol. More than 250 ng of DNA were obtained for 75% of 

the samples with a median yield of 994 ng. Limiting amount of DNA (<100 ng) was obtained for 12% 

(21/172) of the samples. Targeted deep sequencing of a panel of 8 genes frequently mutated in BC 

(AKT1, CDH1, ERBB2, NOTCH1, PIK3CA, PTEN, RB1, TP53) was successfully performed on 126 

cases for which over 250 ng of tumor genomic DNA was available. Tumor DNA and matched blood 

DNA were sequenced at minimum coverages of 1000X and 100X, respectively. To control for 

potential artefacts due to formalin fixation, FFPE tumor samples were sequenced in duplicates and 

only mutations detected in both duplicates were considered (see Materials and Methods). 

Potentially deleterious somatic mutations (affecting splicing, indels, nonsense, stoploss, and non-

synonymous substitutions) in the 8-gene panel were found in 63.5% (80/126) of samples. TP53 was 

the most frequently mutated gene (32.5%), followed by PIK3CA (21.4%) and AKT1 (9.5%), while 

other genes were mutated in less than 5% of samples. Overall, this distribution was similar to the 

one obtained in preBC women from TCGA/METABRIC datasets (top mutated genes are TP53 and 

PIK3CA), although the prevalence of TP53, PIK3CA, AKT1 and RB1 genes mutation prevalence 

were significantly different (Fig 1A). There were fewer cases with TP53 and PIK3CA mutations and 

more cases with AKT1 and RB1 mutations (p<0.05). These differences may be explained in part by 

the lower proportion of TN and HER2-enriched cases (known to carry TP53 and both TP53 and 

PIK3CA mutations respectively [22]) and higher proportion of Luminal A cases (known to carry 

AKT1 or PIK3CA mutations [22]) in PRECAMA samples compared to the TCGA/METABRIC 

datasets (see S1 Fig). Nonetheless, the relative proportion of PIK3CA versus AKT1 mutations in 

Luminal A cases was different between PRECAMA and TCGA/METABRIC datasets, with a higher 

proportion of AKT1 mutated cases in PRECAMA versus TCGA/METABRIC (14% AKT1 and 23% 

PIK3CA mutations vs 4% AKT1 and 54% PIK3CA mutations, respectively, although this was not 

statistically significant). Thus, while the PIK3CA/AKT1 pathway is mutated at expected rates in the 

Luminal A PRECAMA tumors, AKT1 mutations may be favoured over PIK3CA mutations compared 

to other published sets, a result that will need to be confirmed in a larger sample set.  PIK3CA and 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 25, 2018. ; https://doi.org/10.1101/396218doi: bioRxiv preprint 

https://doi.org/10.1101/396218


12 
 

AKT1 mutations were at classical hotspots (p.H1047R, p.E542K, p.E545K for PIK3CA and p.E17K 

for AKT1), and TP53 mutations were mostly missense substitutions that spread across the coding 

sequence (S1 Table). The relationship between IHC subtypes and mutated genes was as expected 

from previous studies (Fig 1B). TP53, RB1 and PTEN mutated samples were more prevalent in TN 

samples, while AKT1 or CDH1 mutated samples were of Luminal A subtype. The majority of 

samples with no mutation in the tested genes were Luminal A cases (34/46; 74%).  

Twenty one tumors had mutations in more than one gene. One case was of HER2-enriched 

subtype and had mutations in TP53 and ERBB2. Three cases were of Luminal B subtype and had 

mutations in PIK3CA and TP53 or CDH1. Seven cases were TN and had mutations in TP53 

combined with RB1 (3 cases) or PTEN (2 cases) or PIK3CA (1 case) or NOTCH1 (1 case). Ten 

cases were of Luminal A subtype and had mutations in TP53 and PIK3CA (4 cases), in TP53 and 

AKT1 (3 cases), or other gene combinations. Mutation details are provided in S1 Table.  

