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Abstract 6	

All organisms are sensitive to the abiotic environment, and a deteriorating 7	
environment can lead to extinction.  However, survival in a multispecies 8	
community also depends upon inter-species interactions, and some species may 9	
even be favored by a harsh environment that impairs competitors.  A 10	
deteriorating environment can thus cause surprising transitions in community 11	
composition.  Here, we combine theory and laboratory microcosms to develop a 12	
predictive understanding of how simple multispecies communities change under 13	
added mortality, a parameter that represents environmental harshness.  In order 14	
to explain changes in a multispecies microbial system across a mortality gradient, 15	
we examine its members’ pairwise interactions.  We find that increasing mortality 16	
favors the faster grower, confirming a prediction of simple models.  Furthermore, 17	
if the slower grower outcompetes the faster grower in environments with low or 18	
no added mortality, the competitive outcome can reverse as mortality increases.  19	
We find that this tradeoff between growth rate and competitive ability is indeed 20	
prevalent in our system, allowing for striking pairwise outcome changes that 21	
propagate up to multispecies communities.  These results argue that a bottom-up 22	
approach can provide insight into how communities will change under stress.  23	

Introduction 24	

Ecological communities are defined by their structure, which includes 25	
species composition, diversity, and interactions1.  All such properties are 26	
sensitive to the abiotic environment, which influences both the growth of 27	
individual species and the interactions between them.  The structure of 28	
multispecies communities can thus vary in complex ways across environmental 29	
gradients2–7.  A major challenge is therefore to predict how a changing 30	
environment affects competition outcomes and alters community structure.  In 31	
particular, environmental deterioration can radically change community structure.  32	
Instances of such deterioration include antibiotic use on gut microbiota8, ocean 33	
warming in reef communities9, overfishing in marine ecosystems10, and habitat 34	
loss in human-modified landscapes11.  Such disturbances can affect community 35	
structure in several ways, such as allowing for the spread of invasive species12, 36	
causing biodiversity loss and mass extinction13,14, or altering the interactions 37	
between the remaining community members15,16.  For example, a stable 38	
ecosystem can be greatly disrupted by the removal of a single keystone species, 39	
potentially affecting species with which it does not directly interact17–19.  40	

A common form of environmental deterioration is increased mortality, 41	
which can be implemented in the laboratory in a simple way.  In fact, the 42	
standard method of cultivating and competing bacteria involves periodic dilution 43	
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into fresh media, a process that necessarily discards cells from the population.  44	
The magnitude of the dilution determines the fraction of cells discarded and 45	
therefore the added mortality rate, making environmental harshness easy to tune 46	
experimentally.   47	

The choice of dilution factor often receives little attention, yet theoretical 48	
models predict that an increased mortality rate experienced equally by all species 49	
in the community can have dramatic effects on community composition.  In 50	
particular, it is predicted that such a global mortality will favor the faster-growing 51	
species in pairwise competition, potentially reversing competition outcomes from 52	
dominance of the slow grower to dominance of the fast grower1,20,21.  Indeed, 53	
there is some experimental support for competitive reversals in chemostat 54	
competition experiments between microbial species with different growth rates22–55	
24.  A less-explored prediction is that if a high mortality rate causes a competitive 56	
reversal, the competition will also result in either coexistence or bistability (where 57	
the winner depends on the starting fraction) at some range of intermediate 58	
mortality25–27.  In addition, little is known about how mortality will alter the 59	
composition of multispecies communities.  60	

In this paper, we report experimental results that expand upon the prior 61	
literature regarding pairwise competition, and we use the pairwise outcomes to 62	
develop a predictive understanding of how multispecies community composition 63	
changes with increased mortality.  First, experimental pairwise competition of five 64	
bacterial species confirmed that 1) increased mortality favors the fast grower in a 65	
competition, and can reverse the winner of the competition from slow grower to 66	
fast grower, and 2) at intermediate dilution rates, either coexistence or bistability 67	
occurs. Interestingly, we find that a pervasive tradeoff between growth rate and 68	
competitive ability in our system favors slow growers in high-density, low-69	
mortality environments, enabling striking changes in outcomes as mortality 70	
increases.  Second, to bridge the pairwise results to three- and four-species 71	
communities, we employed simple predictive pairwise assembly rules28, where 72	
we find that the pairwise outcomes such as coexistence and bistability propagate 73	
up to the multispecies communities.  Our results highlight that the seemingly 74	
complicated states a community adopts across a mortality gradient can be traced 75	
back to a predictable pattern in the outcomes of its constituent pairs.   76	

 77	
 78	

Results 79	
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 80	

 81	
To probe how a changing environment affects community composition, we 82	

employed an experimentally tractable system of soil bacteria competitions 83	
subject to daily growth/dilution cycles across six dilution factors (Fig. 1A).  We 84	
selected five species of soil bacteria: Enterobacter aerogenes (Ea), 85	
Pseudomonas aurantiaca (Pa), Pseudomonas citronellolis (Pci), Pseudomonas 86	
putida (Pp), and Pseudomonas veronii (Pv).  These species have been used in 87	
previous experiments by the group, which did not vary dilution factor28,29.  All five 88	
species grow well in our defined media containing glucose as the primary carbon 89	
source (see Methods) and have distinct colony morphology that allows for 90	
measuring species abundance by plating and colony-counting on agar.   91	

