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10 Allama Iqbal Medical College, Department of Pathology, Lahore, Pakistan
11 Konya Training and Research Hospital, Department of Pathology, Konya, Turkey
12 BC Cancer, Department of Pathology, British Columbia, Canada
13 Sunnybrook Health Sciences Centre, Department of Pathology, Toronto, Ontario, Canada
14 Royal Victoria Infirmary, Department of Cellular Pathology, England, UK
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Abstract

Pathologists are responsible for rapidly providing a diagnosis on critical health issues.
Challenging cases benefit from additional opinions of pathologist colleagues. In addition
to on-site colleagues, there is an active worldwide community of pathologists on social
media for complementary opinions. Such access to pathologists worldwide has the
capacity to improve diagnostic accuracy and generate broader consensus on next steps
in patient care. From Twitter we curate 13,626 images from 6,351 tweets from
25 pathologists from 13 countries. We supplement the Twitter data with 113,161 images
from 1,074,484 PubMed articles. We develop machine learning and deep learning
models to (i) accurately identify histopathology stains, (ii) discriminate between tissues,
and (iii) differentiate disease states. Area Under Receiver Operating Characteristic
is 0.805-0.996 for these tasks. We repurpose the disease classifier to search for similar
disease states given an image and clinical covariates. We report
precision@k=1 = 0.7618±0.0018 (chance 0.397±0.004, mean±stdev). The classifiers
find texture and tissue are important clinico-visual features of disease. Deep features
trained only on natural images (e.g. cats and dogs) substantially improved search
performance, while pathology-specific deep features and cell nuclei features further
improved search to a lesser extent. We implement a social media bot (@pathobot on
Twitter) to use the trained classifiers to aid pathologists in obtaining real-time feedback
on challenging cases. If a social media post containing pathology text and images
mentions the bot, the bot generates quantitative predictions of disease state
(normal/artifact/infection/injury/nontumor, pre-neoplastic/benign/
low-grade-malignant-potential, or malignant) and lists similar cases across social media
and PubMed. Our project has become a globally distributed expert system that
facilitates pathological diagnosis and brings expertise to underserved regions or
hospitals with less expertise in a particular disease. This is the first pan-tissue
pan-disease (i.e. from infection to malignancy) method for prediction and search on
social media, and the first pathology study prospectively tested in public on social
media. We will share data through pathobotology.org. We expect our project to
cultivate a more connected world of physicians and improve patient care worldwide.

1 Introduction 1

The United Nations’ Sustainable Development Goal 3: Good Health and Well-Being 2

suggests that “ensuring healthy lives and promoting the well-being at all ages is 3

essential”, and “increased access to physicians” should be a focus [1]. We therefore take 4

connecting pathologists worldwide to be important. Indeed, Nix et al. [2] find 5

pathologists in developing countries (e.g. India, Brazil, and Pakistan) frequently use 6

social media, and 220/1014 (22%) of the posts they analyzed involved “asking for 7

opinions on diagnosis”. The use of social media by pathologists occurs worldwide for 8

both challenging cases and education [3–5]. This suggests social media can facilitate 9

global collaborations among pathologists for novel discoveries [6]. We expand on these 10

approaches by combining (i) real-time machine learning with (ii) expert pathologist 11

opinions via social media to facilitate (i) search for similar cases and (ii) pathological 12

diagnosis by sharing expertise on a particular disease, often with underserved hospitals. 13

For machine learning to work in general practice, it must be trained on data (i) of 14

sufficient diversity to represent the true variability of what is observed (ii) in a 15

sufficiently realistic setting that may differ from tightly controlled experimental 16

conditions [7]. We therefore (i) collaborate with pathologists worldwide where we 17

(ii) use for training the images that these pathologists share to obtain opinions, which 18

are often histopathology microscopy pictures from a smartphone. We did not observe 19
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Fig 1: Graphical summary. Pathologists are recruited worldwide (A). If a pathologist consents to having their images used
(B), we download those images (C) and manually annotate them (D). Next, we train a Random Forest classifier to predict image
characteristics, e.g. disease state (E). This classifier is used to predict disease and search. If a pathologist posts a case to social media
and mentions @pathobot (F), our bot will use the post’s text and images to find similar cases on social media and PubMed (G). The
bot then posts summaries and notifies pathologists with similar cases (H). Pathologists discuss the results (I), and some also decide to
share their cases with us, initiating the cycle again (A). Procedure overview in the supplement explains further (Sec S5.4).

many images from whole slide scanners, which at a global scale have been adopted 20

slowly, due in part to cost and complexities of digital pathology workflows [8, 9]. 21

For machine learning to work accurately, it must be trained on a sufficiently large 22

dataset. Our first aim is therefore to curate a large dataset of pathology images for 23

training a machine learning classifier. This is important because in other machine 24

learning domains, e.g. natural vision tasks, datasets of millions of images are often used 25

to train and benchmark, e.g. ImageNet [10] or CIFAR-10 [11]. Transfer learning allows 26

limited repurposing of these classifiers for other domains, e.g. pathology [12–15]. Indeed, 27

we [16] are among many who start in computational pathology [17] with deep-neural 28

networks pre-trained on ImageNet [18–20], and we do so here. 29

However, computational pathology datasets annotated for supervised learning are 30

often much smaller than millions of images. For example, there are only 32 cases in the 31

training data for a Medical Image Computing and Computer Assisted Intervention 32

challenge (available at http://miccai.cloudapp.net/competitions/82) for 33

distinguishing brain cancer subtypes, and this includes both pathology and radiology 34

images. Other studies are larger, such as the TUmor Proliferation Assessment Challenge 35

(TUPAC16) dataset of 821 cases [21] – all 821 cases being whole slide images from The 36

Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/). TCGA has tens of 37

thousands of whole slide images available in total, but these images are only 38

hematoxylin and eosin (H&E) stained slides, and do not represent non-neoplastic lesions 39

such as infections, which are clinically important to correctly diagnose [22]. The main 40

limitation is that obtaining annotations from a pathologist is difficult due to 41

outstanding clinical service obligations, which prevented our earlier efforts from scaling 42

up [23]. We overcome this limitation by curating a large and diverse dataset of 13,626 43

images from Twitter and 113,161 images from PubMed, where text annotations came 44
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from social media post text, hashtags, article titles, abstracts, and/or figure captions. 45

Equipped with our large dataset, we then address our second main aim, which is to 46

utilize machine learning trained on this dataset to facilitate prospective disease state 47

predictions and search from pathologists in real-time on social media. To that end, we 48

capitalize on a common and systematic approach to diagnosis in which a disease is in 49

one of three classes [22]. Specifically, we use machine learning on pathology images from 50

social media and PubMed to classify images into one of three disease states: nontumor 51

(e.g. normal, artifact (Fig S1), injury, infection, or nontumor), low grade (e.g. 52

pre-neoplastic, benign, or low grade malignant potential), or malignant. 53

We then implement a social media bot that in real time applies our machine learning 54

classifiers in response to pathologists on social media to (i) search for similar cases, (ii) 55

provide quantitative predictions of disease states, and (iii) encourage discussion (Fig 1). 56

When this bot links to a similar case, the pathologist who shared that case is notified. 57

The ensuing discussions among pathologists are more informative and context-specific 58

than a computational prediction. For instance, to make a diagnosis of Kaposi’s sarcoma, 59

first-world countries have access to an HHV8 histopathology stain, but a pathologist in 60

a developing country may instead be advised to check patient history of HIV because 61

the HHV8 stain is prohibitively expensive. Obviously, a computational prediction of 62

cancer/non-cancer is far less helpful than what humans do: discuss. 63

In order for machine learning approaches to be useful in a clinical setting, it is critical 64

that these approaches be interpretable and undergo rigorous prospective testing [24]. 65

Furthermore, these approaches need to be accompanied by quantified measures of 66

prediction uncertainty [25]. It may be argued whenever human life is at risk – (i) 67

interpretability, (ii) uncertainty quantification, and (iii) prospective testing are essential 68

– whether the context is medicine or self-driving cars [26, 27]. Our social media bot and 69

methods are the first in computational pathology to meet all of these criteria in that (i) 70

we provide multiple levels of interpretability (e.g. Random Forest feature importance 71

and deep learning activation heatmaps), (ii) we statistically quantify prediction 72

uncertainty using ensemble methods, and (iii) we prospectively test in full public view 73

on social media. Concretely, this means (i) a pathologist can interpret what concepts 74

the machine learning finds to be diagnostic in general or what parts of a particular 75

image suggest a specific disease state, (ii) statistical significance, confidence intervals, or 76

boxplots of computational predictions are presented to a pathologist for assessment (e.g. 77

the boxplot in Fig 1 lower left), and (iii) in real time a pathologist can interact with our 78

social media bot and method to appraise performance on a case-by-case basis, as well as 79

evaluate the public history of pathologist-bot interactions on social media. 80

2 Materials and methods 81

2.1 Social media data 82

From Twitter we curate 13,626 images from 6,351 tweets from 25 pathologists from 83

13 countries. We chose Twitter primarily for its brevity, i.e. one Tweet is at most 280 84

characters, so we did not expect to need complicated text processing logic to parse 85

tissues or diagnoses. Written permission to download and use the data was obtained 86

from each collaborating pathologist. One pathologist publicly declared their data free to 87

use, so we use these data with acknowledgement. One pathologist donated his glass slide 88

library to another pathologist, and the receiving pathologist shared some received cases 89

on social media, which we treat as belonging to the receiving pathologist. Images are 90

annotated with their tweet text and replies. We use these data for supervised learning. 91
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Fig 2: Technique, tissue, and disease diversity. Panel set A shows diverse techniques in our data. Initials indicate author
owning image. (A1) R.S.S.: Papanicolaou stain. (A2) L.G.P.: Periodic acid-Schiff (PAS) stain, glycogen in pink. (A3) L.G.P.: PAS
stain, lower magnification. (A4) L.G.P.: H&E stain c.f. Panel A3. (A5) L.G.P.: H&E stain, human appendix, including parasite
Enterobius vermicularis (c.f. Fig S2). (A6) L.G.P.: Higher magnification E. vermicularis c.f. Panel A5. (A7) L.G.P.: Gömöri
trichrome, collagen in green. (A8) L.G.P.: Diff-quik stain, for cytology. (A9) R.S.S.: GMS stain (Intra-stain diversity in supplement
details variants, Sec S5.3.1), fungi black. (A10) M.P.P.: Giemsa stain. (A11) A.M.: Immunohistochemistry (IHC) stain, positive result.
(A12) A.M.: IHC stain, negative result. (A13) R.S.S.: Congo red, polarized light, plaques showing green birefringence. (A14) M.P.P.:
Fluorescence in situ hybridization (FISH) indicating breast cancer Her2 heterogeneity. (A15) S.Y.: Head computed tomography (CT)
scan. (A16) L.G.P.: Esophageal endoscopy.
In panel set B we show differing morphologies for all ten histopathological tissue types on Twitter. (B1) C.S.: bone and soft tissue. We
include cardiac here. (B2) K.H.: breast. (B3) R.S.S.: dermatological. (B4) L.G.P.: gastrointestinal. (B5) O.O.F.: genitourinary.
(B6) M.P.P.: gynecological. (B7) B.X.: otorhinolaryngological a.k.a. head and neck. We include ocular, oral, and endocrine here.
(B8) C.S.: hematological, e.g. lymph node. (B9) S.Y.: neurological. (B10) S.M.: pulmonary.
In panel set C we show the three disease states we use: nontumor, low grade, and malignant. (C1) M.P.P.: Nontumor disease, i.e. herpes
esophagitis with Cowdry A inclusions. (C2) K.H.: Nontumor disease, i.e. collagenous colitis showing thickened irregular subepithelial
collagen table with entrapped fibroblasts, vessels, and inflammatory cells. (C3) A.M.: Low grade, i.e. pulmonary hamartoma showing
entrapped clefts lined by respiratory epithelium. (C4) R.S.S.: Low grade, i.e. leiomyoma showing nuclear palisading. We show IHC
completeness but it is not included for machine learning. (C5) B.D.S.: Malignant, i.e. breast cancer with apocrine differentiation.
(C6) L.G.P.: Malignant, i.e. relapsed gastric adenocarcinoma with diffuse growth throughout the anastomosis and colon. Gross sections
(e.g. Fig S3) shown for completeness but not used.
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2.2 PubMed data 92

To represent PubMed data, we download the PubMed Central “Open Access Subset” of 93

1,074,484 articles. We first trained a classifier to distinguish H&E images from all others 94

on social media (Figs 2, S4, S5), then used the classifier to identify PubMed articles 95

that have at least one H&E figure. From the identified 30,585 articles we retain 113,161 96

H&E images to comprise our PubMed dataset. Images are annotated with figure 97

caption, article abstract, and article title. This expanded dataset may contain disease 98

that is too rare to be represented in social media data. 99

2.3 Image processing 100

We manually curate all social media images, separating pathology from non-pathology 101

images. Defining an acceptable pathology image (Sec S5.1.1) details this distinction in 102

the supplement (Fig S4). Some pathologists use our Integrated Pathology Annotator 103

(IPA) tool to browse their data and manually curate the annotations for their cases 104