In a subset of 12 samples (two Luminal A and ten TN cases selected randomly) analyzed 

with the 8-genes panel, we also performed whole exome sequencing. With a median coverage of 

200X in tumor DNA and 80X in blood DNA and over 99.5% of mapped reads (see S2 Table), we 

identified 2634 somatic mutations in coding regions, including 2128 non-synonymous SNVs and 

indels (see S3 Table). All mutations found by targeted sequencing in the 8-gene panel were 

confirmed in the exome analysis. There was an average of 3.9 non-synonymous SNVs and indels 

per MB, with 2 samples carrying more than 6 mutations per MB (Fig 2A, top panel). The top 

mutated genes included four cancer genes (TP53, RB1, PIK3CA and AHNAK) and several large 

sized genes such as mucin genes and TTN gene (Fig 2A, middle panels). AHNAK has recently 

been described as a novel tumor suppressor gene in breast cancer, especially in TN subtype, acting 

via different signaling pathways such as AKT/MAPK or TGFβ [23, 24]. AHNAK, like RB1 mutations 

were all in TN cases. However, the impact of AHNAK mutations on protein function is unknown as 

AHNAK is a large size gene and 3/4 of the mutations were predicted as benign by Polyphen-2 [25]. 

In TN cases (N=10), there were 92 cancer genes mutated, dominated by TP53 which was mutated 

in all samples, and with 14 other cancer genes mutated in more than one sample (Fig 2B). Pathway 
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enrichment analysis of potential driver mutations in these TN samples (S4 Table) showed 

enrichment for several growth factor signaling pathways and for pathways involved in insulin 

receptor signaling, telomere maintenance, transmembrane transport of small molecules, G1 

checkpoint or O-glycan biosynthesis (Fig 2C and S5 Table).   

 

Mutation patterns and signatures in premenopausal BC 

To study the underlying mutational processes involved in the development of preBC tumors 

in the studied populations, we analyzed somatic mutation patterns in the TP53 gene and at the 

exome-wide level. As shown in Fig 3A, the distribution of TP53 mutation substitution types in 

PRECAMA samples was different from the one observed in other datasets of women younger than 

45 years. There was in particular a higher proportion of G:C>T:A mutations in PRECAMA samples 

compared to BC tumors from young women from the IARC TP53 Database (p-value = 0.004; Chi-

square test) or TCGA/METABRIC (p-value = 0.05; Chi-square test) datasets. In fact, G:C>T:A was 

the most frequent type followed by indels, while G:C>A:T at CpG was the most frequent type in the 

other datasets. TP53 G:C>T:A mutations were observed in all subtypes while indels were more 

frequent in TN cases (Fig 3B). TP53 indels were truncating mutations (predicted to result in loss of 

p53 protein expression) in 6/10 cases, and 5/6 of these truncating mutations were indeed 

associated with null p53 IHC staining (see S1 Table). Thus, while the presence of frequent TP53 

truncating mutations in TN subtype was similar to previous reports [26], the overall high frequency of 

G:C>T:A mutations was unexpected.  

Mutational signatures at the exome-wide level were analysed using a dataset including the 

12 PRECAMA samples and 453 BC samples from TCGA (see Materials and Methods). We 

identified 6 signatures that matched with previously reported signatures (Fig 4A and S6 Table). The 

estimated contribution of each signature to the mutation load in PRECAMA samples (Fig 4B) 

showed that 5/6 signatures had a contribution above 20% in at least one sample. Sig.A had the 

highest median contribution in these samples (24.3%). Sig.A matched with COSMIC signature-3 
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that has been established as a biomarker of homologous recombination defects through genetic 

and epigenetic inactivation of BRCA1/2 pathway, a distinctive feature of basal-like tumors [7, 27, 

28]. Sig.B, contributing in 6/12 samples, matched with signature 26, proposed to be linked to 

defective DNA repair and previously reported in breast cancer. Sig.C, contributing in 6/12 samples, 

matched with several signatures characterized by C>T mutations outside CpG sites, including 

experimental signatures induced by alkylating agents (MNNG and MNU) in rodent systems [29, 30], 

COSMIC signature-11 observed in recurrent brain tumors of patients treated with MNNG [31], and 

COSMIC signature-30 of unknown origin but previously observed in some BC. Sig.D, that matched 

with COSMIC signature-18, was mainly observed in one sample where it contributed to 90% of the 

mutation load and where the overall mutation load was the highest. The origin of this signature in 

BC remains to be established but it has recently been associated with germline mutation in the 

repair enzyme MUTYH in colorectal and adrenocortical carcinomas [32, 33]. Interestingly, the 

sample in which Sig.D dominated carried a truncating somatic mutation in MUTYH (see S1 Table). 