We began by competing three of the five species, Ea, Pci, and Pv, for 92	
seven 24-hour cycles under six different dilution factor regimes. To assay for 93	
alternative stable states, each dilution factor condition was initialized by four 94	
different starting fractions (equal abundance as well as prevalence of one 95	
species in a 90-5-5% split).  Despite the simplicity of the community and the 96	
experimental perturbation, we observed five qualitatively different outcomes 97	
corresponding to different combinations of the species surviving at equilibrium 98	
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Figure 1: Increasing dilution causes striking shifts in a three-species community.  A) To 
probe how added mortality changes community composition, we competed three soil bacteria over a range 
of dilution rates.  Cells were inoculated and allowed to grow for 24 hours before being diluted into fresh 
media.  This process was continued for seven days, until a stable equilibrium was reached.  The magnitude 
of the dilution factor (10 to 106) determines the fraction of cells discarded, and thus the amount of added 
mortality.  B) We began with a three-species community (Enterobacter aerogenes (Ea), Pseudomonas 
citronellolis (Pci), and Pseudomonas veronii (Pv)), initialized from four starting fractions at each dilution 
factor.  The outcomes of two of the starting fractions are shown, along with a “subway” map, where survival 
of species is represented with colors assigned to each species.  Black dots indicate where data was 
collected, while colors indicate the range over which a given species is inferred to survive.  Species Pv 
dominates at the lowest dilution factor, and Ea dominates at the highest dilution factors.  The stacking of 
two colors represents coexistence of two species, whereas the two levels at dilution factor 103 indicate 
bistability, where both coexisting states, Ea-Pv and Ea-Pci, are stable and the starting fraction determines 
which stable state the community reaches. 
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(Fig. 1B).  At the highest and lowest dilution factors, one species excludes the 99	
others at all starting fractions (Pv at low dilution, Ea at high dilution).  Two 100	
coexisting states (Ea-Pv and Ea-Pci) occur at medium low (102) and medium 101	
high (104) dilution factors, again independent of the starting fractions of the 102	
species.  However, at intermediate dilution factor (103), we found that the 103	
surviving species depended upon the initial abundances of the species. At this 104	
experimental condition, the system displays bistability between the two different 105	
coexisting states (Ea-Pv and Ea-Pci) that were present at neighboring dilution 106	
factors.  These three species therefore display a surprisingly wide range of 107	
community compositions as the mortality rate is varied.  108	

To make sense of these transitions in community composition, we decided 109	
to first focus on two-species competitions, not only because they should be 110	
simpler, but also because prior work from our group gives reason to believe that 111	
pairwise outcomes are sufficient for predicting multispecies states28.  Accordingly, 112	
we used a simple two-species Lotka-Volterra competition model with an added 113	
mortality term 𝛿𝑁# experienced equally by both species21: 114	

 𝑁̇# = 𝑟#𝑁#'1 − 𝑁# − 𝛼#+𝑁+, − 𝛿𝑁# 115	
where 𝑁# is the density of species 𝑖 (normalized to its carrying capacity), 𝑟# is the 116	
maximum growth rate of species 𝑖 , and the competition coefficient 𝛼#+  is a 117	
dimensionless constant reflecting how strongly species 𝑖 is inhibited by species 𝑗 118	
(Fig. 2).  This model can be re-parameterized into the Lotka-Volterra model with 119	
no added mortality, where the new competition coefficients 𝛼/#+ now depend upon 120	
𝑟# and 𝛿 (see S2 for derivation):  121	

𝑁̇0# = 𝑟̃#	𝑁0#(1 − 𝑁0# − 𝛼/#+𝑁0+) 122	

𝛼/#+ = 𝛼#+
51 − 6

78
9

:1 − 6
7;
<
	 123	

The outcome of competition—dominance, coexistence, or bistability—simply 124	
depends upon whether each of the 𝛼/ are greater or less than one, as in the basic 125	
Lotka-Volterra competition model21.   126	

In this model, it is possible for a slow grower (𝑁=) to outcompete a fast 127	
grower (𝑁>) if the slow grower is a strong competitor (𝛼>= > 1)	and the fast 128	
grower is a weak competitor (𝛼=> < 1) (Fig. 2).  However, the competition 129	
coefficients change with increasing mortality 𝛿 in a way that favors the fast 130	
grower: 𝛼/>=	shrinks and 𝛼/=> grows, eventually leading the fast grower to 131	
outcompete the slow grower.  A powerful way to visualize this change is to plot 132	
the outcomes, as determined by the competition coefficients (Fig 2C); increasing 133	
mortality causes the outcome to traverse a 45° trajectory through the phase 134	
space, leading to the fast grower winning at high mortality.  At intermediate 135	
mortality, the model predicts the two species will either coexist or be bistable.  136	
This model therefore makes very clear predictions regarding how pairwise 137	
competition will change under increased mortality, given the aforementioned slow 138	
grower advantage at low mortality. 139	
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Figure 2 
A uniformly increasing mortality rate is predicted to favor 
the fast grower. 
 
A)  Here we illustrate the parameters of the interspecific competition Lotka-

Volterra (LV) model: growth (r), death (δ), and competition (α). A specific 
case that we see in experiments is shown: a fast-growing weak 
competitor against a slow-growing strong competitor (bolder lines 
represent bigger parameter values). 

B)  The Lotka-Volterra two-species interspecific competition model is 
shown. 

C)  The outcomes of the LV model depend solely upon the competition 
coefficients (α), and the phase space is divided into one quadrant per 
outcome. These coefficients are independent of growth (r) in the 
absence of added death (δ), making it possible for a slow grower to 
exclude a fast grower. Imposing a uniform mortality rate on the system, 
however, favors the faster grower. The model also predicts that 
coexistence or bistability will occur at intermediate added death rates. 
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Figure 2: An increasing global mortality rate is predicted to favor the fast grower.  A-
B) Here we illustrate the parameters of the Lotka-Volterra (LV) interspecific competition model with 
added mortality: population density N, growth 𝑟, death 𝛿 (subscript 𝑓 for fast grower and 𝑠 for slow 
grower), and the strengths of inhibition 𝛼=>	and 𝛼>=.  The width of arrows in (A) corresponds to an 
interesting case that we observe experimentally, in which the fast grower is a relatively weak 
competitor. C) The outcomes of the LV model without mortality depend solely upon the competition 
coefficients 𝛼, and the phase space is divided into one quadrant per outcome.  If it is a strong 
competitor, the slow grower can exclude the fast grower. Imposing a uniform mortality rate 𝛿 on the 
system, however, favors the faster grower by making the re-parameterized competition coefficients 𝛼/ 
depend on 𝑟 and 𝛿.  Given that a slow grower dominates at low or no added death, the model predicts 
that coexistence or bistability will occur at intermediate added death rates before the outcome 
transitions to dominance of the fast grower at high added death (see S2 for derivation). 
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  142	