(Figs S6, S7). We retain non-pathology data publicly posted by consenting pathologists 105

that cannot be publicly distributed to enable building a machine learning classifier that 106

can reliably distinguish pathology from non-pathology images. 107

2.4 Text processing 108

Text data overview (Sec S5.5) in the supplement discusses our text processing to derive 109

ground truth from social media posts (Fig S8). We use hashtags, e.g. #dermpath and 110

#cancer, as labels for supervised learning. We process the text of the tweet and the 111

replies, detecting terms that indicate tissue type or disease state. For instance, “ovarian” 112

typically indicates gynecological pathology, while “carcinoma in situ” typically indicates 113

low grade disease (specifically, pre-neoplastic disease in our low grade disease state 114

category). Our text processing algorithm (Fig S8) is the result of author consensus. 115

2.5 Random Forest classifier 116

We train a Random Forest of 1,000 trees as a baseline for all tasks. A white-balanced 117

image is scaled so its shortest dimension is 512 pixels (px). White balancing helps 118

correct images with reduced blue coloration due to low lighting (Fig S5D). The 119

512×512px center crop is then extracted, and 2,412 hand-engineered image features are 120

calculated for this crop (Figs 3, S9). 121

2.6 Customized hybrid deep-learning-random-forest model and 122

clinical covariates 123

Image preprocessing and data augmentation For image preprocessing, a 124

white-balanced image is scaled to be 512 pixels in its shortest dimension, and for deep 125

learning, 224×224px patches are sampled to train a deep convolutional neural network. 126

For deep learning, we use data augmentation of random rotations, random flips, random 127

zoom/rescaling, random brightness variations, Gaussian noise, and Mixup [29]. This 128

means that throughout training hundreds of times over our data we make many small 129

changes to the data each time, e.g. to teach the neural network that rotating an image 130

does not change the diagnosis. Deep learning (Sec S5.11.1) discusses further. 131

Deep learning and deep features To maximize performance by learning 132

disease-state-specific features, we additionally consider deep learning for the most 133

challenging task of disease state prediction. Our deep learning architecture is a 134
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Fig 3: Deep learning methods summary. (A) An overall input image may be of any size, but must be at least 512×512
pixels (px). (B) We use a ResNet-50 [28] deep convolutional neural network to learn to predict disease state (nontumor, low grade, or
malignant) on the basis of a small 224×224px patch. This small size is required to fit the ResNet-50 and image batches in limited
GPU memory. (C) For set learning, this network transforms each of the 21 patches sampled evenly from the image in a grid to a
100-dimensional vector. These 21 patches span the overall input image entirely. For instance, if the overall input image is especially
wide, the 21 patches will overlap less in the X dimension. The ResNet-50 converts these 21 patches to 21 vectors. These 21 vectors are
summed to represent the overall image, regardless of the original image’s size, which may vary. To represent additional clinico-visual
context of a patient case, this sum vector is concatenated with tissue covariates (which may be missing for some images), marker mention
covariate, and hand-engineered features. A Random Forest then learns to predict disease state on this concatenation that encodes (i)
task-agnostic hand-engineered features (Fig S9) near the image center, (ii) task-specific features from deep learning throughout the
image, (iii) whether IHC or other markers were mentioned for this case, and (iv) optionally tissue type. Other machine learning tasks,
e.g. histology stain prediction and tissue type prediction, were simpler. For simpler tasks, we used only the Random Forest and 2,412
hand-engineered features, without deep learning.

ResNet-50 [28] (Fig 3B) pretrained on ImageNet, which we train end-to-end without 135

freezing layers (Fig S13). This means the ResNet-50 deep convolutional neural network 136

is initially trained to classify natural images, e.g. cats and dogs, but every neuron may 137

be adjusted in a data-driven manner for histology-specific learning on our pathology 138

Twitter dataset. To determine how deep feature representations change before and after 139

training the ResNet-50 on histopathology images and covariates, we analyze both (i) 140

ImageNet2048 features from the ResNet-50 that has not been trained on histopathology 141

data, and (ii) 100 deep features based on the same ResNet-50 where all neurons have 142

been further trained on histopathology data. We define ImageNet2048 features as the 143

2,048 outputs from the ResNet-50’s final Global Average Pooling layer, summed over 21 144

image patches in a grid fashion and concatenated with other features for Random Forest 145

learning (Fig 3C). For histopathology deep learning, we append a 100-neuron 146

fully-connected layer atop the ResNet-50, connecting to the ResNet-50 and covariates, 147

and sum over the same 21 image patches in a grid fashion (Fig 3B). Deep learning 148

instance and set feature vectors (Sec S5.8.1) discusses this and the feature 149

interpretability related to the Heaviside step function (Eqns 6, 8). 150

Clinical covariates To best predict disease state and find similar cases, we seek to 151

include as much patient-related context as possible in our computational pathology 152

machine learning models, so we additionally include clinical information, i.e. tissue type 153
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Fig 4: Random Forest feature importance for prioritizing deep features, when non-deep, deep, and clinical
features are used together for learning. We use the mean decrease in accuracy to measure Random Forest feature importance.
To do this, first, a Random Forest is trained on task-agnostic hand-engineered features (e.g. color histograms), task-specific deep features
(i.e. from the ResNet-50), and the tissue type covariate that may be missing for some patients. Second, to measure the importance of a
feature, we randomly permute/shuffle the feature’s values, then report the Random Forest’s decrease in accuracy. When shuffling a
feature’s values this way, more important features result in a greater decrease in accuracy, because accurate prediction relies on these
features more. We show the most important features at the top of these plots, in decreasing order of importance, for deep features (at
left) and non-deep features (at right). The most important deep feature is “r50 46”, which is the output of neuron 47 of 100 (first neuron
is 0, last is 99), in the 100-neuron layer we append to the ResNet-50 and train on histopathology images. Thus of all 100 deep features,
r50 46 may be prioritized first for interpretation. Of non-deep features, the most important features include Local Binary Patterns
Pyramid (LBPP), color histograms, and “tissue” (the tissue type covariate). LBPP and color histograms are visual features, while tissue
type is a clinical covariate. LBPP are pyramid-based grayscale texture features that are scale-invariant and color-invariant. LBPP
features may be important because we neither control the magnification a pathologist uses for a pathology photo, nor do we control
staining protocol. For a before-and-after-training comparison that may suggest the histopathology-trained deep features represent
edges, colors, and tissue type rather than texture, we also analyze feature importance of only-natural-image-trained ImageNet2048 deep
features in conjunction with hand-engineered features (Fig S10). Marker mention and SIFT features excluded from Random Forest
feature importance analysis discusses other details in the supplement (Sec S5.10.2).

and marker mentions. To represent the tissue type covariate, we include a 154

ten-dimensional one-hot-encoded binary vector to encode which one of the ten possible 155

tissue types is present for this case. If the tissue type is unknown, tissue type is all 156

zeroes for the neural network while being missing values for the Random Forest. We 157

also include a binary one-dimensional marker mention covariate, which is 1 if any 158

pathologist discussing the case mentions a marker test, e.g. “IHC” or “desmin”. 159

2.7 Disease state classifier repurposed for similarity-based 160

search 161

After we train a Random Forest classifier (Sec 2.5) to predict/classify disease state from 162

a variety of deep and non-deep features (Fig 3C), we then use this classifier’s Random 163

Forest similarity metric for search [31,32]. Specifically, our Random Forest consists of 164

1,000 Random Trees, each of which predicts disease state. If any given Random Tree 165

makes an identical sequence of decisions to classify two histopathology images (each 166

with optionally associated clinical covariates), the similarity of those two images is 167

incremented by one. Aggregating across all Random Trees, the similarity of any two 168

images can therefore be quantified as a number between 0 (not similar according to any 169

Random Tree) and 1,000 (similar according to all 1,000 Random Trees). Equipped with 170

this similarity metric, we repurpose the classifier for search: the classifier takes in a 171
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Fig 5: Interpretable spatial distribution of deep learning predictions and features. (A) An example image for deep
learning prediction interpretation, specifically a pulmonary vein lined by enlarged hyperplastic cells, which we consider to be low grade
disease state. Case provided by Y.R. (B) The image is tiled into a 5×5 grid of overlapping 224×224px image patches. For heatmaps,
we use the same 5×5 grid as in Fig 1C bottom left, imputing with the median of the four nearest neighbors for 4 of 25 grid tiles. (C) We
show deep learning predictions for disease state of image patches. (C1) throughout the image, predictions have a weak activation value
of ˜0 for malignant, so these patches are not predicted to be malignant. (C2) the centermost patches have a strong activation value of
˜1, so these patches are predicted to be low grade. This spatial localization highlights the hyperplastic cells as low grade. (C3) the
remaining normal tissue and background patches are predicted to be nontumor disease state. Due to our use of softmax, we note that
the sum of malignant, low grade, and nontumor prediction activation values for a patch equals 1, like probabilities sum to 1, but our
predictions are not Gaussian-distributed probabilities. (D) We apply the same heatmap approach to interpret our ResNet-50 deep
features as well. (D1) the most important deep feature corresponds to the the majority class prediction, i.e. C1, malignant. (D2) the
second most important deep feature corresponds to prediction of the second most abundant class, i.e. C2, low grade. (D3) the third
most important deep feature corresponds to prediction of the third most abundant class, i.e. C3, nontumor. The fourth (D4) and
fifth (D5) most important features also correspond to nontumor. (D6) the sixth most important deep feature does not have a clear
correspondence when we interpret the deep learning for this case and other cases (Fig S11), so we stop interpretation here. As expected,
we did not find ImageNet2048 features to be interpretable from heatmaps, because these are not trained on histpathology (Fig S11A5).

search image and compares it to each other image using this similarity metric, then 172

provides a list of images ranked by similarity to the search image. This approach 173

provides the first pan-tissue (i.e. bone and soft tissue, breast, dermatological, 174

gastrointestinal, genitourinary, gynecological, head and neck, hematological, 175

neurological, pulmonary, etc) pan-disease (i.e. nontumor, low grade, and malignant) 176

patient case search in pathology. 177

2.8 Three levels of sanity checking for search 178

To inform the physician and to avoid mistakes, sanity checks are important in medicine, 179

or wherever human life may be at risk. Quantifying uncertainty is particularly 180

important [25] in medicine, to assess how much trust to put in predictions that will 181

affect the patient’s care. We are the first to offer three sanity checks for each individual 182

search: (i) prediction uncertainty, (ii) prediction as a check for search, and (iii) 183

prediction heatmaps. Machine learning sanity checking for search discusses further 184

(Sec S5.9). Briefly, “prediction uncertainty” relies on an ensemble/collection of 185

classifiers to assess if disease state prediction strength is statistically significant, and if 186

not, the prediction and search using this image should not be trusted. Second, 187

“prediction as a check for search” indicates that if the disease state classification for a 188

given image is assessed as incorrect by a pathologist, search results using this image 189

should not be trusted, because the same classifier is used for both prediction and search. 190
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Fig 6: Disease state clusters based on hand-engineered, natural-image-trained deep features, or histopathology-
trained deep features. To determine which features meaningfully group patients together, we apply the UMAP [30] clustering
algorithm on a held-out set of 10% of our disease state data. Each dot represents an image from a patient case. In general, two
dots close together means these two images have similar features. Columns indicate the features used for clustering: hand-engineered
features (at left column), only-image-trained ImageNet2048 deep features (at middle column), or histopathology-trained deep features
(at right column). Rows indicate how dots are colored: by disease state (at top row), by contributing pathologist (at middle row), or
by tissue type (at bottom row). For hand-engineered features, regardless of whether patient cases are labeled by disease state (A1),
pathologist (A2), or tissue type (A3), there is no strong clustering of like-labeled cases. Similarly, for only-natural-image-trained
ImageNet2048 deep features, there is no obvious clustering by disease state (B1), pathologist (B2), or tissue type (B3). However, for
histopathology-trained deep features , patient cases cluster by disease state (C1), with separation of malignant (at dotted arrow), low
grade (at dashed arrow), and nontumor (at solid arrow). There is no clear clustering by pathologist (C2) or tissue type (C3). The
main text notes that hand-engineered features may vaguely group by pathologist (A2, pathologists 2 and 16 at solid and dotted arrows).