Finally, Sig.E, characterized by C>T mutations at CpG site and matching with COSMIC signature-1 

known to be due to spontaneous deamination of 5-methylcytosine (also referred as the “age” 

signature), had significant contribution in only 3 samples.  

In Fig 4C, we explored possible systematic differences of signature contributions between 

IHC subtypes, and by menopausal status or study source (TCGA vs PRECAMA). Sig.F that 

matched with COSMIC signature-2 and COSMIC signature-13, linked to mutagenesis by APOBEC, 

was more prevalent in HER2-enriched subtype cases and underrepresented in TN cases (p-value < 

5E-4), as reported before [34]. This fits with the fact that we do not find a significant contribution of 

APOBEC signature in the PRECAMA samples (median contribution of 2.9%) as we only analysed 

TN and Luminal A cases. COSMIC signature-3 (Sig.A) was enriched in TN cases (p-value < 5E-4) 

and preBC (p-value = 0.03). This signature was the predominant one in PRECAMA TN cases 

(median contribution of 26.8%). The contribution of the “age” signature (Sig.E) was lower in TN 

cases than in all other subtypes (p-value < 5E-4) and also lower in preBC compared to postBC (p-

value = 0.006). It was the lowest in PRECAMA samples. The contribution of Sig.D was slightly 
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higher in TN cases compared to all other subtypes (p-value = 0.01) and was the main contributor to 

the mutation load in one PRECAMA sample (Fig 4B). As this sample carried a somatic mutation in 

MUTYH, and a recent study found germline mutations in MUTYH in young women with breast 

cancer [35], it will be interesting to further study the role of MUTYH alteration in TN and 

premenopausal BC. In stratified analyses by IHC subtypes, signatures’ contributions in PRECAMA 

TN cases were similar to the ones observed in TCGA TN samples except for Sig.C (contribution 

was higher in PRECAMA than in TCGA TN samples, p-value = 0.006, median contributions: 18.6% 

vs 10.4%). Because Sig.C matched with several signatures, including signatures linked to exposure 

to alkylating agents not expected in these treatment naïve samples, its origin remains to be 

established. There was no effect of menopausal status on signature’s contributions when taking into 

account IHC subtype using linear models (all p-values > 0.16; permutation tests of linear regression 

model). 

 

Discussion 

The results obtained in this pilot phase of the PRECAMA study demonstrate feasability 

regarding advanced genomic analyses of the tumor and blood samples collected at multiple sites in 

LA. They provide a preview of the molecular features of preBC in that population, with interesting 

mutational patterns that deserve further study.  

Indeed, over 92% of samples processed  for IHC analyses were successfully scored for 7 

markers (only 20/253 were excluded due to absence of invasive tumor or to insufficient tissue for 

testing), and 80% of samples processed for DNA extraction yielded DNA quantities and quality 

compatible with genomic analyses (136/172 samples yielded more than 200 ng of DNA). With a 

target of 1500 cases recruited for the full study (with Guatemala and Brazil joining the study), this 

will be the largest series of preBC in LA women where genomic characterization of the tumor will be 

performed. 
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The IHC analyses showed a majority of ER positive cases and a proportion of TN subtype 

similar to previous reports in Hispanic women [36]. The overall prevalence of ER negative tumors in 

PRECAMA was substantiated by sequencing results on the 8-genes panel analyzed here. Indeed, 

TP53 mutations, that are strongly associated with ER negative status [37, 38], were found in 32% of 

the cases, fitting with an overall 28% of ER negative cases. Also, the frequency of AKT1 mutations, 

typical of ER positive cases [17, 39], was higher in PRECAMA than in the comparative dataset of 

young women. Continued enrollment will allow us to determine more precise estimates of subtype 

distribution in the LA population and to explore potential differences in tumor subtype distributions 

between countries. 

Although overall tumor characteristics were more similar to those described in postBC than 

preBC, IHC staining with Ki67 showed high levels of staining in these preBC, even in Luminal A 

cases (72% positive cases), which is consistent with previous reports on preBC [40, 41]. Liao et al,. 