 143	
To test these predictions in the laboratory, we performed all pairwise 144	

competitions at multiple dilution factors and starting fractions of our five bacterial 145	
species: Pp, Ea, Pci, Pa, Pv (listed in order from fast to slow growing species).  146	
We find that these pairwise competitive outcomes change as expected from the 147	
LV model, where increased dilution favors the fast grower (Fig S1).  For example, 148	
in Ea-Pv competition we find that Pv, despite being the slower grower, is able to 149	
exclude Ea at low dilution rates (Fig 3B, left panel).  From the standpoint of the 150	
LV model, Pv is a strong competitor despite being a slow grower in this 151	
environment. However, as predicted by the model, at high dilution rates the slow-152	
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Figure 3: In pairwise competition experiments, increasing dilution favors the 
faster grower, and coexistence or bistability occur at intermediate dilution.  A) 
Experimental results are shown from a competition between Pv (blue) and Ea (pink).  B) Left 
panel: Despite its slow growth rate, Pv excludes faster grower Ea at the lowest dilution factor.   
Middle panel: Increasing death rate causes the outcomes to traverse the coexistence region of 
the phase space.  Right panel: As predicted, fast-growing Ea dominates at high dilution factor.  C) 
An experimental bifurcation diagram shows stable points with a solid line, and unstable points 
with a dashed line.  The stable fraction of coexistence shifts in favor of the fast grower as dilution 
increases.  Gray arrows show experimentally measured time trajectories, beginning at the starting 
fraction and ending at the final fraction.  D) A “subway map” denotes survival/extinction of a 
species at a particular dilution factor with presence/absence of the species color.  E-F) Pv 
outcompeted another fast grower Pci (yellow) at low dilution factors, but the pair became bistable 
instead of coexisting as dilution increased; the unstable fraction can be seen to shift in favor of 
the fast grower (G).  H) Two levels in the subway map show bistability. 
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growing Pv is excluded by the fast-growing Ea (Fig 3B, right panel).  Importantly, 153	
Pv is competitively excluded at a dilution factor of 104, an experimental condition 154	
at which it could have survived in the absence of a competitor.  Finally, and again 155	
consistent with the model, at intermediate dilution rates we find that the Ea-Pv 156	
pair crosses a region of coexistence, where the two species reach a stable 157	
fraction over time that is not a function of the starting fraction (Fig 3B, middle 158	
panel).  The Ea-Pv pair therefore displays the transitions through the LV phase 159	
space in the order predicted by our model (Fig 3A-D). 160	

The LV model predicts that other pairs will cross a region of bistability 161	
rather than coexistence, and indeed this is what we observe experimentally with 162	
the Pci-Pv pair (Fig 3E-H).  Once again, the slow-growing Pv dominates at low 163	
dilution factor yet is excluded at high dilution factor.  However, at intermediate 164	
dilution factors this pair crosses a region of bistability, in which the final outcome 165	
depends upon the starting fractions of the species.  The Lotka-Volterra model 166	
with added mortality therefore provides powerful insight into how real microbial 167	
species compete, despite the many complexities of the growth and interaction 168	
that are necessarily neglected in a simple phenomenological model. 169	

Indeed, a closer examination of the trajectory through the LV phase space 170	
of the Pci-Pv pair reveals a violation of the simple outcomes allowed within the 171	
LV model.  In particular, at dilution factor 102 we find that when competition is 172	
initiated from high initial fractions of Pci that Pv persists at low fraction over time 173	
(Fig. 3G).  This outcome, a bistability of coexistence and exclusion (rather than of 174	
exclusion and exclusion), is not an allowed outcome within the LV model 175	
(modifications to the LV model can give rise to it, as shown by 30).  This subtlety 176	
highlights that the transitions (e.g. bifurcation diagrams in Fig 3C,G) can be more 177	
complex than what occurs in the LV model, but that nonetheless the transitions 178	
within the LV model represent a baseline to which quantitative experiments can 179	
be compared. 180	

The model predicts that mortality will reverse competition outcomes if and 181	
only if a slow grower outcompetes a fast grower at low or no added death, 182	
exhibiting a tradeoff between growth and competitive ability.  Changes in 183	
outcome are therefore most dramatic when a strongly competing slow grower 184	
causes the trajectory to begin in the upper left quadrant of the phase space (Fig. 185	
3A, E), allowing it to move through other quadrants as mortality increases.  186	
Indeed, in the pairwise competitions described above, the slowest-growing 187	
species, Pv, is a strong competitor at low dilution factor.  To probe this potential 188	
tradeoff more extensively, we compared the growth rates of our five species in 189	
monoculture (Fig. S3) to their competitive performance at low dilution factor. In 190	
seven of the ten pairs, the slower grower excluded the faster grower, and the 191	
other three pairs coexisted (Fig. S1).  We therefore find that our five species 192	
display a pervasive tradeoff between growth rate and competitive ability, possibly 193	
because the slower-growing species fare better in high-density environments that 194	
reach saturation.  195	

To visualize how competitive success changes with dilution factor, we 196	
defined the competitive score of each species to be its mean fraction after 197	
reaching equilibrium in all pairs in which it competed.  The aforementioned 198	
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tradeoff can be seen as an inverse relationship between growth rate and 199	
competitive score at the lowest dilution factor (Fig. 4A).  As predicted, the 200	
performance of the fast-growing species increases monotonically with increasing 201	
dilution factors (Fig. 4B).  Competitive superiority of the slowest grower (Pv) at 202	
low dilution rates transitions to the next-slowest (Pa) at intermediate rates, before 203	
giving rise to dominance of the fastest growers (Pci, Ea, Pp) at maximum rates 204	
(Fig 4B-D).  We therefore find that the mortality rate largely determines the 205	
importance of a species’ growth rate to competitive performance in pairwise 206	
competition. 207	