Third, we use “prediction heatmaps” to show disease-state predictions for each 191

subregion of a given image, based on deep learning. If a pathologist disagrees with these 192

heatmaps, deep-learning-based search for that image cannot be trusted. A failure of any 193

one of these three checks indicates that search results may be incorrect, and they are 194

flagged as such. 195

2.9 Five levels of method interpretability 196

Interpretability is critical in medicine [24] for physicians to understand whether or not 197

the machine learning is misinterpreting the data. For example, machine learning may 198

uncover that pneumonia patients with a history of asthma have lower mortality risk, 199

suggesting that asthma is protective against pneumonia mortality. However, this would 200

not make sense to a physician, who would instead realize that such patients have lower 201

mortality because they are more likely to be admitted directly to an intensive care 202
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unit [33, 34]. Asthma is not protective from pneumonia mortality, intensive care is. 203

Ideally, interpretability facilitates both deductive and inductive human reasoning 204

about the machine learning findings. Deductively, interpretability allows human 205

reasoning about what machine learning finds in specific patient cases, e.g. explaining 206

the malignant prediction overall for a patient by spatially localizing where 207

malignancy-related features are in a histology image. Inductively, interpretability allows 208

human reasoning about broad principles that may be inferred from the machine learning 209

findings overall for a task, e.g. texture features are important in disease state prediction. 210

To the best of our knowledge, it is novel to offer both deductive and inductive 211

interpretability in a pan-tissue pan-disease manner in computational pathology. We do 212

this with (i) hand-engineered feature interpretability (Fig S9), (ii) Random Forest 213

feature importance (Fig 4), (iii) before-and-after-histopathology-training feature 214

importance comparison of deep features to hand-engineered features (Fig 4 vs Fig S10), 215

(iv) deep feature activation maps (Figs 5D, S11), and (v) cluster analyses (Figs 6). 216

Machine learning interpretability for search in the supplement discusses further 217

(Sec S5.10). 218

Histopathology-trained deep features represent edges, colors, and tissue 219

To understand what deep features learn to represent after training on histopathology 220

data, we compare Random Forest feature importances of (a) ImageNet2048 deep features 221

[not trained on histopathology data] with hand-engineered features and tissue covariate 222

(Fig S10), to (b) 100 deep features [trained on histopathology data] with 223

hand-engineered features and tissue covariate (Fig 4). Before the deep neural network is 224

trained on histopathology data, the tissue covariate as well as edge and color 225

hand-engineered features are important (Fig S10). However, after the deep neural 226

network is trained on histopathology data, tissue is less important while texture 227

hand-engineered features are more important (Fig 4). Therefore, we reason that the 228

deep neural network learns histopathology-relevant edge, color, and tissue features from 229

histopathology data (which reduces the importance of e.g. hand-engineered edge and 230

color features after learning), but the deep neural network may forget 231

histopathology-relevant texture features during learning (which increases the 232

importance of hand-engineered texture features after learning). 233

Interpretability uncovers spatial prediction-to-feature correspondences of 234

disease Considering both introspective/inductive interpretability (Fig 4) and 235

demonstrative/deductive interpretability (Fig 5), we find a correspondence between 236

important deep features (Fig 4) and the spatial localization of deep learning predictions 237

of disease state (Fig 5). Moreover, we find that using (Eqn 14) the three most important 238

interpretable deep features slightly but significantly improve search performance 239

(Table S1). Deep set learning feature interpretation discusses further (Sec S5.11.2). 240

Deep features trained on histopathology logically cluster patients by 241

disease state, whereas pathology-agnostic features do not Through cluster 242

analysis we interpret which features (i.e. hand-engineered, only-natural-image-trained, 243

or histopathology-trained), if any, separate patients into meaningful groups, and if the 244

features “make sense” to describe patient histopathology. As expected, neither 245

hand-engineered features (Fig 6A1) nor only-natural-image-trained ImageNet2048 deep 246

features (Fig 6B1) cluster patient cases by disease state, presumably because these 247

features are not based on histopathology. These approaches also do not cluster patients 248

by contributing pathologist (Fig 6A2,B2) or by tissue type (Fig 6A3,B3). Additionally, 249

we do not find that reducing dimensionality through principal components analysis 250

qualitatively changes the clustering (Fig S12). In contrast, deep features trained on 251
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histopathology data do cluster patients together by disease state (Fig 6C1), but not by 252

pathologist (Fig 6C2) or tissue (Fig 6C3). We conclude that these deep features 253

primarily reflect representations of disease state in a non-tissue-specific manner. It is 254

important to note that any clustering-based result must be carefully scrutinized, 255

because features may suffer from artifacts, e.g. which pathologist shared the patient 256

case. If taken to an extreme, learning to predict disease state on the basis of 257

pathologist-specific staining/lighting/camera artifacts amounts to learning concepts 258

such as, “if pathologist X typically shares images of malignant cases, and a new image 259

appears to be from pathologist X, then this image probably shows malignancy”, which 260

does not “make sense” as a way to predict disease state. Although we did not observe 261

robust clustering by pathologist, even vague grouping by pathologist (Fig 6A2 at gray 262

arrows) highlights the importance of critically assessing results. Artifact learning risk is 263

one reason why we (i) rigorously test search through leave-one-pathologist-out cross 264

validation, and (ii) provide sanity checks. 265

2.10 Experimental design and evaluation 266

We evaluate our classifiers using 10-fold cross validation to estimate bounds of accuracy 267

and Area Under Receiver Operating Characteristic (AUROC) performance metrics. 268

Supplementary experimental design and evaluation explains further (Sec S5.14). Because 269

we intend for our methods to accurately find similar cases for any pathologist worldwide, 270

we rigorously test search using leave-one-pathologist-out cross validation and report 271

precision@k. Leave-one-pathologist-out cross validation isolates pathologist cases from 272

one another, so a test set is independent from the corresponding training set. This 273

isolates to a test set pathologist-specific or institution-specific imaging artifacts that 274

may occur from microscopy, lighting, camera, or staining protocol. Thus our leave-one- 275

pathologist-out cross validation measurements quantify our method’s reproducibility, 276

which is critical to measure in medical machine learning [7]. 277

2.11 Social media bot for public prospective testing 278

We present the first pathology-specific social media bot, @pathobot, on Twitter. This 279

bot is a case similarity search tool that applies our methods. Pathologists on Twitter 280

mention the bot in a tweet containing an image. The bot uses our Random Forest 281

classifier to provide disease-state prediction for that image, and search for similar 282

results. Its prediction and search results, along with quantitative assessments of 283

prediction uncertainty, are provided to pathologists in real time. In this way, the bot 284

facilitates prospective tests, and encourages collaboration: as pathologists use the bot, 285

they provide us with complementary qualitative feedback and help us recruit additional 286

collaborators. In this way, the bot facilitates prospective tests, and encourages 287

collaboration: as pathologists publicly use the bot, they provide us with complementary 288

qualitative feedback and these interactions help us recruit additional collaborators. 289

2.12 Computational hardware 290

For machine learning, we use Weka version 3.8.1 [35] on a laptop. For deep learning, we 291

use Tensorflow Keras [36] on GPUs and a supercomputing cluster. Supplemetary 292

computational hardware and software discusses further (Sec S5.15). In R, we perform 293

feature importance analyses with the randomForest package [37] and cluster analyses 294

with the umap package [38]. 295

March 8, 2020 12/65

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2020. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

http://twitter.com/pathobot
https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


H&E vs other (10−fold CV)●

10−fold, Leave−one−pathologist−out

H&E vs others

H&E vs other (LOO CV)

(7154 H&E, 3455 other)

●

0.00

0.25

0.50

0.75

1.00

F
a
ls

e
 p

o
s
it
iv

e
 r

a
te

H&E vs IHC (10−fold CV)●

10−fold, Leave−one−pathologist−out

H&E vs IHC

H&E vs IHC (LOO CV)

(6729 H&E, 797 IHC)

●

0.00 0.25 0.50 0.75 1.00
True positive rate

0.00 0.25 0.50 0.75 1.00
True positive rate

Fig 7: H&E performance. Predicting if an image is acceptable H&E human tissue or not (at left), or if image is H&E rather than
IHC (at right). Ten replicates of ten-fold cross validation (10-fold) and leave-one-pathologist-out cross validation (LOO) had similarly
strong performance. This suggests the classifier may generalize well to other datasets. We use the “H&E vs others” classifier to find
H&E images in PubMed. Shown replicate AUROC for H&E vs others is 0.9735 for 10-fold (10 replicates of 10-fold has mean±stdev of
0.9746±0.0043) and 0.9549 for LOO (10 reps 0.9547±0.0002), while H&E vs IHC is 0.9967 for 10-fold (10 reps 0.9977±0.0017) and
0.9907 for LOO (10 reps 0.9954±0.0004). For this and other figures, we show the first replicate.

3 Results 296

3.1 Identifying and filtering for H&E images 297

We ran increasingly difficult tests using increasingly sophisticated machine learning 298

methods. Our first question is the most basic, but arguably the most important: can 299

machine learning distinguish acceptable H&E-stained human pathology images from all 300

others (Figs 2A, S4, S5)? We show acceptable H&E-stained human pathology images 301

can be distinguished from other images – e.g. natural scenes or different histochemistry 302

stains (Fig 7 at left) with high performance (AUROC 0.95). Because of the high 303

performance of this classifier, it can be used to partially automate one of our manual 304

data curation tasks, e.g. identifying acceptable images on social media. More 305

importantly, when confronted with over one million PubMed articles, we apply this 306

classifier to filter out all the articles that do not have at least one H&E image. To our 307

knowledge, this is the first H&E image detector to filter PubMed articles. PubMed 308

figures increase our searchable dataset by over an order of magnitude, without any 309

additional manual curation effort. Only with a large dataset may we expect to 310

successfully search for rare diseases, and we currently have 126,787 searchable images. 311

This task also serves as a positive control. 312

3.2 Distinguishing common stain types 313

H&E and IHC stain types are the most common in our dataset and are common in 314

practice. We therefore ask if machine learning can distinguish between these stain types, 315

which vary in coloration (Fig 2A). Indeed, the classifier performs very well at this 316

discrimination (AUROC 0.99, Fig 7 at right). Thus, although IHC coloration can vary 317

between red and brown, machine learning can still successfully differentiate it from 318

H&E. Intra-stain diversity explains further (Sec S5.3.1). A well-performing classifier 319

such as this can be useful with large digital slide archives that contain a mixture of 320

H&E and IHC slides that lack explicit labels for staining information. Our classifier can 321

automatically and accurately distinguish these stains, so that downstream pipelines may 322

process each stain type in a distinct manner. 323
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Fig 8: 10-tissue type and 3-disease state prediction performance and counts. (A) Classifier performance for predicting
histopathology tissue type (10 types, 8331 images). (B) Classifier performance for predicting disease state (3 disease states; 6549 images).
Overall AUROC is the weighted average of AUROC for each class, weighted by the instance count in the class. Each panel (A and B)
shows AUROC (with ten-fold cross-validation) for the chosen classifier. Random Forest AUROC for tissue type prediction is 0.8133
(AUROC for the ten replicates: mean±stdev of 0.8134±0.0007). AUROC is 0.8085 for an ensemble of our deep-learning-random-forest
hybrid classifiers for disease state prediction (AUROC for the ten replicates: mean±stdev of 0.8035±0.0043). (C) Disease state counts
per tissue type. The proportion of nontumor vs. low grade vs. malignant disease states varies as a function of tissue type. For example,
dermatological tissue images on social media are most often low grade, but malignancy is most common for genitourinary images. (D)
Disease state counts as a function of whether a marker test (e.g. IHC, FISH) was mentioned (˜25% of cases) or not. IHC is the most
common marker discussed and is typically, but not necessarily, used to subtype malignancies.

3.3 Distinguishing ten histopathology tissue types 324

We next ask if machine learning can distinguish the ten tissue types present in our 325

Twitter dataset (Fig 2B). Tissue hashtags and keywords discusses this further 326

(Sec S5.6.2). The tissue types were distinguishable (AUROC 0.81, Fig 8A) and, as 327

expected, this task was more difficult than stain-related tasks. Being able to identify 328

tissue types may help to detect contaminating tissue in a slide. 329

3.4 Deep learning predicts disease state across many tissue 330

types 331

Pathologists routinely make decisions about whether a tissue shows evidence of 332

nontumoral disease, low grade disease, or malignant disease, while ignoring spurious 333

artifacts (Fig S1). We therefore ask whether machine learning can perform well on this 334

clinically important task. For this, we use our most common stain type, H&E, including 335

only those images that are single-panel and deemed acceptable (Fig S4). We 336

systematically test increasingly sophisticated machine learning methods (Fig 9) with the 337

goal of achieving the highest possible performance. The simplest baseline model we 338

consider, a Random Forest on the 2,412 hand-engineered features (Fig S9), achieves an 339

AUROC of 0.6843±0.0012 (mean±stdev, Fig 9). Conversely, an ensemble of our 340

deep-learning-random-forest hybrid classifiers achieves much higher performance, with 341

AUROC 0.80 (Fig 9). To our knowledge, this is the first classifier that predicts the full 342

spectrum of disease states, i.e. nontumor, low grade, and malignant (Figs 2, 8B, 9). 343

3.5 Texture and tissue are important clinico-visual features of 344

disease 345

We next determine which features are important to our machine learning classifier for 346

disease state prediction. To do this, we interpret the Random Forest feature importance 347

to gain insight into the clinico-visual features that are predictive of disease state. Our 348

analyses suggest that texture (e.g. Local Binary Patterns) and color (e.g. Color 349

Histograms) features are most important for pathology predictions and search, followed 350
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Only Hist Center 0.7461 0.0038
Only Hist 0.7766 0.0027
HandEng+Hist+Tissue 0.7803 0.0019
HandEng+ImageNet+Tissue 0.7909 0.0108
HandEng+Hist+Tissue+ImageNet 0.7821 0.0021
HandEng+Hist+Tissue Ens 0.8035 0.0043
HandEng+Hist+Tissue+ImageNet Ens 0.8031 0.0022
HandEng+Hist+Tissue+Marker Ens 0.8025 0.0021
HandEng+Hist+Tissue+SIFTk5 Ens 0.8014 0.0022