2015 [42], recently compared the molecular features of preBC versus postBC from TCGA and 

METABRIC datasets using multi-omic data integration. They reported no difference in gene 

expression between preBC and postBC in ER negative cases but significant differences in ER 

positive cases, with activation of integrin signaling and EGFR pathways and TGFβ as the top 

upstream regulator in preBC. It would thus be important in future studies to assess whether 

activation of these pathways drives the level of proliferation reflected by high Ki67 positivity in ER 

positive preBC as they may be potential clinical targets.  

The characteristics of the mutations found by target sequencing of the 8-gene panel was 

similar to the ones observed in other series of BC, with classical hotpots found in AKT1 and 

PIK3CA, a majority of missense mutations found in TP53, a higher proportion of truncating TP53 

mutations in TN cases compared to other subtypes, and an expected distribution of mutated genes 

within IHC subtypes. However, an interesting difference in the distribution of TP53 single base 

substitutions was observed. The most frequent TP53 mutation type was G:C>T:A that represented 

27% of all TP53 mutations, a figure close to twice the one observed in the comparative datasets 

used here, and that matches those reported in lung cancers linked to PAH exposure [43, 44]. This 
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pattern is thus unexpected in breast cancer. These G:C>T:A mutations do not exhibit a strand bias, 

do not cluster at any hotspot, and seemed similarly distributed within IHC subtypes or country of 

origin, although numbers are still too low to draw any conclusion. As these results may suggest a 

specific, yet unknown, mutational process at the origin of TP53 mutations, it will be important to 

confirm them in the full study. 

Exome-wide mutation profiling of a subset of basal-like TN tumors confirmed that TP53 and 

RB1 were the only cancer genes recurrently affected by deleterious mutations (>2 samples). These 

results are concordant with previous reports on TNBC of basal-like type that showed predominance 

of TP53 mutations and of TP53 and RB1 pathways alterations [39, 45]. These reports also suggest 

activation of the PIK3CA/AKT pathway based on gene copy number analyses (PIK3CA gene 

amplification, PTEN gene deletion) and protein phosphorylation assays [39]. Here we found one 

activating PIK3CA mutation in 10 TNBC samples, which is in the range of previous reports (9%). 

However, as we limited our analyses to SNVs and small indels, we could not further assess the 

functionality of the PIK3CA pathway. Pathway analysis of potentially functional mutations across all 

genes showed enrichment of signal transduction pathways including EGFR, PDGF and IGF1R, and 

mutational signatures showed a large contribution of DNA repair defects to the mutation load. These 

overall results on TN cases fit with our previous analyses of another series of TN cases from Mexico 

where transcriptomics analyses showed an overexpression of growth-promoting signals (including 

EGFR, PDGFR and PIK3CA), a repression of cell cycle control pathways (TP53, RB1) and a 

deregulation of DNA-repair pathways [46].   

Our exploratory analysis of exome-wide mutational signatures in relation to IHC subtype and 

menopausal status in TCGA and PRECAMA samples showed that the contributions of mutational 

signatures are determined by the tumor subtype but not the menopausal status, and that 

PRECAMA TN cases showed contributions similar to TCGA TN samples for 5/6 signatures 

identified in the analyzed set.  
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Some limitations of the results presented should be noted. First, the prevalence of IHC 

subtypes are based on still limited numbers and may thus not be representative of the distribution at 

the population level. Second, HER2 status confirmation by FISH could not be done in this pilot 

phase and thus the prevalence of Luminal B or HER2-enriched subtypes may be under- or over-

estimated. Third, the exome data have been performed on a limited number of cases to establish 

feasability of these assays. Results on this small set did show feasability and allowed us to identify 

both similarity and differences in genomic alterations compared to other series of BC. Analysis of 

the full series will determine if any specific genomic feature may characterize preBC in LA women.    

 

Conclusions 

This pilot results on PRECAMA tumors gives a preview of the molecular features of 

premenopausal BC in LA. Although, the overall mutation burden was as expected from data in other 

populations, mutational patterns observed in TP53 suggested possible differences in mutagenic 

processes giving rise to these tumors compared to other populations. Further omics analyses of a 

larger number of PRECAMA cases in the near future will allow investigating relationships between 

these molecular features and etiological factors.  
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Figure legends 

Fig 1. Mutation occurrences in eight BC genes. (A) Gene mutation frequencies in PRECAMA 

samples are compared to those observed in a dataset of premenopausal women selected from the 

TCGA and METABRIC series [16, 17]. (B) IHC subtype distributions of samples according to their 

mutation status. Luminal A: ER+/HER2-; Luminal B: ER+/HER2+; HER2 Enriched: ER-/HER2+; 

Triple Negative: ER-/PR-/HER2-. 