 208	

Figure 4: In experimental competition of five bacterial species in pairs, a tradeoff between growth and 
competitive ability leads to strong dependence of outcome on dilution factor.  The LV model predicts that 
increasing dilution will favor faster-growing species over slower-growing ones.  If fast growers dominate at low dilution 
factors, though, no changes in outcome will be expected.  Changes in outcome are therefore most dramatic when slow 
growers are strong competitors at low dilution, exhibiting a tradeoff between growth rate and competitive ability.  A) This 
tradeoff was pervasive in our system: slower growth rates resulted in higher competitive scores at the lowest dilution factor.  
Growth rate was calculated with OD600 measurements of the time taken to reach a threshold density within the 
exponential phase; error bars represent the SEM of replicates (n ~ 20 replicates) (Fig. S3).  Competitive score was 
calculated by averaging fraction of a given species across all pairwise competitive outcomes; error bars were calculated by 
bootstrapping, where replicates of mean experimental outcomes of a given pair were sampled with replacement.  B) The 
competitive scores in A are extended to all dilution factors. The slowest grower’s score monotonically decreases with 
dilution, while the fast growers’ scores increase, and an intermediate grower peaks at intermediate dilution factor.  C) At 
high dilution factors, the order of scores is reversed.  D) At low dilution factors 10 and 102, competitive ability is negatively 
correlated with growth rate; the correlation becomes positive above dilution factor 103.  Error bars are the standard error 
coefficients given by the linear regression function lm in R.  
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209	

 210	
Now that we have an understanding of how pairwise competitive 211	

outcomes shift in response to increased mortality, we return to the seemingly 212	
complicated set of outcomes observed in our original three-species community 213	
(Fig. 1).  In a previous study28, we developed community assembly rules that 214	
allow for prediction of species survival in multispecies competition from the 215	
corresponding pairwise competition outcomes.  These rules state that in a 216	
multispecies competition, a species will survive if and only if it coexists with all 217	
other surviving species in pairwise competition.  If one or more bistable pairs is 218	
involved in a multispecies community, the assembly rules allow for either of the 219	

101 102 103 104 105 106

101 102 103 104 105 106

101 102 103 104 105 106

101 102 103 104 105 106

Dilution Factor DF = 1e+05DF = 1000DF = 10

		

		 		

		

		

		 		

Pair 1: Ea-Pv  
Slow grower, 

Coexistence, Fast 
grower 

Pair 2: Ea-Pci  
Coexistence, Fast 

grower 

Pair 3: Pci-Pv  
Slow grower, 

Bistability, Fast 
grower 

Trio  
Bistability and 
coexistence 

propagate from 
pairs 

Figure 5  
Bistability propagates from pair to trio, as predicted by assembly rules. 
 
A)  A “subway” map shows the trajectory of the competition outcomes of pair Ea-Pv through the coexistence region.  

B)  Ea-Pci outcomes begin in the coexistence region. Pci is a faster grower than Pv, but a slower grower than Ea. 

C)  Pci-Pv outcomes pass through the bistability region. 

D)  The pairwise assembly rules state that a species can be excluded from a community if it is excluded by one of the 
survivors. Both species can be excluded in a bistable pair, which propagates to the trio as more than one allowed state. 
Each of the bistable species can be seen separately coexisting with Ea, as they do in pairs. The assembly rules fail at 105 
for one out of four starting conditions: Pci coexists with Ea when it should go extinct. 

E)  Competition results are shown in simplex plots. Edges represent pairwise results, and black dots represent trio results. 

A 

B 

C 

D 

E 

Dominance 
of Pv 

Bistability of coexisting states 
Dominance of Ea 

(Pci sometimes persists) 

Figure 5: Coexistence and bistability propagate from pair to trio, as predicted by assembly rules.  
A-C) “Subway maps” show pairwise competition outcome trajectories across changing dilution factor, as explained in 
Figs. 1 and 3.  The fast grower’s line is always plotted above the slow grower’s line.  Of the three pairs that make up 
the community Ea-Pci-Pv, two are coexisting (A, B) and one is bistable (C).  D) The pairwise assembly rules state that 
a species will survive in a community if it survives in all corresponding pairs.  At dilution factor 10, Ea and Pci coexist, 
but both are excluded by Pv.  The rules correctly predict that Pv will dominate in the trio.  Because both species can 
be excluded in a bistable pair, a bistable pairwise outcome propagates to the trio as more than one allowed state. 
Each of the bistable species can be seen separately coexisting with Ea at dilution factor 103, as they do in pairs. The 
assembly rules failed at 105 for one out of four starting conditions: Pci coexists with Ea when it should go extinct (Fig. 
S8).  E) Three-species competition results are shown in simplex plots.  Arrows begin and end at initial and final 
fractions, respectively.  Edges represent pairwise results, and black dots represent trio results. 
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stable states.  We see that the seemingly complicated trio outcomes follow from 220	
these assembly rules applied to our corresponding pairwise outcomes at all 221	
dilution factors (Fig. 5).  For example, at the lowest dilution factor (10), Ea-Pci 222	
coexist, but each of these species is excluded by Pv in pairwise competition, thus 223	
leading to the (accurate) prediction that only Pv will survive in the trio competition.  224	
In addition, we observe that the bistability of Pci-Pv at dilution factor 103 225	
propagates up to lead to bistability in the trio, but with each stable state 226	
corresponding to coexistence of two species.  The only trio outcome not 227	
successfully predicted by the rules is the occasional persistence of Pci at a 228	
dilution factor of 105 (Figs. 5D, S8).  Our analysis of pairwise shifts under 229	
increased mortality therefore provides a predictive understanding of the complex 230	
shifts observed within a simple three-species bacterial community. 231	