Fig 9: Disease state prediction performance for machine learning methods. For deep learning we use a ResNet-50.
For shallow learning we use a Random Forest. We train a Random Forest on deep features (and other features), to combine deep
and shallow learning (Fig 3C top). Error bars indicate standard error of the mean. Points indicate replicates. Gray lines indicate
means. Performance increases markedly when including tissue type covariate for learning (even though tissue type is missing for some
patients), when using deep learning to integrate information throughout entire image rather than only the center crop, and when
using an ensemble of classifiers. Performance exceeds AUROC of 0.8 (at right). We conclude method xii (“HandEng+Hist+Tissue
Ens”) is the best we tested for disease state prediction, because no other method performs significantly better and no other simpler
method performs similarly. Methods are, from left to right, (i) Random Forest with 2412 hand-engineered features alone for 512×512px
scaled and cropped center patch, (ii) Random Forest with tissue covariates, (iii) Random Forest with tissue and marker covariates, (iv)
method iii additionally with SIFTk5 features for Random Forest, (v) only-natural-image-trained ResNet-50 at same scale as method i
with center 224×224px center patch and prediction from a Random Forest trained on 2,048 features from the ResNet-50 (Fig 3) (vi)
histopathology-trained ResNet-50 at same scale as method i with center 224×224px center patch and prediction from top 3 neurons
(Fig 3B top), (vii) histopathology-trained ResNet-50 with Random Forest trained on 100 features from 224×224px center patch per
method vi, (viii) histopathology-trained ResNet-50 features at 21 locations throughout image summed and Random Forest learning on this
100-dimensional set representation with 2,412 hand-engineered features, (ix) method viii with tissue covariates for histopathology-trained
ResNet-50 and 2,412 hand-engineered features for Random Forest learning (i.e. Fig 3C sans marker information), (x) method ix with an
only-natural-image-trained ResNet-50 instead of a histopathology-trained ResNet-50 for Random Forest learning, (xi) method ix with
both an only-natural-image-trained ResNet-50 and a histopathology-trained ResNet-50 for Random Forest learning, (xii) method ix
with an ensemble of three Random Forest classifiers such that each classifier considers an independent histopathology-trained ResNet-50
feature vector in addition to 2,412 hand-engineered features and tissue covariate, (xiii) method xii where each Random Forest classifier
in ensemble additionally considers only-natural-image-trained ResNet-50 features, (xiv) method xii where each Random Forest classifier
in ensemble additionally considers the marker mention covariate (i.e. this is an ensemble of three classifiers where Fig 3C is one of the
three classifiers), (xv) method xii where each Random Forest in ensemble additionally considers SIFTk5 features for learning.

by the tissue type clinical covariate (Fig 4). Marker mention and SIFT features 351

excluded from Random Forest feature importance analysis discusses further (Sec S5.10.2). 352

Our method is therefore multimodal, in that it learns from both visual information in 353

the images and their associated clinical covariates (e.g. tissue type and marker mention). 354

Both modalities improve search performance, as discussed in the following section. 355

3.6 Disease state search, first pan-tissue pan-disease method 356

In light of pathology-agnostic approaches to pathology search [18,19], we ask if 357

pathology-specific approaches to pathology search may perform better. Indeed, search is 358

the main purpose of our social media bot. Moreover, others have noted task-agnostic 359

features may suffer from poorly understood biases, e.g. features to distinguish major 360

categories (e.g. cats and dogs) in natural images may systematically fail to distinguish 361

major categories in medical images (e.g. ophthalmology or pathology) [39]. To evaluate 362

performance of search, we show precision@k for k=1. . . 10 (Fig 10). As a positive 363
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Fig 10: Case similarity search performance. We report search performance as precision@k for leave-one-pathologist-out cross
validation for (A) tissue and (B) disease state. We note search based on SIFT features performs better than chance, but worse than all
alternatives we tried. Marker mention information improves search slightly, and we suspect cases that mention markers may be more
relevant search results if a query case also mentions markers. SIFTk5 and histopathology-trained Deep3 features improve performance
even less, but only-natural-image-trained ImageNet2048 deep features increase performance substantially (Table S1). (C) We show
per-pathologist variability in search, with outliers for both strong and weak performance. Random chance performance is shown as a
dashed gray line. In our testing, performance for every pathologist is always above chance, which may suggest performance will be
above chance for patient cases from other pathologists. We suspect variability in staining protocol, variability in photography, and
variability in per-pathologist shared case diagnosis difficulty may underlie this search performance variability. The pathologist where
precision@k=1 is lowest shared five images total for the disease prediction task, and these images are of a rare tissue type. Table S2
shows per-pathologist performance statistics.

control, we first test search for similar tissues (Fig 10A), e.g. if the search query image 364

is breast pathology then the top search results should be breast pathology. Here, 365

precision@k=1 = 0.6 means 60% of the time the search query image and top search 366

result image have matching tissue types, e.g. both are breast, or both are 367

gastrointestinal, etc. We subsequently test search for similar disease states (Fig 10B, 368

Table S1), e.g. if the search query image is malignant then the top search results should 369

be malignant. Here, precision@k=1 = 0.76 means 76% of the time the search query 370

image and top search result image have matching disease states (e.g. both malignant, 371

both nontumor, etc), while precision@k=8 = 0.57 means the search query image 372

matches 57% of the top 8 search results, i.e. 4-5 of the top 8 search results are 373

malignant when the search query image is malignant. To estimate performance in 374

general for each method, we perform 10 replicates of leave-one-pathologist-out cross 375

validation with different random seeds (i.e. 0,1,. . . ,9). This allows variance to be 376

estimated for Random Forest learning, but methods based exclusively on the L1 norm 377

are fully deterministic, so these have zero estimated variance (Table S1). We follow 378

two-sample hypothesis testing, where one set of 10 replicates is compared to a different 379

set of 10 replicates. To calculate a U statistic and a p-value, we use the two-tailed 380

Wilcoxon rank-sum test on precision@k=1, which tests for significant differences in 381

precision for the first search result on average. For search’s statistical null model, we 382

train a Random Forest on images with randomly shuffled class labels and evaluate 383

precision@k, as a permutation test (i.e. “RandomForest(2412 + tissue), permutation 384

test” precision@k=1 = 0.3967±0.0044 in Table S1, shown in Fig 10B). We conclude 385

search performs significantly better than chance (0.7618±0.0018 vs 0.3967±0.0044, 386

U = 100, p = 0.0001817) and offer specifics below. 387

Results for disease state search are detailed in supplementary disease state search 388

results (Sec S5.13). Here, we briefly describe four main findings. First, clinical 389

covariates improve search performance (Sec S5.13.1). Both tissue type (0.5640±0.0024 390

vs 0.6533±0.0025, U = 100, p = 0.0001796) and marker mention (0.6533±0.0025 vs 391

0.6908±0.0021, U = 100, p = 0.0001796) covariates significantly improve search 392

performance. This suggests that for search these clinical features provide disease state 393
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information above and beyond the visual characteristics we have of each image. Second, 394

in the context of other features, nuclear features of disease are better represented by the 395

most prevalent SIFT clusters rather than all SIFT (Sec S5.13.2), and the effect of SIFT 396

clusters on search is small but significant (0.6908±0.0021 vs 0.6935±0.0029, U = 19.5, 397

p = 0.02308). This indicates nuclear features, as represented by SIFT, provide limited 398

but complementary disease-related information for search. Third, deep features synergize 399

with other features, informing search more than nuclear SIFT features, but less than 400

clinical covariates (Sec S5.13.3). Specifically, deep features improve search performance 401

less than tissue type (0.5720±0.0036 vs 0.6533±0.0025, U = 0, p = 0.0001806) and less 402

than marker mentions (0.6602±0.0022 vs 0.6908±0.0021, U = 0, p = 0.0001817), but 403

more than SIFT clusters (0.6983±0.0016 vs 0.6948±0.0032, U = 83.5, p = 0.01251). 404

Fourth, deep features trained only on natural images outperform hand-engineered 405

features for search, and offer best performance when combined with other features 406

(Sec S5.13.4). Particularly, in the context of clinical covariates, ImageNet2048 features 407

demonstrate high importance by offering better search performance than the 2,412 408

hand-engineered features, SIFTk5 features, and histopathology-trained Deep3 features 409

combined (0.7517±0.0025 vs 0.7006±0.0026, U = 100, p = 0.0001817) – although this 410

may change as more data become available or more advanced methods are used. 411

Moreover, we found that adding only-natural-image-trained ImageNet2048 deep features 412

to our best-performing model (incorporating hand-engineered features, tissue type, 413

marker mention, SIFTk5 features, and Deep3 features) improved search performance 414

further (0.7006±0.0026 vs 0.7618±0.0018, U = 0, p = 0.0001817), and was the 415

best-performing search method we measured. Taken together, we conclude (i) texture 416

and tissue features are important, (ii) histopathology-trained deep features are less 417

important, (iii) nuclear/SIFT features are least important for disease state search, and 418

(iv) in the context of clinical covariates the only-natural-image-trained ImageNet2048 419

deep features are the most important visual features we tested for search. 420

4 Discussion 421

4.1 Summary 422

Pathologists worldwide reach to social media for opinions, often sharing rare or unusual 423

cases, but replies may not be immediate, and browsing potentially years of case history 424

to find a similar case can be a time-consuming endeavor. Therefore, we implemented a 425

social media bot that in real-time searches for similar cases, links to these cases, and 426

notifies pathologists who shared the cases, to encourage discussion. To facilitate disease 427

prediction and search, we maintain a large pathology-focused dataset of 126,787 images 428

with associated text, from pathologists and patients the world over. This is the first 429

pan-tissue, pan-disease dataset in pathology, which we will share with the community 430

through pathobotology.org to promote novel insights in computational pathology. 431

After performing stain- and tissue-related baselines with a Random Forest, we 432

performed a number of analyses on this dataset for disease state prediction and search. 433

To accomplish this, we developed a novel synthesis of a deep convolutional neural 434

network for image set representations and a Random Forest learning from these 435

representations (Figs 3, S14). We found this model can classify disease state with high 436

accuracy, and be repurposed for real-time search of similar disease states on social 437

media. This interpretable model, combined with its social media interface, facilitates 438

diagnoses and decisions about next steps in patient care by connecting pathologists all 439

over the world, searching for similar cases, and generating predictions about disease 440

states in shared images. Our approach also allowed us to make a number of important 441

methodological advances and discoveries. For example, we found that both image 442
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texture and tissue are important clinico-visual features of disease state – motivating the 443

inclusion of both of feature types in multimodal methods such as ours. In contrast, we 444

find deep features trained only on natural images (e.g. cats and dogs) substantially 445

improve search performance, while pathology-specific deep features and cell nuclei 446

features improve less, although combining all these performed best. Finally, we provide 447

important technical advances, because our novel deep feature regularization and 448

activation functions yield approximately binary features and set representations that 449

may be applicable to other domains. In sum, these advances readily translate to patient 450

care by taking advantage of cutting-edge machine learning approaches, large and diverse 451

datasets, and interactions with pathologists worldwide. 452

4.2 Comparison with prior studies 453

Our approach builds on, but greatly extends, prior work in the field of computational 454

pathology. We comment on this briefly here, and describe more fully in supplementary 455

comparison with prior studies (Sec S5.16). First, much of prior work involves a subset of 456

tissue types or disease states [40–42]. However, our study encompasses diverse examples 457

of each. Second, prior studies investigating pathology search take a variety of 458

pathology-agnostic approaches, e.g. (i) using neural networks that were not trained with 459

pathology data [18,19] or (ii) using scale-invariant feature transform (SIFT) 460

features [19, 43, 44] that do not represent texture or color [45]. Our inclusive approach is 461

different, building a search method for pathology data represented by thousands of 462

features – including SIFT clusters, neural networks, other visual features, and clinical 463

covariates. Our model outperforms pathology-agnostic baselines. 464

Prior work has found texture and/or color to be important for tissue-related tasks in 465

computational pathology [46–48]. We find texture and color to be important for 466

disease-related tasks. Additionally, we go a step further by comprehensively considering 467

the relative contributions of many clinico-visual features to the prediction and search of 468

disease. Such important features include texture, color, tissue type, marker mentions, 469

deep features, and SIFT clusters. 470

4.3 Caveats and future directions 471

Below we discuss the primary caveats (also see supplementary caveats in Sec S5.17) and 472

future directions (also see supplementary future directions in Sec S5.18). 473

Diagnosis disagreement or inaccuracy First, there is a risk of error in our data 474

because many different pathologists share cases, and they may disagree on the most 475

appropriate hashtags or diagnosis. Moreover, there may be diagnostic inaccuracies from 476

the pathologist who posted the case, or other pathologists. We find these situations to 477

be rare, but if they occur, the case tends to have an increased amount of discussion, so 478

we can identify these situations. Second, our nontumor/low-grade/malignant keyword 479

rules may be incorrect or vague. For these first and second caveats, we take a majority 480

vote approach, manually curate as needed, and discuss. Indeed, as we discussed 481

amongst ourselves the hyperplasia in Fig 5, it became clear we needed to explicitly 482

mention pre-neoplastic disease is included in the low grade disease state category. 483

Dataset case sampling and region of interest biases Our dataset may have 484

both (i) a case sampling bias and (ii) a region of interest sampling bias. First, there 485

may be case sampling bias if we typically have unusual cases that pathologists consider 486

worth sharing, and our cases by necessity only come from pathologists on social media. 487

We plan to advocate sharing of normal tissue and less unusual cases to circumvent this 488
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bias. Second, the pathologist who shares the case chooses which images to share, 489

typically sharing images of regions of interest that best illustrate the diagnosis, while 490

ignoring other slides where the diagnosis is less straightforward. In future work, we will 491

include whole slide images for additional context. 492

Dataset size and granularity To increase the granularity and accuracy of tissue 493

type predictions, we first plan to expand the size of this dataset by recruiting more 494

pathologists via social media, aiming to have representative images for each organ. 495