Fig 2. Whole exome sequencing results in 12 PRECAMA samples. Only coding non-silent 

somatic mutations are considered. (A) Mutation rates (top panel), top mutated genes and their 

mutation types (middle panel), and IHC features (lower panel), sorted by top mutated genes. 

Luminal A: ER+/HER2-; Triple Negative: ER-/PR-/HER2-. (B) All cancer genes somatically mutated 

in the 10 TN samples are depicted, the size of gene names being proportional to the number of 

sample mutated for each gene. (C) Pathways enriched (q-value <0.05) in the list of genes mutated 

in TN cases with AF>20% and predicted deleterious/probably deleterious by Polyphen (N=333 

genes). Number of overlapping genes in each pathway is shown. 

Fig 3. TP53 mutation type distributions in preBC. (A) Distribution of mutation types in PRECAMA 

samples are compared to those observed in datasets of women <45 years old selected from the 
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TCGA and METABRIC series [16, 17] or the IARC TP53 Database [18]. (B) IHC subtype 

distributions of PRECAMA samples in each mutation type category. Luminal A: ER+/HER2-; 

Luminal B: ER+/HER2+; HER2 Enriched: ER-/HER2+; Triple Negative: ER-/PR-/HER2-. 

Fig 4. Mutational signatures identified in TCGA and PRECAMA samples, and their 

relationship with tumor subtype and patient menopausal status. (A) The six mutational 

signatures identified in 453 TCGA plus 12 PRECAMA samples. The six types of base substitutions 

are color-coded and further stratified by their adjacent 5′ and 3′ sequence context. Sig.A matches 

with COSMIC signature-3; Sig.B matches with COSMIC signature-26; Sig.C matches with COSMIC 

signatures-11/19/23/30 and experimental signatures of MNU and MNNG; Sig.D matches with 

COSMIC signature-18; Sig.E matches with COSMIC signature-1; Sig.F matches with COSMIC 

signatures-2/13 (see Supplementary Table 1, Additional File 1). (B) Percent contributions of the six 

mutational signatures to the SNVs found in PRECAMA samples. (C) Percent contributions of the six 

mutational signatures in PRECAMA and TCGA samples stratified by tumor IHC subtypes (left 

graphs) and by menopausal status (right graphs). PRECAMA samples are indicated by an arrow. 
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by NGS; S2 Table: Whole exome sequencing data metrics; S3 Table: Mutations in coding regions 

from whole exome sequencing and mutation calling with Strelka; S4 Table: List of mutated genes in 

TN cases with mutations present at an allele frequency above 20% and predicted to impact protein 

function (splice, truncating and non-synonymous predicted deleterious/probably deleterious by 

Polyphen-2) (N=333); S5 Table: Pathway analysis of 333 altered genes in TN samples; S6 Table: 

Cosine similarity values for the comparisons between each of the 6 extracted signatures and 37 

published signatures. 

S1 Fig. IHC subtypes distribution in PRECAMA samples and in preBC extracted from 

METABRIC and TCGA studies. Comparison of the distribution of IHC subtypes observed in 
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PRECAMA and in preBC from a dataset extracted from METABRIC and TCGA (see Material and 

Methods). Luminal A: ER+/HER2-; Luminal B: ER+/HER2+; HER2 Enriched: ER-/HER2+; Triple 

Negative: ER-/PR-/HER2-. 
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S1 Fig. Comparison of the distribution of IHC subtypes observed in
PRECAMA and in preBC from a dataset extracted from METABRIC
and TCGA (see Methods). Luminal A: ER+/HER2-; Luminal B:
ER+/HER2+; HER2 Enriched: ER-/HER2+; Triple Negative: ER-/PR-
/HER2-.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 25, 2018. ; https://doi.org/10.1101/396218doi: bioRxiv preprint 

https://doi.org/10.1101/396218

	Olivier_MainManuscript_21082018
	Fig1
	Fig2
	Fig3
	Fig4
	S1_Fig