To determine whether our analysis of community shifts under mortality is 232	
more broadly applicable, we combined our five species into various three- and 233	
four-species subsets, similar to the Ea-Pci-Pv competition (Fig. 5).  In total, we 234	
competed five three-species communities and three four-species communities at 235	
all six dilution factors.  Overall, a quantitative generalization of our assembly 236	
rules (see Methods) predicted the equilibrium fractions with an error of 14%, 237	
significantly better than the 39% error that results from predictions obtained from 238	
monoculture carrying capacity (Table 1, Fig. S2). These results indicate that 239	
pairwise outcomes are good predictors of multispecies states in the presence of 240	
increased mortality.   241	

 242	

 243	
Discussion 244	

The question of how community composition will change in a deteriorating 245	
environment is essential, as climate change, ocean acidification, and 246	
deforestation infringe upon many organisms’ habitats, increasing mortality either 247	
directly, by decimating populations, or indirectly, by making the environment less 248	
hospitable to them.  We used an experimentally tractable microbial microcosm to 249	
tune mortality through dilution rate, and found a pervasive tradeoff between 250	
growth rate and competitive ability (Fig. 4).  This tradeoff causes slow growers to 251	
outcompete fast growers in high-density, low-dilution environments.  Increasing 252	
mortality favors fast growers, in line with model predictions.  We observed 253	
coexistence and bistability at intermediate dilution factors in pairwise experiments 254	

Three-species 

Estimate Type                              Errors: Trios Quads Overall 

Carrying Capacities (Monocultures) 0.385 0.395 0.39 

Pairwise Outcomes 0.093 0.190 0.14 

Table 1: Errors of pairwise assembly rules are much lower than errors of estimates 
using monoculture carrying capacity.  We made quantitative predictions of the relative 
fractions in multispecies competition outcomes using both monoculture carrying capacities as well as 
the pairwise assembly rules. Errors of quantitative predictions are the L2 norm of the distance 
between predicted fixed point and observed fixed point (see Methods and Fig. S2).  The values 
shown are mean error normalized by the maximum error.   
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(Fig. 3), and found that such coexistence and bistability propagated up to three- 255	
and four-species communities (Fig. 5).  Coexistence was more common than 256	
bistability, which is in line with expectations of optimal foraging theory1.  We were 257	
able to explain seemingly complicated multispecies states with pairwise results, 258	
which traversed all possible competition outcomes allowed by the two-species 259	
model. 260	

The aforementioned tradeoff made for striking transitions in the 261	
communities that we studied.  Without the tradeoff, the model would be less 262	
useful.  If a fast grower outcompetes a slow grower at low dilution rates, the 263	
model predicts no change in outcome at higher dilution rates.  Our results at low 264	
dilution are consistent with previous experimental evidence of a tradeoff between 265	
growth and competitive ability among different mutants of the same bacterial 266	
strain31 and protozoa32.  Additionally, data show that antibiotic resistance, despite 267	
its clear competitive benefit, imposes a fitness cost on bacteria33.  There is also 268	
evidence that seed-producing plants exhibit a growth/competition tradeoff; plants 269	
that produce larger seeds necessarily produce fewer of them, but were found to 270	
have better seedling establishment when competing with smaller-seeded 271	
plants34,35.   272	

The mechanism for the competitive ability of the slow growers in our 273	
system is not easily explained; supernatant experiments, in which fast growers 274	
were placed in slow growers’ filtered spent media showed little or no inhibition of 275	
growth compared to controls (Fig. S6).  Furthermore, in monocultures the slow 276	
growers exhibited higher lag times than the fast growers (Fig. S5), which would 277	
seem to be disadvantageous in low-dilution, high-density conditions where 278	
resources could be quickly consumed by a competitor with a shorter lag36.  The 279	
frequency of the tradeoff in other systems is a question worthy of further 280	
investigation, in particular because natural microbial systems, such as soil 281	
communities or the gut microbiome, are better represented with a low dilution 282	
rate than a high dilution rate37,38. 283	

We employed a set of simple pairwise assembly rules28 to predict the 284	
states of three- and four-species communities (Table 1, Fig. S2).  The rules’ 285	
success is in line with recent microbial experiments suggesting that pairwise 286	
interactions play a key role in determining multispecies community assembly28,39 287	
and community-level metabolic rates40; in contrast, some theory and empirical 288	
evidence supports the notion of pervasive and strong higher-order interactions41–289	
44.  Our results provide support for a bottom-up approach to simple multispecies 290	
communities, and show that pairwise interactions alone can generate 291	
multispecies states that appear nontrivial.  In the model, this happens because 292	
up to three qualitative regimes of pairwise competition translate to more possible 293	
combinatorial multispecies outcomes. 294	

Here we found that the LV model with added mortality provided useful 295	
guidance for how experimental competition would shift under increased dilution, 296	
but resource-explicit models may in some cases provide additional mechanistic 297	
insight45,46.  In particular, various resource-explicit models can recapitulate the 298	
qualitative changes predicted by the LV model with added mortality.  For 299	
example, the R* rule states the species that can survive on the lowest equilibrium 300	
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resource concentration will dominate other species1.  The equilibrium 301	
concentration increases with the dilution rate, thus favoring the species with the 302	
highest maximal growth rate (see S4).  However, a species with a low maximal 303	
rate may dominate under low dilution if it can grow more efficiently at low 304	
resource concentrations.  Resource explicit models are most commonly used for 305	
simple environments, whereas here we worked with media containing three 306	
carbon sources.  In addition, we have found that complex media with many 307	
dozens of carbon sources yields similar changes in pairwise outcomes with 308	
dilution and multispecies communities that could be predicted by the pairwise 309	
assembly rules (Figs. S2,7).  Further work is necessary to explore the 310	
circumstances in which phenomenological or resource-explicit models should be 311	
used47–49.  312	