There are many organs within the gastrointestinal tissue type, for instance. 496

Additionally, we expect our dataset to broaden, including more social media networks 497

and public pathology resources such as TCGA, with our bot integrating these data for 498

search and predictions. 499

Conclusion 500

We believe this is the first use of social media data for pathology case search and the 501

first pathology study prospectively tested in full public view on social media. 502

Combining machine learning for search with responsive pathologists worldwide on social 503

media, we expect our project to cultivate a more connected world of physicians and 504

improve patient care worldwide. We invite pathologists and data scientists alike to 505

collaborate with us to help this nascent project grow. 506

Acknowledgments 507

A.J.S. thanks Dr. Marcus Lambert and Pedro Cito Silberman for organizing the Weill 508

Cornell High School Science Immersion Program. A.J.S. thanks Terrie Wheeler and the 509

Weill Cornell Medicine Samuel J. Wood Library for providing vital space for A.J.S., 510

W.C., and S.J.C. to work early in this project. A.J.S. thanks Dr. Joanna Cyrta of 511

Institut Curie for H&E-saffron (HES) discussion. A.J.S. thanks Dr. Takehiko Fujisawa 512

of Chiba University for his free pathology photos contributed to social media and this 513

project via @Patholwalker on Twitter. 514

A.J.S. was supported by NIH/NCI grant F31CA214029 and the Tri-Institutional 515

Training Program in Computational Biology and Medicine (via NIH training grant 516

T32GM083937). This research was funded in part through the NIH/NCI Cancer Center 517

Support Grant P30CA008748. 518

S.Y. is a consultant and advisory board member for Roche, Bayer, Novartis, Pfizer, 519

and Amgen – receiving an honorarium. 520

T.J.F. is a founder, equity owner, and Chief Scientific Officer of Paige.AI. 521

We are grateful to the patients who made this study possible. 522

Author Contributions 523

Conceptualization: AJS, MA. 524

Data curation: AJS, WCJ, SJC, LGP, BSP, MPP, NZ, BDS, SY, AM. 525

Methodology, Software, Validation, Formal analysis, Investigation, 526

Writing (original draft): AJS. 527

Funding acquisition: AJS, TJF. 528

Project administration: AJS, WCJ, SJC, MA, TJF. 529

Resources (pathology) and discussion: LGP, BSP, MPP, RSS, KH, NZ, BDS, SY, 530

BX, SRA, AM, KAJ, KRO, SM, CM, HY, YR, RHA, OOF, JMG, CR, CS, JG, DES. 531

Resources (computational): AJS, TJF. 532

March 8, 2020 19/65

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2020. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supervision: MA, TJF. 533

Visualization, wrote annotation files: AJS, WCJ, SJC. 534

Writing (editing): AJS, MA. 535

Writing (reviewing): AJS, LGP, BSP, MPP, SY, BX, AM, OOF, JMG, CS, SJS, 536

MA, TJF. 537

Answered annotator questions: LGP, BSP, MPP, NZ, BDS, SY, BX, SRA, AM, 538

SM, CM, HY, YR, RHA, OOF, CS, SJS. 539

March 8, 2020 20/65

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2020. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B C D E F

Fig S1: Artifact and foreign body images. Our dataset includes artifacts and foreign bodies which machine learning should not
consider prognostic. All panels human H&E. (A) B.X.: Colloid. (B) L.G.P.: Barium. (C) L.G.P.: Oxidized regenerated cellulose,
a.k.a. gauze, granuloma may mimic mass lesion [49]. (D) R.S.S.: Hemostatic gelatin sponge, a.k.a. SpongostanTM, may mimic necrosis.
(E) S.Y.: Sutures, may mimic granuloma or adipocytes. (F) L.G.P.: Crystallized kayexelate, may mimic mass lesion or parasite.

A B C D E F G

Fig S2: Parasitology images. Our dataset includes diverse parasitology samples. (A) B.S.P.: Strongyloides stercoralis, light
microscopy. (B) B.S.P.: Dirofilaria immitis, in human, H&E stain. (C) B.S.P.: Plasmodium falciparum, in human, Giemsa stain. (D)
B.S.P.: Incidental finding of unspecified mite in human stool, light microscopy. (E) B.S.P.: Dermatobia hominis, live gross specimen.
(F) B.S.P.: Acanthamoeba, in human, H&E of corrective contact lenses. (G) B.S.P.: Trichuris trichiura, gross specimen.

S5 Supporting information 540

S5.1 Image data overview 541

The goal of obtaining images from practicing pathologists worldwide is to create a 542

dataset with a diverse and realistic distribution of cases. A worldwide distribution 543

(Fig 1A) may be appropriate to overcome potential biases inherent at any single 544

institution, such as stain chemistries or protocols. Our dataset includes a wide variety 545

of stains and techniques (Fig 2A) – even variety for a single stain, e.g. H&E stains 546

(Fig S5). H&E stain composition may vary by country – e.g. in France, H&E typically 547

includes saffron, which stains collagen fibers. Phyloxin may be used instead of eosin. 548

This helps differentiate between connective tissue and muscle, or to see cell cytoplasm 549

better against a fibrous background. This stain may be referred to as “HES” or “HPS”, 550

and we consider it H&E. Intra-stain diversity discusses further (Sec S5.3.1). Our dataset 551

includes gross sections (Fig S3) that pathologists share alongside images of stained 552

slides. In addition to variation in the signal of interest (i.e., stain, tissue, or disease), we 553

find variability in the noise (i.e. pathology artifacts, Fig S1). Such noise may initially 554

seem undesirable, but is likely important for machine learning techniques to robustly 555

predict which image motifs are relatively unimportant rather than prognostic. Finally, 556

our dataset includes a variety of parasites and other [micro]organisms (Fig S2, and 557

Fig S5A,E), an important consideration in developing countries. 558

S5.1.1 Defining an acceptable pathology image 559

To create our pathology social media database, we first identified pathology images, and 560

second, narrowed down the set of pathology images into those that were of sufficient 561

quality to be used and could be shared publicly. By “pathology image”, we mean 562

images that a pathologist may see in clinical practice, e.g. gross sections, microscopy 563

images, endoscopy images, or X-rays. An image designated as a “pathology image” is 564

not necessarily an image of diseased tissue. After we identified pathology images, we 565

screened them for inclusion in our dataset. “Acceptable images” are those that do not 566

meet rejection or discard criteria defined below. If an acceptable image is personally 567

identifiable or private (see criteria below), we retain the image for some machine 568
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C D E FA B

Fig S3: Gross images. Gross sections are represented in our dataset, putting the slide images in context. (A) M.P.P : Urothelial
carcinoma. (B) M.P.P.: Lung adenocarcinoma. (C) S.R.A.: Barth syndrome. (D) N.Z.: Enlarged spleen. (E) S.R.A.: Arteriovenous
malformation. (F) L.G.P.: Kidney adrenal heterotopia.

DCB E
a
rt

n
o
n
-p
a
th
o
lo
g
y

o
v
e
rd
ra
w
n

p
a
n
e
l a
c
c
e
p
t

d
u
p
li
c
a
te

A

Fig S4: Image acceptability criteria. Examples of images that are rejected, because they are not pathology images that a
pathologist would see in clinical practice. (A) top M.P.P., bottom B.D.S : “art” rejects. (B) top B.S.P., bottom S.Y.: “non-pathology”
rejects. (C) top B.X., bottom A.M.: “overdrawn” rejects. (D) top S.R.A., bottom L.G.P.: “panel” is rejected for some tasks, e.g. H&E
vs IHC or disease state prediction, but not for others, e.g. H&E vs others. The H&E vs others task retains multi-panel images because
multi-panel images that include an H&E panel should be included in our PubMed search results, and this classifier is used to filter
PubMed. (E) top and bottom S.R.A.: top is acceptable H&E (see Sec S5.1.1 for definition), bottom is “dup” [duplicate] rejection.

learning analyses, but do not distribute the image publicly [for legal reasons]. 569

Criteria for rejected, discarded, private, or acceptable images For our 570

manual data curation process, we defined several rejection criteria (Fig S4), detailed in 571

Section S5.2.1. Figure S4A shows examples of images rejected as “art”, because they 572

are artistically manipulated H&E pathology microscopy images. Figure S4B shows 573

examples of images rejected as “non-pathology”, e.g. parasitology-inspired cupcakes 574

(top) and a natural scene image (bottom). Non-pathology images are relatively common 575

on pathologists’ social media accounts, though we try to minimize their frequency by 576

recruiting pathologists who primarily use their accounts for sharing and discussing 577

pathology. Figure S4C shows examples of images rejected as “overdrawn”. Overdrawn 578

images are those that have hand-drawn marks from a pathologist (which pathologists 579

refer to as “annotations”), which prevent us from placing a sufficiently large bounding 580

box around regions of interest while still excluding the hand-drawn marks. 581

Section S5.2.2 discusses our “overdrawn” criterion in detail. Figure S4D shows examples 582

of images rejected as “panel”, because they consist of small panels (top) or have small 583

A B C D E F G

Fig S5: H&E images. Our dataset includes diverse H&E-stained slide microscopy images. (A) S.R.A.: Acute villitis due to septic
Escherichia coli. (B) R.S.S.: Garlic. (C) R.S.S.: “Accellular” leiomyoma after ulipristal acetate treatment. (D) R.S.S.: Brownish
appearance from dark lighting. (E) K.R.O.: Sarcina in duodenum. (F) B.D.S.: Mature teratoma of ovary, pigmented epithelium. (G)
K.A.J.: Central core myopathy.
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insets (bottom); splitting multi-panel images into their constituent single-panel images 584

would substantially increase our manual curation burden. Figure S4E top is an 585

acceptable H&E-stained pathology image. Figure S4E bottom is rejected as a duplicate 586

of the S4E top image, though the colors have been slightly modified, and the original 587

image is a different size. 588

S5.2 Supplementary Image processing 589

S5.2.1 Criteria details for rejected, discarded, private, or acceptable 590

images 591

Though criteria are outlined in criteria for rejected, discarded, or acceptable images 592

(Sec S5.1.1) – more formally, we reject the following image types, during our manual 593

data curation process: 594

1. Non-pathology images, such as pictures of vacations or food. 595

2. Multi-panel images, such as a set of 4 images in a 2×2 grid. Images with insets 596

are also rejected. For “H&E vs IHC”, “tissue type”, and “disease state” tasks, we 597

only accept single-panel images, and leave for future work the complexities of 598

splitting multi-panel images into sets of single-panel images. We accept 599

multi-panel images for the “H&E vs others” task, because we use the classifier 600

trained for this task to filter PubMed, and many H&E images in PubMed are 601

multi-panel, which are useful as search results. Multi-panel images may have black 602

dividers, white dividers, no dividers, square insets in a corner, or floating circular 603

insets somewhere in the image. There may be two or more panels/insets. 604

Per-pixel labels for each panel may be the best solution here, and would support a 605

machine learning approach to split multi-panel images to reduce this additional 606

manual data curation burden. 607

3. Overdrawn images, where a 256×256px region could not bound all regions of 608

interest in an image. This occurs most frequently if a pathologist draws by hand a 609

tight circle around a region of interest, preventing image analysis on the region of 610

interest in a way that completely avoids the hand-drawn marks. 611

4. Images that manipulate pathology slides into artistic motifs, such as smiley faces 612

or trees. In contrast, a picture of a painting would be a non-pathology image. 613

Moreover, we completely discard from analysis certain types of images: 614

1. Duplicate images, according to identical SHA1 checksums or by a preponderance 615

of similar pixels. However, duplicate images may be shown in search results, if the 616

images are contained in different tweets, because there may be different replies to 617

these tweets as well. 618

2. Corrupt images, which either could not be completely downloaded or employed 619

unusual JPEG compression schemes that Java’s ImageIO1 library could not open 620

for reading. 621

3. Pathology images that are owned by pathologists who have not given us explicit 622

written permission to use their images. Consider the following example. When a 623

pathlogist gives us permission to download data, our software bot downloads 624

thousands of that pathologists’s social media posts regardless if some of the 625

images in those posts are actually owned by a different pathologist who did not 626

give us permission. We detect these cases when we manually curate the 627

pathologist’s data, and discard these images belonging to pathologists who have 628

not given us permission. To elaborate, pathology images that are taken by 629

1ImageIO documentation available here: https://docs.oracle.com/javase/7/docs/api/javax/

imageio/ImageIO.html

March 8, 2020 23/65

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2020. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html
https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html
https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


pathologists and shared on social media are treated the same way as pathology 630

images taken from case reports or copyrighted manuscripts, i.e. if the pathologist 631

or publisher has not provided us explicit written permission to use the image, we 632

discard the pathology image and do not use it. 633

Images that are not rejected or discarded are deemed “acceptable” pathology images. 634

