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Abstract 
Motivation: Recent studies showed that a phenotype-driven analysis of whole exome sequencing 
(WES) could provide more accurate and clinically relevant genetic variants. 
Results: We develop a computational tool called Divine that integrates patients’ phenotype(s) and 
WES data with 30 prior biological knowledge (e.g., human phenotype ontology, gene ontology, pathway 
database, protein-protein interaction networks, pathogenicity by the amino acid change due to poly-
morphism, and hot-spot protein domains) to prioritize potential disease-causing genes. In a retrospec-
tive study with 22 real and four simulated data set, Divine ranks the same pathogenic genes confirmed 
by the original studies 5th on average out of a thousand of mutated genes and outperforms existing 
state-of-the-art methods. 
Availability: https://github.com/hwanglab/divine 
Contact: hwangt@ccf.org 
Supplementary information: Supplementary Document is attached at the end of the page. 

1 Introduction  
Recently, whole-exome sequencing (WES) has become a viable option for 
Mendelian diseases diagnosis. As more genes are considered for testing, 
it becomes substantially challenging to interpret and identify mutations 
responsible for patients’ illnesses among thousands of variants in the mas-
sively high-throughput data. 
 
It has been shown that prioritizing the gene known to be associated with a 
patient’s phenotype [Köhler 2017] facilitates variant interpretation. We 
can focus on a gene set by matching the patient’s symptomatology to the 
list of known disorders and estimate the significance of each disease match 
[Sifrm 2013, Javed 2014, Zemojtel 2014]. Furthermore, the disease-gene 
association can be indirectly expanded to the other species [Robinson 
2014]. The phenotype information incorporates genetic variants in either 
a Bayesian framework [Javed 2014] or Random Forest [Antanaviciute 
2015] voting model. However, the existing methods are limited to only 
the prior knowledge domain still far from completeness, and we are also 
cautious not to over-amplify it due to redundant heterogeneous databases. 
It is hard to find a freely available standalone package that provides both 
all annotations necessary to comply with ACMG guidelines and priori-
tized genes for a rapid diagnosis. 
 

We develop a standalone software, Divine, to prioritize the underlying mu-
tated genes of rare hereditary disorders. Divine accepts either Human Phe-
notype Ontology (HPO) IDs manifesting patient clinical features or any 
VCF file generated from WES reads. Divine employs semantic similarity 
between patient phenotype and known diseases registered in the most re-
liable and up-to-date database. It also incorporates both Gene ontology 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment to discover genes previously never reported to be associated 
with any disease. To improve specificity, we introduce two new variant 
annotations: 1) pathogenicity of each protein domain and 2) pathogenic 
likelihood ratio due to nonsynonymous SNV trained from variant datasets 
like ClinVar, HGMD [Stenson 2017], and 1000 genome project. 

2 Methods 
The workflow starts by computing the semantic similarity of the patient’s 
phenotypic terms to each known disease catalog with the help of HPO 
summarizing OMIM and Orphanet, covering a total of 5,528 diseases, 
4,845 genes, and 6,090 HPO terms. Then, a set of term-to-term similarity 
scores of the query HPOs for each disease is derived from maximal term-
to-term scores [Schlicker 2008] with a modification to alleviate the issue 
where symptoms related to disease are incomplete or sparse. The pheno-
typic matching score (Pi) is given to each gene associated with the disease. 
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Given a patient VCF file, we predict the genetic damage of each gene har-
boring variants based on multiple orthogonal annotations. Divine estab-
lishes an open source variant annotation tool, Varant (See S. Table 1).  We 
substantially improve the original work by adding eight new annotations. 
As a result, 30 total annotations are available. 
 
Divine assigns a variant pathogenic score (Gi) considering the following 
criteria: 1) the variant MAF, 2) zygosity per transcript (e.g., heterozygous, 
homozygous, or homo compound heterozygous), 3) a functional impact of 
the variant within the transcript (e.g., null variant causing a loss of function 
and splice site/enhancer/silencer), 4) whether a variant locates within a 
mutational hotspot or critical and well-established functional domain, and 
5) a pathogenic likelihood ratio with respect to an amino acid change 
inferred from two in silico prediction score distributions built from known 
benign variants and pathogenic variants, respectively. See Section 4.2 in 
Supp. Document. 
 
Both phenotypic score (Pi) and variant score (Gi) described above are 
combined into a single value (yi) [Javed 2014]. Genes with higher Pi 
indirectly populate a new Pi to the genes with higher Gi, but its Pi is not 
available through either KEGG pathway memberships or Gene ontology 
similarity. Finally, the yi is propagated in a gene interaction network con-
necting 19,035 total genes using a heat diffusion kernel [Yang 2007] (See 
Section 4.5 in Supp. Document). 

3 Results 
Divine is compared with five other methods, Phen-Gen_v1, Exo-
miser_v7.2, Exomiser_v10, eXtasy, and PhenIx, and is tested with three 
simulated samples and 23 real patient VCF files [Antanaviciute 2015] 
studied between 2012 and 2016, covering a broad spectrum of rare Men-
delian diseases (average 10.8 HPO terms). 
 
Both Divine (AUC score: 0.959) and Exomiser_v10 (0.954) outperform 
the other methods, Phen-Gen_v1 (0.482), Exomiser_v7.2 (0.577), eXtasy 
(0.5), and PhenIX (0.728) (Refer to S. Table 3 and S. Fig 3). Divine is 
more specific than Exomiser_v10, and it reports the genes of interest 
within 21st from the top for 96.2% of the samples vs. 88.5% for Exo-

miser_v10. In an experiment to test a new disease-to-gene discovery (Sec-
tion 5.4 and S. Table 5 in Suppl. Document), Divine ranks all 4 genes 
harboring pathogenic variants within 6th from the top via either Gene 
ontology, KEGG pathway, or PPI network where each gene enriched by 
its partner is associated with a disease with similar phenotypes. Finally, in 
a robustness test where we randomly introduce irrelevant extra HPO 
terms, Divine prioritizes the disease-causing genes on average rank 8th 
from the top for 22 out of 26 cases (84.6%). 

4 Conclusion 
Divine can facilitate molecular diagnosis with clinical whole exome se-
quencing data swamped by a significant number of variants. It harmonizes 
the most comprehensive and extensible annotations to find genes harbor-
ing disease-causing variants. Divine supports a discovery mode via phe-
notype enrichment to search for new disease-associated genes. 
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Fig 1. Divine (https://github.com/hwanglab/divine) takes a VCF or/and HPO IDs. Symptom to ID conversion can be 
done at https://hpo.jax.org/app or https://mseqdr.org/search_phenotype.php. An output table contains 30 variant/gene-
level annotations with prioritized gene ranking by pathogenicity (prediction score). 
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