It is also important to note that not all deteriorating environments will 313	
cause such simple and uniform increases in mortality.  Antibiotics, and in 314	
particular 𝛽-lactam antibiotics, might selectively attack fast growers over slow 315	
growers50.  Overfishing might target certain species of fish.  Climate change 316	
might affect growth rate rather than death rate by increasing temperature, which 317	
usually increases growth rates51.  In such a case, it is not certain whether 318	
environmental deterioration in the form of warming would favor slow growers or 319	
fast growers.  An important direction for future research is to determine whether 320	
other changes to the environment will have similarly simple consequences for the 321	
composition of microbial communities.  In this study, we have seen how a simple 322	
prediction about a simple perturbation in pairwise competition—increased 323	
mortality will favor the faster-growing species—allowed us to interpret seemingly 324	
nontrivial outcomes in multispecies communities. 325	
 326	
Methods 327	
 328	
Species and media 329	

The soil bacterial species used in this study were Enterobacter aerogenes (Ea, 330	
ATCC#13048), Pseudomonas aurantiaca (Pa, ATCC#33663), Pseudomonas 331	
citronellolis (Pci, ATCC#13674), Pseudomonas putida (Pp, ATCC#12633) and 332	
Pseudomonas veronii (Pv, ATCC#700474).  All species were obtained from 333	
ATCC.  Two types of growth media were used: one was complex and undefined, 334	
while the other was minimal and defined.  All results presented in the main text 335	
are from the defined media.  All species grew in monoculture in both media.  The 336	
complex medium was 0.1X LB broth (diluted in water).  The minimal medium was 337	
S medium, supplemented with glucose and ammonium chloride.  It contains 100 338	
mM sodium chloride, 5.7 mM dipotassium phosphate, 44.1 mM monopotassium 339	
phosphate, 5 mg/L cholesterol, 10 mM potassium citrate pH 6 (1 mM citric acid 340	
monohydrate, 10 mM tri-potassium citrate monohydrate), 3 mM calcium chloride, 341	
3 mM magnesium sulfate, and trace metals solution (0.05 mM disodium EDTA, 342	
0.02 mM iron sulfate heptahydrate, 0.01 mM manganese chloride tetrahydrate, 343	
0.01 mM zinc sulfate heptahydrate, 0.01 mM copper sulfate pentahydrate), 0.93 344	
mM ammonium chloride, 10 mM glucose. 1X LB broth was used for initial 345	
inoculation of colonies.  For competitions involving more than two species, 346	



	 13	

plating was done on 10 cm circular Petri dishes containing 25 ml of nutrient agar 347	
(nutrient broth (0.3% yeast extract, 0.5% peptone) with 1.5% agar added).  For 348	
pairwise competitions, plating was done on rectangular Petri dishes containing 349	
45 ml of nutrient agar, onto which diluted 96-well plates were pipetted at 10 ul per 350	
well. 351	

Growth rate measurements 352	

Growth curves were captured by measuring the optical density of monocultures 353	
(OD 600 nm) in 15-minute intervals over a period of ~50 hours (Fig. S3).  Before 354	
these measurements, species were grown in 1X LB broth overnight, and then 355	
transferred to the experimental medium for 24 hours.  The OD of all species was 356	
then equalized.  The resulting cultures were diluted into fresh medium at factors 357	
of 10-8 to 10-3 of the equalized OD.  Growth rates were measured by assuming 358	
exponential growth to a threshold of OD 0.1, and averaging across many starting 359	
densities and replicates (n = 19 for Pci, n = 22 for all other species).  This time-360	
to-threshold measurement implicitly incorporates lag times, because a species 361	
with a time lag will take longer to reach the threshold OD than another species 362	
with the same exponential rate but no lag time.  We also estimated lag times and 363	
exponential rates explicitly (Fig. S4).  We used these measurements to develop 364	
an alternative to the time-to-threshold rates, which also incorporated lag time.  To 365	
estimate this effective growth rate, we multiplied the exponential rate by a factor 366	
depending on lag time and time between daily dilutions (Fig. S5B, S4).  This 367	
method does change growth rate estimates slightly, but does not change the 368	
order of growth rates among the five species, and thus the qualitative predictions 369	
of the model (Fig. S5A-B).  For this reason, we preferred to use the time-to-370	
threshold method, because it involved only one measurement, rather than two, 371	
and had a lower error. 372	

Competition experiments  373	

Frozen stocks of individual species were streaked out on nutrient agar Petri 374	
dishes, grown at room temperature for 48 h and then stored at 4 °C for up to two 375	
weeks.  Before competition experiments, single colonies were picked and each 376	
species was grown separately in 50 ml Falcon tubes, first in 5 ml LB broth for 24 377	
h and next in 5 ml of the experimental media for 24 h.  During the competition 378	
experiments, cultures were grown in 500 μl 96-well plates (BD Biosciences), with 379	
each well containing a 200-μl culture.  Plates were incubated at 25°C and shaken 380	
at 400 rpm, and were covered with an AeraSeal film (Sigma-Aldrich).  For each 381	
growth–dilution cycle, the cultures were incubated for 24 h and then serially 382	
diluted into fresh growth media.  Initial cultures were prepared by equalizing OD 383	
to the lowest density measured among competing species, mixing by volume to 384	
the desired species composition, and then diluting mixtures by the factor to which 385	
they would be diluted daily (except for dilution factor 10-6, which began at 10-5 on 386	
Day 0, to avoid causing stochastic extinction of any species).   Relative 387	
abundances were measured by plating on nutrient agar plates.  Each culture was 388	
diluted in phosphate-buffered saline prior to plating.  For competitions involving 389	
more than two species, plating was done on 10 cm circular Petri dishes.  For 390	
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pairwise competitions, plating was done on 96-well-plate-sized rectangular Petri 391	
dishes containing 45 ml of nutrient agar, onto which diluted 96-well plates were 392	
pipetted at 10 ul per well.  Multiple replicates of the latter dishes were used to 393	
ensure that enough colonies could be counted. Colonies were counted after 48 h 394	
incubation at room temperature.  The mean number of colonies counted, per 395	
plating, per experimental condition, was 42. 396	