However, for legal reasons, we cannot distribute all of the images we have from social 635

media, namely: 636

1. Pathology images obtained from children (including fetuses), which may be 637

identifiable. The data shared on social media are anonymized; thus, we do not 638

have contact information for the child’s parent and therefore cannot obtain 639

consent to distribute a picture of e.g. a child’s X-rays or gross specimens. 640

Although unlikely to be identified by the parent if these images were made public, 641

we prefer to err on the side of caution. However, microscopy slide images are not 642

personally identifiable, so we may distribute these. 643

2. Personally identifiable pictures involving adults, because they have the right to 644

consent or not to their likeness being distributed. We consider faces, body profiles, 645

automobile license plates, etc to all be personally identifiable pictures involving 646

adults, especially because these data may be cross-referenced against timestamp, 647

location, clinician, institution, medical condition, other people in the picture, etc. 648

3. Copyrighted content, which includes images of copyrighted manuscripts, pictures 649

of slideshow presentations, and pictures of any brand or logo. A lab picture that 650

includes boxes bearing logos would be a non-pathology image that we cannot 651

distribute, because we do not have permission to distribute any images with the 652

protected logos. A picture of a powerpoint slide at a conference that shows some 653

text outlining a new way to make a clinical decision would also be a 654

non-pathology image that we hold privately and do not distribute. We similarly 655

hold privately an image of text taken from a non-open-access manuscript because 656

it may not be possible to identify the original source to provide a proper citation, 657

and even if we could, this poses an additional data curation burden that we would 658

rather avoid. Moreover, we prefer to err on the side of caution and not distribute 659

these images, rather than rely on “fair use” or similar law that may expose us to 660

legal challenges and costs2. By retaining these images privately, we can train a 661

machine learning classifier to detect these types of images and potentially reduce 662

our manual data curation burden. 663

S5.2.2 Overdrawn rejection criterion 664

Here we discuss the details of rejecting images as “overdrawn”. Figure S4C top is 665

rejected as “overdrawn”, because the regions of interest (ROIs) in the H&E image that 666

the pathologist refers to in the social media post’s text have hand-drawn circles and 667

arrows such that it is not possible to place a 256×256px square over all ROIs without 668

including these circle and arrow marks. We chose 256×256px because deep 669

convolutional neural networks in computational pathology [12] typically require 670

227×227px (i.e. AlexNet [50] or CaffeNet [51]) or 224×224px (i.e. ResNet [28]) images, 671

and we have used these sizes in the past [16, 23]. We note the Inception [52] family of 672

deep convolutional neural networks takes a 299×299px image input, which is larger than 673

256×256px and is also frequently used in computational pathology [12]. Ideally, each 674

image would have ROIs and hand-drawn arrows/circles annotated at the pixel level, so 675

each image could be annotated as “overdrawn” to arbitrary bounding box sizes, whether 676

2Courts in the United States have ruled that images posted to social media are still owned by their
authors and are not public domain. Indeed, in Morel v. AFP , AFP was ordered to pay Morel $1.2
million for copyright infringement because AFP used images that Morel posted to social media.
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256×256px or 299×299px, and we leave this to future work. Smaller “overdrawn” 677

bounding boxes may allow more images to pass as acceptable, rather than be rejected. 678

A 256×256px image size allows minor rotations and crops for deep learning data 679

augmentation using 224×224px input image sizes. Minor upsampling and/or image 680

reflection at the image’s outer boundaries may allow a 256×256px image to work for 681

299×299px input image sizes. Figure S4C bottom is rejected as “overdrawn”, because 682

this image was originally 783×720px and the arrow marks prevent us from capturing 683

each of the two indicated regions of interest in their own 256×256px square. 684

S5.2.3 Uniform cropping and scaling of original images 685

Images shared on social media may be any rectangular shape. However, machine 686

learning methods typically require all images be the same size. To accommodate this, 687

we use the following procedure: 688

1. Take the minimum of two numbers: the original image’s height and width. 689

2. Crop from the center of the original image a square with a side whose length is 690

the minimum from the prior step. 691

3. Scale this square to 512×512px. 692

This square is intended to be large enough to represent small details, such as arrows and 693

circles drawn one pixel wide by the pathologist. Such arrows and circles may then be 694

used to predict if an image is “overdrawn” or not. Ideally, the tweet’s text would be 695

available alongside the image to give the machine learning the fullest information 696

possible about potential ROIs in the image, for “overdrawn” prediction, but for 697

simplicity here we perform only image-based machine learning. 698

The motivation for the 256×256px “overdrawn” criterion detailed in Sec S5.2.2 is 699

that there may be an attention layer that scans the original image for 256×256px 700

squares that have no marks from the pathologist. Such marks include circles or arrows 701

for ROI indication, or the pathologist’s name to indicate copyright/ownership. Such 702

mark-free 256×256px images may then be used for machine learning on only patient 703

pathology pixels. 704

S5.3 Data diversity discussion 705

S5.3.1 Intra-stain diversity 706

There is an art and variability in histochemical stains that we have not discussed in the 707

main text, but for completeness mention here. We note that in clinical practice we have 708

observed high variability stains, for instance H&E stains that appear almost neon pink, 709

to GMS stains (discussed below) that had silver (black) deposition throughout the slide. 710

One reason for this is that there are a number of reagents that may be used for staining, 711

each with different qualities that can make the stain darker, brighter, pinker, bluer, etc. 712

IHC stains typically use an antibody conjugated to a brown stain, namely 713

3,3’-Diaminobenzidine (DAB). The blue counterstain is typically hematoxylin. However, 714

some laboratories conjugate the antibody to a red stain instead. A small minority of our 715

IHC images are this red variant, which should not be confused with H&E. 716

There is counterstain variability in Grocott’s modification of the Gömöri 717

methenamine silver stain [GMS stain]. Typically the counterstain is green, but a pink 718

counterstain is also available. We may see the pink variant as we acquire more data. 719

Currently we see only green. 720
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S5.3.2 Intra-tissue-type diversity 721

The tissue type hashtags we use are very broad, e.g. #gipath encompasses several 722

organs, such as stomach, small intestine, large intestine, liver, gallbladder, and pancreas. 723

We note, for instance, liver morphology looks nothing like the stomach. Moreover, 724

gynecological pathology, i.e. #gynpath, includes vulva (which looks just like skin, i.e. 725

dermatological pathology, #dermpath), vagina, cervix, uterus, fallopian tubes and 726

ovaries. Again, vulva looks nothing like uterus. A number of tissue features also overlap, 727

such as adipocytes in breast tissue and adipocytes in the subcutaneous fat layer in skin. 728

The amount and distribution of adipocytes typically differs between these tissues 729

however. However, a lipoma in any tissue has a great deal of adipocytes and should not 730

strictly be confused with breast tissue. For all these motivating reasons, we have a 731

future direction to sample every organ within a tissue type hashtag category, for all 732

tissue type hashtag categories. 733

S5.4 Procedure overview 734

S5.4.1 Consent, data acquisition, curation, and review 735

We follow the procedure outlined in Fig 1, and we first obtain data in steps A-D. In step 736

A, we find pathologists on social media (Twitter) who share many pathology cases, or 737

share infrequently shares tissues, e.g. neuropathology. In step B, we contact the 738

pathologist via social media and ask for permission to use their cases. In step C, we 739

download the consenting pathologist’s cases shared on social media. In step D, we 740

manually annotate these posted cases for acceptability, e.g. if overdrawn, corrupt, 741

duplicate, multi-panel, art, or non-pathology rejecting per Fig S4. Defining an 742

acceptable pathology image is explained in further sections. We additionally annotate 743

technique (Fig 2A), species (Figs S2, S5A,B,E), and private status (e.g. personally 744

identifiable pictures of adults or pictures of children). Image data overview (Sec S5.1) 745

and criteria for rejected, discarded, private, or acceptable images (Sec S5.1.1) explain 746

further, e.g. our definition of “overdrawn” or what is [not] pathology. Moreover, if the 747

nontumor/low-grade/malignant status in a tweet is not clear, we read the Twitter 748

discussion thread for this case and manually annotate the case appropriately if possible. 749

Step D also involves clarifying cases that we have trouble annotating, e.g. if it is not 750

clear what stain was used for the image. We first ask the pathologist who posted this 751

case to social media. If we do not obtain an answer from that pathologist, we (i) ask a 752

pathologist at our local institution (i.e. author S.J.S.) for an opinion or (ii) ask 753

pathologist coauthors would have shared cases with us. Pathologist validation of tissue 754

and disease labels is an important part of step D, and we use two tools for this. The 755

first tool is the Interactive Pathology Annotator (IPA) (Figs S6, S7), which pathologists 756

may run on their desktop to browse their case annotations. The second tool is our social 757

media bot “pathobot” (Fig 1), which interacts with collaborating pathologists, then 758

publicly posts results of search and disease state predictions. Pathobot search results 759

may indicate annotation issues, e.g. if a bone and soft tissue pathology search returns a 760

breast pathology result, we may check if the breast result was mistakenly labeled as 761

bone and soft tissue. Though we sometimes manually annotate some cases, most cases 762

are annotated in a crowd sourced fashion. We use social media post hashtags and a 763

pathologist-reviewed rule-based text processing algorithm to determine tissue type and 764

disease state (Fig S8). 765

Interactive Pathology Annotator discussion For completeness, we show another 766

example of the use of our Interactive Pathology Annotator (IPA) tool (Fig S7), which 767

some pathologists have used to check that tissue and disease state annotations were 768
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Fig S6: Interactive Pathology Annotator tool and social media dialogue. At left : Pathologist (author S.R.A.) discusses
a case. Without mentioning the diagnosis himself, he confirms the diagnosis suggested by a second pathologist, i.e. cystadenofibroma,
which we explicitly annotate. At right : Our Interactive Pathology Annotator (IPA) tool displays an image from this case, in the context
of the tweet overall. IPA is a portal for pathologists to (i) browse tweets and images in the dataset; (ii) validate our data annotations;
(iii) check our tissue type categorization algorithm results, (iv) check our nontumor, low grade, and malignant categorization algorithm
results; (v) search tweets for specific keywords or diagnoses; (vi) filter out all cases except those from a specific pathologist; and (vii)
click the link to the original tweet on Twitter for context.

correct. This is a case of metastatic disease, from breast to gastrointestinal tissue, 769

showing a diffuse pattern of lobular carcinoma that is more common in breast. 770

S5.4.2 Machine learning, search, checks, and social media bot 771

Our procedure (Fig 1) continues with data analysis in steps E-G. In step E, we use 772

machine learning to train a classifier for a supervised learning task. For example, a task 773

may be to predict the disease state evident in a H&E image: malignant, benign / low 774

grade malignant potential [low grade], or nontumoral pathology. This is a three-class 775

classification task. Our baseline classifier is a Random Forest, [31] which we compare to 776

deep learning. We reuse the classifier to compute a similarity metric for search. In step 777

F, a pathologist posts to social media three key pieces of information together: (i) 778

pathology images, (ii) text descriptions, and (iii) the text “@pathobot”. Our social 779

media bot is triggered when mentioned this way, with parts (i) and (ii) forming the 780

pathology search query. In step G, our bot first searches its social media database of 781

cases, then searches its larger PubMed database. A search result will be ranked highly 782

when the query and result tissue types match, when more clinical keywords are shared 783

between the query and result, and when the images are similar. Additionally, the bot 784

will use an ensemble of classifiers to compute with uncertainties the probability of each 785

disease state in each image. This prediction is a sanity check for search, i.e. if the 786

prediction is uncertain or inaccurate, then the search results may be suspect. 787

S5.4.3 Social media interactions, search, notifications, recruitment 788

One cycle of our procedure (Fig 1) culminates with concluding social media interactions 789

in steps H and I, before ultimately repeating at step A. The social media bot posts its 790
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Fig S7: Interactive Pathology Annotator tool and tissue type hashtags. At left : Pathologist (author K.H.) discusses
case. Without mentioning the diagnosis himself, he confirms diagnoses suggested by other pathologists, i.e. lobular breast carcinoma
metastasized to ileum, which we explicitly annotate. At right : IPA shows that our tissue type categorization algorithm categorizes this
tweet as breast pathology rather than gastrointestinal. The primary tumor is in breast. We define the tissue classification task this way
to have applications for tumor site of origin prediction.

social media search results, PubMed search results, and disease state prediction results. 791

The social media search results include links to similar cases posted to social media. The 792

social media platform may notify pathologists that their posted case has been linked. 793

These pathologists may discuss the putatively similar case. Our bot leverages text 794

information from the pathologist’s search post and reply posts. In this way our bot’s 795

search is informed by any diagnosis in the differential from any replying pathologist. 796

When multiple pathologists mention the same clinical or diagnostic keywords, those 797

keywords are weighted more highly for search. In effect, search is a collective endeavor 798

by all pathologists in the community discussing the case. The same search repeated over 799

time may be more informed when more pathologist discussion has accumulated over 800

that time. We find that integrating our bot into social media discussions sometimes 801

inspires pathologists to contact us, share with us, and collaborate with us. We then 802

return to step A, and we collect more data for search and classifier training. 803

S5.5 Text data overview 804

For supervised learning, we use regular expressions to detect keywords in a tweet’s text, 805

to determine labels for the tweet’s images. The text and included hashtags may indicate 806

tissue type or disease state. 807

S5.5.1 Tissue type categories from text 808

Prior work has discussed pathology-related hashtags as a way to make pathology more 809

accessible on social media [53]. Pathologists use hashtags to indicate histopathology 810

tissue types, such as “#gynpath” to indicate gynecological pathology (Fig 2B). 811

Sometimes alternative spellings are used, such as “#ginpath”. Abbreviations are also 812

common, e.g. “#breastpath” and “#brstpath” all mean the same thing: breast 813
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Tweet text including hashtags Process Tweet hashtags

#crohn, #pathbug, or
#neurodegeneration ?

#ANYcancer or
#metastasis ?

Process Tweet text

Tumor/-oma in Tweet,
low grade/malignant likely,

nontumor unlikely

Phyllodes, grade, tumor,
or -oma (not Schistosoma)?

Conflicting diagnoses?

Tweet is nontumorTweet is low gradeTweet is malignant Tweet is skipped

Was tumor/-oma detected?

yes 

no #ANYtumor or
#ANYoma ?

yes/no
regardless

no 

yes 

Carcinoma, blastoma, sarcoma,
met, anaplasia, myeloma, HL, CLL,
NSCC, MTSCC, RCC, BCC, etc?

-oma in situ, or
chondroblastoma?

yes/no 
regardless 

yes 

Congenital, cholecystitis, hydatid cyst,
chorangiomatosis, diverticulosis,

mycobacterial spindle cell pseudotumor,
intravenous leiomyomatosis, etc?

no 

yes 

no 

yes 

no 

yes 

Benign, cyst, polyp, angioma, wart,
hamartoma, leiomyoma, HPV, EBV, GIST,
DCIS, LCIS, hydatidiform mole, carcinoid,
dys-/hyper-/meta-/neo-plasia, adenoma, etc?

no 

yes 

Normal, ulcer, injury, infarct, infect, tauopathy,
endometriosis, HSV, CMV, GVHD, Crohn, etc?

no 

yes 

no 

yes #ANYpath, cerebellum, or nodule?

no 

yes no 

yes
yes

Fig S8: 3-disease text processing algorithm flowchart. Flowchart of algorithm that processes a single tweet’s text to
categorize it as nontumor (309 images), benign/low grade malignant potential [low grade] (347 images), or malignant (385 images). A
tweet may be skipped (132 images, i.e. 11.3% of images) when the pathologist discusses multiple possible diagnoses for this case or
when no pathology keywords are found. Dashed line indicates early steps where tumor/-oma detected, and a later step where detected
tumor/-oma considered for possible low grade categorization. Nontumor, low grade, and malignant are defined in Sec S5.7. Flowchart
steps are detailed in Sec S5.7.1. The algorithm has many steps in order to parse overlapping words that have different diagnoses. For
instance, if “Lobular carcinoma in situ of the breast” (which is a low grade disease) was the tweet text, the algorithm has an early
step to categorize ”carcinoma in situ” as low grade (which is correct here) because a later step categorizes “carcinoma” as malignant
(which is not correct here). Indeed, tweet text “Carcinoma of the breast” describes a malignant disease and the algorithm categorizes it
malignant because “in situ” is absent. Besides “carcinoma in situ” (low grade) and “carcinoma” (malignant), the algorithm distinguishes
“chorangiomatosis” (nontumor) from “angioma” (low grade), “hydatidiform mole” (low grade) from “hydatid cyst” (nontumor) from
“ovarian cyst” (low grade) from “cholecystitis” (nontumor), and “intravenous leiomyomatosis” (nontumor) from “leiomyoma” (low grade).
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pathology (Fig S7). A pathology hashtag ontology is available at 814

https://www.symplur.com/healthcare-hashtags/ontology/pathology/. Because 815

a tweet can have more than one hashtag, we took the first tissue type hashtag to be the 816

“primary” tissue type of the tweet, and ignored the others. Section S5.6.1 discusses a 817

special case. As detailed in Section S5.6.2, we used hashtags and keywords for all tweets 818

in a message thread to identify the ten tissue types on Twitter, finding 233 bone and 819

soft tissue tweets, 155 breast tweets, 415 dermatological tweets, 794 gastrointestinal 820

tweets, 239 genitourinary tweets, 218 gynecological tweets, 308 head and neck tweets, 821

115 hematological tweets, and 559 pulmonary tweets. 822

S5.5.2 Nontumor, low grade, and malignant categories from text 823

We define three broad disease state categories (Figs 2C, S8) to use as labels for 824

supervised learning. Our “nontumor” category of 589 tweets includes normal tissue, 825

artifacts, injuries, and nontumoral diseases, e.g. Crohn’s disease, herpes simplex 826

infection, and myocardial infarction. Our “malignant” category of 1079 tweets includes 827

all malignant disease, including carcinoma, blastoma, sarcoma, lymphoma, and 828

metastases. Our definition of malignancy in epithelial cancers is the ability to breach 829

the basement membrane, i.e. a malignant tumor escapes containment and is therefore 830

no longer treatable with surgical resection. Our “pre-neoplastic/benign/low grade 831

malignant potential” [low grade] category of 919 tweets is then all tumors or 832

pre-cancer/neoplastic lesions that are not yet invasive/malignant, e.g. hamartomas, 833

carcinoid tumors, adenomas, and carcinoma in situ. Details in Section S5.7. For the 834

nontumoral vs low grade vs malignant task, text processing was more complicated than 835

the tissue type task (Sec S5.6.2) because (i) of a heavy reliance on diagnosis keyword 836

matching (flowchart in Fig S8), and (ii) additional per-tweet and per-image annotations 837

to clarify nontumor/low-grade/malignant state, which may involve feedback from a 838

pathologist. Details in Section S5.7. 839

S5.6 Supplementary Text processing 840

S5.6.1 Hashtag special case 841

A hashtag special case is “#bstpath”, bone and soft tissue pathology, which we include 842

in our breast pathology category only when the social media post’s text also includes 843

the word “breast” or other breast-related keywords. Such keywords are listed further 844

below in this subsection. Examples of such tweets are “Pleomorphic lobular carcinoma 845

of the breast: Beautiful cells but nasty tumour #pathology #pathologists #BSTPath” 846

and “Now at my desk, W(47y-o) breast nodule...Could be it siliconoma?? But it isn’t 847

noted giant cells #pathology #pathologists #BSTpath”. 848

S5.6.2 Tissue hashtags and keywords 849

We found a large number of pathology-related hashtags. We grouped alternative 850

spellings, e.g. #ginpath is #gynpath, #brstpath is #breastpath, and 851

#headandneckpath is #entpath. We also grouped less common hashtags with more 852

common hashtags, e.g. #cardiacpath is #bstpath (bone and soft tissue). Some 853

groupings were broad, e.g. #headandneckpath, #thyroid, #salivary, #oralpath, 854

#endocrine, #endopath, #oralpath, #eyepath, and #ocularpath are all #entpath. 855

To expand the per-tissue tweet counts, we moved beyond the hashtags and next 856

searched for keywords in the tweet using Perl regular expressions. Further, if a tweet’s 857

tissue type could not be determined by hashtags and keywords, we assigned the tissue 858

type of any other tweet in the message thread of tweets. For example, if a tweet of 859
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unknown tissue type were a reply to a tweet of known genitourinary type, then we 860

considered both tweets to be genitourinary. 861

S5.7 Nontumoral, Low grade, and Malignant task details 862

Tasks involving distinguishing nontumoral disease, low grade tumors, and malignant 863

tumors (Fig 2C) are our most difficult tasks. The acknowledged definition of 864

“malignant” in epithelial cancers is the ability to breach the basement membrane, i.e. a 865

malignant tumor escapes containment and is therefore no longer “treatable with surgical 866

resection”. A malignant tumor can invade into the adjacent tissue, lymphatics, and 867

blood vessels. For machine learning, we define a three categories of disease: (a) normal 868

tissue and nontumoral disease; (b) benign, low grade, and oncovirus-driven tumoral 869

disease; and (c) malignant tumors – but there are number of caveats with this, because: 870

1. there is a spectrum of pathology rather than an oversimplified 3-class 871

nontumoral/low-grade/malignant system. 872

2. the benign/malignant dichotomy may be more vague in certain tissues e.g. central 873

nervous system (CNS) primary tumors such as chordomas. 874

3. vague terms like adenoma are typically benign but may be malignant, and likewise 875

vague terms like anaplasia are more often associated with malignancy but not 876

always. 877

4. vague terms like anaplasia and neoplasia make no real reference to the malignancy 878

of lesions i.e. there are benign anaplastic lesions, while neoplasia is almost 879

synonymous with tumor. 880

5. terms like tumor do not provide information about benign or malignant state, 881

though normal/nontumoral can be ruled out. 882

6. there may be some disagreement if some terms, e.g. “carcinoma in situ”, are more 883

appropriate to include as low grade, or if instead should be considered malignant 884

due to their malignant potential or treatment implications. For instance, ductal 885

carcinoma in situ (DCIS) typically needs to be removed with surgery or 886

radiotherapy, whereas lobular carcinoma in situ (LCIS) typically does not. DCIS’s 887

lower grade counterpart, atypical ductal hyperplasia, may get surgery or not. We 888

believe treatment implications are a separate task. Typically, tweets do not 889

include a decision to perform surgery or not, so additional annotations may be 890

needed for the surgery task. We assign all pre-cancer and tumoral disease with 891

malignant potential to the “low grade” category, in light of these 892

benign/malignant ambiguities and data limitations. 893

7. the diagnosis should be known before deciding benign/malignant, but it is very 894

difficult to know the full diagnosis from the brief, generic, descriptive terms in the 895

tweet. 896

S5.7.1 Text processing for Nontumoral, Low grade, and Malignant tasks 897

To determine if an acceptable H&E human microscopy image is nontumoral, low grade, 898

or malignant, we use regular expressions (Fig S8) as we did for tissue type classification. 899

However, keywords differed and we considered all tweets in a message thread per 900

Sec S5.5.1. To infer these message threads of tweets, we downloaded from Twitter each 901

tweet’s metadata (in JavaScript Object Notation (JSON) format), which describes the 902

parent tweet for each tweet. If tweet A is a reply to tweet B, then tweet A is the parent 903

of tweet B, and both tweets are in the same message thread. 904

Our heirarchical algorithm for nontumor/low-grade/malignant keyword-matching 905

shown in Fig S8, and details for each step follow. First, to determine if a single tweet 906
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indicated nontumoral, low grade, or malignant, we looked for specific hashtags in a 907

tweet’s text that indicated malignancy, tumoral status, or nontumoral status. For 908

illustartion, what follows is a subset of our rules, with commentary. 909

1. Malignant: /#[a-z]*cancer/i or /#metastas[ei]s/i 910

• The first regular expression in this set matches #ANYcancer, where ANY 911

can be any non-whitespace characters, e.g. “#bladdercancer” and 912

“#breastcancer” both match, as well as “#cancer”. 913

• Metastasis is a sign of malignant cancer, so tweets with #metastasis or 914

#metastases hashtags are malignant. 915

• If any matching keyword is detected, no further keyword processing is 916

performed. The tweet is malignant. 917

2. Nontumoral: /#crohn/i or /#neurodegeneration/i or /#pathbug/i 918

• Crohn’s disease and neurodegeneration are not tumoral diseases, so this 919

tweet is in the nontumoral/normal category. This /#crohn/i regular 920

expression is case-insensitive, so it matches “#crohn”, “#Crohn”, and 921

“#CROHN”. The #pathbug hashtag indicates a parasite or other 922

microorganism is in the image, which is also nontumoral. 923

• If any matching keyword is detected, no further keyword processing is 924

performed. The tweet is nontumoral. 925

3. Tumoral status (ambiguously low grade or malignant): /#[a-z]*tumou?r/i or 926

/#[a-z]*oma/i 927

• The first regular expression in this set matches #ANYtumor or 928

#ANYtumour, where ANY can be any non-whitespace characters, e.g. 929

“#BrainTumor” and “#phyllodestumour” both match, as well as “#tumor”. 930

• The second regular expression matches #ANYoma, e.g. #Lymphoma and 931

#leiomyoma both match. 932

• Because “tumor” and “-oma” do not necessarily mean a tumor is low grade 933

or malignant, further keyword matching is performed. It is unlikely that the 934

tweet is nontumoral. If no other specific information is found after all further 935

keyword matching is performed, the tumor is presumed to be low grade. 936

Second, if no hashtags matched, we then analyzed keywords in the tweet text. 937

1. Skip: /mistake/i or /misinterpret/i or /confuse/i or /suspect/i or 938

/worry/i or /surprise/i or /mimic/i or /simulate/i or /lesson/i or 939

/\bhelp\b/i or /usually/i or /difficult/i or /pathart/i or 940

/pathchallenge/i or /pathquiz/i or /pathgame/i or /^http/ 941

• We skip tweets where (i) the pathologist discusses points of the case which 942

may be easily mistaken – instead of providing a single diagnosis, (ii) the 943

pathologist provides a diagnosis but may suspect an alternative diagnosis, or 944

(iii) the tweet is simply a link to another tweet. No further keyword 945

matching is performed for this tweet. 946

2. Tumoral status (ambiguously low grade or malignant): /phyllod/i or 947

/\bgrade\b/i or /tumou?r/i or (/[a-z]{3,}oma\b/i and not 948

/schistost?oma/i) 949

• Phyllodes tumors, mentions of “tumor” or “tumour”, mentions of tumor 950

“grade”, and mentions of words that end in “oma” but are not “Schistosoma” 951

– are all detected here. 952
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• Loosely speaking, phyllodes tumors are only slightly more likely to be low 953

grade than malignant. Because “tumor”, “-oma”, and “grade” do not 954

necessarily mean a tumor is low grade or malignant, further keyword 955

matching is performed. It is unlikely that the tweet is nontumoral. If no 956

other specific information is found after all further keyword matching is 957

performed, the tumor is presumed to be low grade. 958

• Schistosoma (and its misspelling “Schistostoma”) refers to a genus of 959

parasitic worm, rather than a tumor, though Schistosoma ends in “oma” like 960

many tumor types. 961

3. Low grade: /oma in situ/i or /chondroblastoma/i 962

• If we did not skip this tweet, but the tweet does mention “oma in situ’ ’, e.g. 963