Assembly rule predictions and accuracy 397	

In order to make predictions about three- and four-species states, we used the 398	
qualitative and quantitative outcomes of pairwise competition.  The two types of 399	
pairwise outcomes allowed for two types of predictions.  First, the qualitative 400	
outcomes (dominance/exclusion, coexistence, or bistability) of the pairs were 401	
used to predict whether a species would be present or absent from a community.  402	
These outcomes are shown in the “subway maps” of Fig. S1, where the presence 403	
of a species is noted by the presence of its assigned color.  Coexistence is 404	
shown by two stacked colors, and bistability is shown by two separated colors.  405	
The qualitative error rate is the percentage of species, out of the total number of 406	
species (three for trios, four for quads), that are incorrectly predicted to be 407	
present or absent (Table 1, Fig. S2-A,B).  The qualitative success rate is the 408	
percentage of species that are correctly predicted as present or absent (Fig. S2-409	
D).   410	

Second, the quantitative outcomes of the pairs were used to predict the 411	
quantitative outcomes of three- and four-species communities.  These outcomes 412	
are shown in the fraction plots of Fig. S1, where equilibrium points are indicated 413	
by the black dots.  When two or more species coexist in pairs, the assembly rules 414	
predicts they will coexist in multispecies communities, provided that an additional 415	
species does not exclude them.  The predicted equilibrium coexisting fraction of 416	
two species is the same in a community as it is in a pair, while the fractions of 417	
more than two coexisting species are predicted with the weighted geometric 418	
mean of pairwise coexisting fractions. For example, in a three-species coexisting 419	
community, the fraction of species 1 depends on its coexisting fractions with the 420	
other two species in pairs: 421	

𝑓D = '𝑓DE
FG𝑓DH

FI,
J

KGLKI 422	

where 𝑓DE is the fraction of species 1 after reaching equilibrium in competition 423	
with species 2, 𝑤E = O𝑓ED𝑓EH and 𝑤H = O𝑓HD𝑓HE.  Finally, these predictions are 424	
normalized by setting 𝑓D∗ =

>J
>JQ>GQ>I

.  The quantitative error of a particular 425	
community outcome is the distance of the predicted fractions from the observed 426	
community fractions, measured with the L2 norm.  The maximum error, for any 427	
number of species, is √2, which occurs when a species that was predicted to go 428	
extinct in fact dominates: 429	
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S∑'(1,0,… ,0) − (0,1,… ,0),
E
= √2 430	

To calculate the overall quantitative errors (Table 1, Fig. S2-C), we divided each 431	
error by √2 and took the mean.   432	

Finally, we also predicted multispecies states using carrying capacities as 433	
measured in monocultures.  We assumed that in competition, each species 434	
would grow to a density proportionate to its carrying capacity.  In other words, the 435	
monoculture prediction assumes that all species always coexist.  The error from 436	
the prediction to the observed data was calculated with the L2 norm, as above. 437	

Code availability 438	

The code used for analyzing data is available from the first author upon request. 439	

Data availability 440	

Access to the data is publicly available at TBD. 441	

 442	

 443	

References 444	

1. Tilman, D. Resource Competition and Community Structure. (Princeton 445	
University Press, 1982). 446	

2. Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms Creating 447	
Community Structure Across a Freshwater Habitat Gradient. Annu. Rev. Ecol. 448	
Syst. 27, 337–363 (1996). 449	

3. DÍez, I., Secilla, A., Santolaria, A. & Gorostiaga, J. M. Phytobenthic Intertidal 450	
Community Structure Along an Environmental Pollution Gradient. Mar. Pollut. 451	
Bull. 38, 463–472 (1999). 452	

4. Yergeau, E. et al. Size and structure of bacterial, fungal and nematode 453	
communities along an Antarctic environmental gradient. FEMS Microbiol. Ecol. 454	
59, 436–451 (2007). 455	

5. Lessard, J.-P., Sackett, T. E., Reynolds, W. N., Fowler, D. A. & Sanders, N. J. 456	
Determinants of the detrital arthropod community structure: the effects of 457	
temperature and resources along an environmental gradient. Oikos 120, 333–458	
343 (2011). 459	

6. Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait 460	
distributions across an environmental gradient in coastal California. Ecol. 461	
Monogr. 79, 109–126 (2009). 462	

7. Mykrä, H., Tolkkinen, M. & Heino, J. Environmental degradation results in 463	
contrasting changes in the assembly processes of stream bacterial and fungal 464	
communities. Oikos 126, 1291–1298 (2017). 465	



	 16	

8. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized 466	
responses of the human distal gut microbiota to repeated antibiotic 467	
perturbation. Proc. Natl. Acad. Sci. 108, 4554–4561 (2011). 468	

9. Wernberg, T. et al. Climate-driven regime shift of a temperate marine 469	
ecosystem. Science 353, 169–172 (2016). 470	

10. Daskalov, G. M., Grishin, A. N., Rodionov, S. & Mihneva, V. Trophic 471	
cascades triggered by overfishing reveal possible mechanisms of ecosystem 472	
regime shifts. Proc. Natl. Acad. Sci. 104, 10518–10523 (2007). 473	

11. Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered 474	
community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–475	
547 (2005). 476	

12. Iii, F. S. C. et al. Consequences of changing biodiversity. Nature (2000). 477	
doi:10.1038/35012241 478	

13. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–479	
148 (2004). 480	

14. Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. 481	
Nat. Clim. Change 1, 313–318 (2011). 482	

15. Harrington, R., Woiwod, I. & Sparks, T. Climate change and trophic 483	
interactions. Trends Ecol. Evol. 14, 146–150 (1999). 484	

16. Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural 485	
populations: altered species interactions are more important than direct effects. 486	
Glob. Change Biol. 20, 2221–2229 (2014). 487	

17. Paine, R. T. The Pisaster-Tegula Interaction: Prey Patches, Predator Food 488	
Preference, and Intertidal Community Structure. Ecology 50, 950–961 (1969). 489	

18. Bond, W. J. Keystone Species. in Biodiversity and Ecosystem Function 490	
237–253 (Springer, Berlin, Heidelberg, 1994). doi:10.1007/978-3-642-58001-491	
7_11 492	

19. Banerjee, S., Schlaeppi, K. & Heijden, M. G. A. van der. Keystone taxa as 493	
drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–494	
576 (2018). 495	

20. Stewart, F. M. & Levin, B. R. Partitioning of Resources and the Outcome 496	
of Interspecific Competition: A Model and Some General Considerations. Am. 497	
Nat. 107, 171–198 (1973). 498	

21. Hastings, A. Population Biology: Concepts and Models. (Springer Science 499	
& Business Media, 2013). 500	

22. MEERS, J. L. Effect of Dilution Rate on the Outcome of Chemostat Mixed 501	
Culture Experiments. Microbiology 67, 359–361 (1971). 502	

23. Sommer, U. Phytoplankton competition along a gradient of dilution rates. 503	
Oecologia 68, 503–506 (1986). 504	

24. Spijkerman, E. & Coesel, P. F. M. Competition for Phosphorus Among 505	
Planktonic Desmid Species in Continuous-Flow Culture1. J. Phycol. 32, 939–506	
948 (1996). 507	

25. Gause, G. F. The Struggle for Existence. (Courier Corporation, 2003). 508	
26. Slobodkin, L. B. Experimental Populations of Hydrida. J. Anim. Ecol. 33, 509	

131–148 (1964). 510	



	 17	

27. Slobodkin, L. B. Growth and regulation of animal populations. Growth 511	
Regul. Anim. Popul. (1980). 512	

28. Friedman, J., Higgins, L. M. & Gore, J. Community structure follows 513	
simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 514	
(2017). 515	

29. Celiker, H. & Gore, J. Clustering in community structure across replicate 516	
ecosystems following a long-term bacterial evolution experiment. Nat. 517	
Commun. 5, 4643 (2014). 518	

30. Vet, S. et al. Bistability in a system of two species interacting through 519	
mutualism as well as competition: Chemostat vs. Lotka-Volterra equations. 520	
PLOS ONE 13, e0197462 (2018). 521	

31. Kurihara, Y., Shikano, S. & Toda, M. Trade-Off between Interspecific 522	
Competitive Ability and Growth Rate in Bacteria. Ecology 71, 645–650 (1990). 523	

32. Luckinbill, L. S. Selection and the r/K Continuum in Experimental 524	
Populations of Protozoa. Am. Nat. 113, 427–437 (1979). 525	

33. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. 526	
Curr. Opin. Microbiol. 2, 489–493 (1999). 527	

34. Gross, K. L. Effects of Seed Size and Growth Form on Seedling 528	
Establishment of Six Monocarpic Perennial Plants. J. Ecol. 72, 369–387 529	
(1984). 530	

35. Geritz, S. A. H., van der Meijden, E. & Metz, J. A. J. Evolutionary 531	
Dynamics of Seed Size and Seedling Competitive Ability. Theor. Popul. Biol. 532	
55, 324–343 (1999). 533	

36. Manhart, M., Adkar, B. V. & Shakhnovich, E. I. Trade-offs between 534	
microbial growth phases lead to frequency-dependent and non-transitive 535	
selection. Proc R Soc B 285, 20172459 (2018). 536	

37. Venema, K. & van den Abbeele, P. Experimental models of the gut 537	
microbiome. Best Pract. Res. Clin. Gastroenterol. 27, 115–126 (2013). 538	

38. Avrani, S., Bolotin, E., Katz, S. & Hershberg, R. Rapid Genetic Adaptation 539	
during the First Four Months of Survival under Resource Exhaustion. Mol. Biol. 540	
Evol. 34, 1758–1769 (2017). 541	

39. Venturelli, O. S. et al. Deciphering microbial interactions in synthetic 542	
human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018). 543	

40. Guo, X. & Boedicker, J. Q. The Contribution of High-Order Metabolic 544	
Interactions to the Global Activity of a Four-Species Microbial Community. 545	
PLOS Comput. Biol. 12, e1005079 (2016). 546	

41. Billick, I. & Case, T. J. Higher Order Interactions in Ecological 547	
Communities: What Are They and How Can They be Detected? Ecology 75, 548	
1529–1543 (1994). 549	

42. Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions 550	
shape ecosystem diversity. Nat. Commun. 7, 12285 (2016). 551	

43. Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order 552	
interactions stabilize dynamics in competitive network models. Nature 548, 553	
210–213 (2017). 554	



	 18	

44. Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture 555	
unexplained complexity in diverse communities. Nat. Ecol. Evol. 1, 0062 556	
(2017). 557	

45. Goldford, J. E. et al. Emergent simplicity in microbial community assembly. 558	
Science 361, 469–474 (2018). 559	

46. Niehaus, L. et al. Microbial coexistence through chemical-mediated 560	
interactions. bioRxiv 358481 (2018). doi:10.1101/358481 561	

47. Fox, J. W. The intermediate disturbance hypothesis should be abandoned. 562	
Trends Ecol. Evol. 28, 86–92 (2013). 563	

48. Chesson, P. & Huntly, N. The Roles of Harsh and Fluctuating Conditions 564	
in the Dynamics of Ecological Communities. Am. Nat. 150, 519–553 (1997). 565	

49. Hsu, S.-B. & Zhao, X.-Q. A Lotka–Volterra competition model with 566	
seasonal succession. J. Math. Biol. 64, 109–130 (2012). 567	

50. Tresse, O., Jouenne, T. & Junter, G.-A. The role of oxygen limitation in the 568	
resistance of agar-entrapped, sessile-like Escherichia coli to aminoglycoside 569	
and β-lactam antibiotics. J. Antimicrob. Chemother. 36, 521–526 (1995). 570	

51. Ratkowsky, D. A., Olley, J., McMeekin, T. A. & Ball, A. Relationship 571	
between temperature and growth rate of bacterial cultures. J. Bacteriol. 149, 572	
1–5 (1982). 573	

 574	

	575	