“carcinoma in situ” or “melanoma in situ”, then we consider this tweet and 964

images to represent low grade disease. Carcinoma in situ is pre-cancer, and 965

we consider it more low grade than malignant. If a tweet contains only 966

“carcinoma” but not “in situ”, subsequent steps will consider the tweet as 967

malignant. 968

• If the tweet includes “chondroblastoma”, this tweet is low grade. This is not 969

to be confused with other blastomas, such as glioblastoma or 970

lymphoblastoma, which are malignant and matched in subsequent steps. 971

• No further keyword matching is performed if these patterns match. The 972

tweet is low grade. 973

4. Malignant: /malignant/i or /malignancy/i or /cancer/i or /\bCA\b/i or 974

/carc?inoma/i or /sarcoma/i or /blastoma/i or /\bWilms/i or /GBM/i or 975

/anaplas(?:ia|tic)/i or /metastas[ie]s/i or /metastatic/i or 976

/\bmets?\b/i or /adenoca/i or /melanoma/i or /seminoma/i or /lymphoma/i 977

or /leuka?emia/i or /mesothelioma/i or /myeloma/i or /hodgkin/i or 978

/\bHL\b/i or /burkitt/i or /plasmoc[yi]toma/i or (/paget/i and 979

/breast/i) or /\bCLL\b/i or /PCNSL/i or /NSCHL/i or /\bCHL\b/i or /NSCC/i 980

or /\bI[LD]C\b/i or /\bASPS\b/i or /mtscc/i or /sq?cc/i or /rcc/i or 981

/bcc/i 982

• Many diagnoses and abbreviations may indicate cancerous malignancy, e.g. 983

carcinoma, sarcoma, Wilms’ tumor, leukemia, RCC [renal cell carcinoma], 984

NSCC [non-small cell lung carcinoma], or the stand-alone abbreviation “CA” 985

[cancer]. 986

• We consider “anaplastic/anaplasia” to be more malignant than low grade 987

disease. 988

• No further keyword matching is performed if these patterns match. The 989

tweet is malignant. 990

5. Nontumoral: /congenital/i or /cholecystitis/i or /chorangiomatosis/i or 991

/mycobacteri(?:um|al)\s*spindle\s*cell\s*pse?udotumor/i or 992

/intravenous\s*leiomyomatosis/i or /helicobacter/i or /dirofilaria/i 993

or /tuberculo/i or /enterobius/i or /echinococcus/i or 994

/hydatid\s*cyst/i or /giardia/i or /cryptosporidium/i or /ascaris/i or 995

/sarcina/i or /worm/i or /spiroquet(?:osis|es)/i or /diverticulosis/i 996

or /villitis/i or /colitis/i or /gastritis/i or /esophagitis/i or 997

/appendicitis/i or or /xanthoma/i 998

• Many diagnoses and abbreviations may indicate nontumoral disease, e.g. 999

congenital conditions, Helicobacter infection, and villitis. Nontumoral disease 1000

keywords that contain “cyst”, e.g. “cholecystitis” and “hydatid cyst”, are 1001
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detected here, because subsequent keyword matching steps will detect “cyst” 1002

as a sign of low grade tumoral disease. 1003

• If one of these nontumoral keywords matches, no further keyword matches 1004

are attempted, and the tweet is considered nontumoral, even if prior steps 1005

detected “tumor” or “-oma”. For instance, a “xanthoma” is a lipid aggregate, 1006

not a tumoral disease, even though xanthoma ends in -oma. 1007

6. Low grade: /benign/i or /cyst/i or /polyp/i or /hamartoma/i or 1008

/chorangioma/i or /ha?ematoma/i or /cylindroma/i or /fibroma/i or 1009

/luteoma/i or /c[yi]toma/i or /cond[yi]loma/i or 1010

/neoplas(?:ia|tic|m)/i or /LCIS/i or /DCIS/i or /\b[LD]IN\b/i or 1011

/lipoma/i or /carcinoid/i or /neuroma/i or /meningioma/i or 1012

/perineurioma/i or /cavernoma/i or /\bLGG\b/i or /\bODG\b/i or 1013

/oligodendroglioma/i or /craniopharyngioma/i or /le[yi]om[iy]oma/i or 1014

/schwannoma/i or /osteochondroma/i or /ependymoma/i or /angioma/i or 1015

/syringoma/i or /acanthoma/i or /collagenoma/i or /hidradenoma/i or 1016

/papilloma/i or /pilomatrixoma/i or /hydatidiform\s*mole/i or /wart/i 1017

or /molluscum/i or /\bHPV\b/i or /\bEBV\b/i or /kerat?osis/i or 1018

/fibrokeratoma/i or 1019

/melanoc[iy]tosis/i or /brenner/i or /granular\s+cell\s+tumou?r/i or 1020

/metaplas(?:ia|tic)/i or /dysplas(?:ia|tic)/i or 1021

/dysembryoplas(?:ia|tic)/i or /hyperplas(?:ia|tic)/i or /\bLFH\b/i or 1022

/\bDNE?T\b/i or /\bNET\b/i or /\bPTC\b/i or /\bGIST\b/i or /\bSTIC\b/i 1023

or /\b[LD]ISN\b/i or /adenoma/i or /adenosis/i 1024

• Many diagnoses may indicate benign tumor, e.g. hamartoma, fibroma, 1025

condyloma, papilloma, lipoma, adenoma, adenosis, or cyst. 1026

• We consider “neoplastic/neoplasia”, “metaplastic/metaplasia”, 1027

“hyperplastic/hyperplasia”, and “dysplastic/dysplasia” to be more indicative 1028

of benign/low-grade/non-invasive/pre-malignant disease than malignant 1029

disease, but these terms are vague. 1030

• We broadly consider oncovirus-driven tumors and wart-like growths to be in 1031

this low grade category also, e.g. HPV [human papilloma virus] warts and 1032

Molluscum contagiosum “water warts”. 1033

• We similarly consider abbreviations “LCIS” [lobular carcinoma in situ], 1034

“DCIS” [ductal carcinoma in situ], “LISN” [lobular in situ neoplasia], and 1035

“DISN” [ductal in situ neoplasia] to be more benign than malignant disease, 1036

so we categorize them as low grade. Though DCIS may require surgical or 1037

radiological intervention to be removed while LCIS may not, we consider our 1038

“low grade” and “malignant” categories to be defined by the apparent 1039

histopathology rather than the appropriate medical intervention. Predicting 1040

appropriate medical intervention would be a different machine learning task. 1041

• If one of these keywords match, the tweet is considered low grade and no 1042

further keyword matching is performed. 1043

7. Nontumoral: /normal/i or /ulcer/i or /embolism/i or /thromb/i or 1044

/rupture/i or /infarct/i or /aneurysm/i or /ha?emorrhag/i or 1045

/injur(?:y|ed)/i or /inflam/i or /swell/i or 1046

/balloon\s*cell\s*na?ev(?:us|i)/i or /decidua/i or /foreign/i or 1047

/lymphadenopath?y/i or /vasculopathy/i or /vasculitis/i or /synovitis/i 1048

or /pulmonary\s*interstitial\s*glycogenosis/i or 1049

/essential\s*thrombocythemia/i or /endometriosis/i or 1050

/mastoc[iy]tosis/i or /castleman/i or /herpe(?:s|tic)/i or /\bHSV\b/i 1051

or /\bCMV\b/i or /cytomegalovir/i or /viral/i or 1052
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/bacteri(?:a|um)/i or /fung(?:al|us)/i or /mycetoma/i or 1053

/myco(?:sis|tic)/i or 1054

/infect(?:ion|ed)/i or /tauopathy/i or /amyloidosis/i or /neurodegen/i 1055

or /\brabies\b/i or /hemosiderosis/i or /polymicrogyria/i or 1056

/status\s*verrucosus/i or /\bIUGR\b/i or 1057

/storage\s*dis(?:ease|order)/i or /athero(?:sis|ma)/i or 1058

/atherosclero(?:sis|tic)/i or /gauzoma/i or /colchicine/i or /\bIBD\b/i 1059

or /GVHD/i or /crohn/i 1060

• Many diagnoses may indicate normal tissue of nontumoral disease, e.g. 1061

normal, embolism, decidua, tauopathy, foreign body, mycetoma, CMV 1062

[cytomegaolovirus] infection, GVHD [graft versus host disease], and Crohn’s 1063

disease. 1064

• If one of these nontumoral keywords matches, no further keyword matches 1065

are attempted, and the tweet is considered nontumoral, even if prior steps 1066

detected “tumor” or “-oma”. For instance, a mycetoma is not a tumor, even 1067

though mycetoma ends with -oma. 1068

8. Nontumoral: (not tumor/oma) and (/#[a-z]*path/i or /cerebell(?:um|ar)/i 1069

or /nodul(?:e|arity)/i). Low grade if tumor/oma. 1070

• If the tweet does not have tumor or “-oma” keywords detected from prior 1071

steps, and if the tweet has a #ANYpath hashtag (e.g. “#pulmpath” or 1072

“#pathology”), mention of “nodule”/“nodularity”, or mention of the 1073

cerebellum, then we consider the tweet to be nontumoral. If instead the 1074

tweet has tumor or -oma keywords, then we consider the tweet to be low 1075

grade. The tweet is skipped if no steps identified the tweet as nontumoral, 1076

low grade, or malignant. 1077

• Cerebellum is mentioned in several tweets, e.g. to depict normal cerebellar 1078

tissue3. Currently, we group normal tissue with tissue having nontumoral 1079

disease. We expect more tissue-based keywords may be used here in the 1080

future, as we expand our study to include more pathologists, tissues, and 1081

normal cases. 1082

• In practice, we manually inspect all tweet message text to minimize the 1083

number of cases that are classified as nontumoral here. We typically write 1084

regular expressions to match specific keywords that indicate if a tweet 1085

represents nontumoral, low grade, or malignant disease. 1086

• As part of our manual data curation, if on Twitter there was discussion 1087

among pathologists, and a different pathologist mentioned a correct 1088

diagnosis, and our consenting contributing pathologist concurred, then we 1089

write an auxiliary annotation file for the tweet with a summarized diagnosis4. 1090

This summary is also used for pattern matching. This is an additional way 1091

that we minimize how many cases are handled at this late step. 1092

• Moreover, if the contributing pathologist wrote diagnostic text directly in the 1093

image, we will write this text in the auxiliary annotation file for text 1094

matching also.5 1095

3Normal cerebellum case by S.Y. at https://twitter.com/Sty_md/status/821840894634565632
4A case of this is from author K.H., where a different pathologist gave the diagnosis, and he agreed.

We summarized this as “metastatic lobular carcinoma” in the auxiliary annotation file for the tweet
https://twitter.com/Ho_Khanh_MD/status/999989201734197250.

5A case of this is from author M.P.P., where M.P.P. wrote “IDC DIN LISN” directly on a shared
histology image in the tweet https://twitter.com/dr_MPrieto/status/890118713155997696 so we
wrote this text in the auxiliary annotation file for the tweet.
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Fig S9: Machine learning features. We use a variety of color, texture, and edge features
for baseline machine learning analyses. Some features, such as color histograms, detect only
color. Other features, such as Color Correlograms, detect both colors and textures. Pyramid
features are scale-invariant. We separately consider SIFT features, which detect edges in a
scale-invariant, rotation-invariant, and color-invariant manner, localized at interest points in an
image.

• The way this “default nontumoral or low grade” rule is intended to be used is 1096

as a catch-all for unusual but non-malignant conditions6. Our motivation for 1097

this rule is to minimize our manual data curation burden. We do not wish to 1098

write an auxiliary annotation file or make a new regular expression for each 1099

unusual type of case, and we observe many of these cases are not malignant. 1100

It remains important to inspect the cases manually for correctness. 1101

Tweets that do not match any nontumoral, low grade, or malignant rules are 1102

skipped in the same manner that Tweets matching skip rules are skipped. An 1103

additional caveat is this keyword matching may need refinement as we accumulate data. 1104

S5.8 Image features for machine learning 1105

To perform baseline machine learning analyses on the images from social media, we 1106

derive a feature representation for each image, as follows. We crop each image to the 1107

center square and resize it to 512×512 pixels [px]. See Sec S5.2.3 for more discussion of 1108

the 512×512px image size and how it relates to the 256×256px image size for the 1109

“overdrawn” criterion. This 512×512px image is then converted to a feature vector of 1110

2,412 dimensions. The features we use (Fig S9) are available in Apache LiRE [54]. 1111

These features, and their dimension counts, are as follows: CEDD (144) [55], Color 1112

Correlogram (256) [56], Color Histogram (64) [54], FCTH (192) [57], Gabor (60) [54], 1113

Local Binary Patterns (256) [58], Local Binary Patterns Pyramid (756) [59], PHOG 1114

(630) [60], Rotation Invariant Local Binary Patterns (36) [61], and Tamura (18) [62]. 1115

S5.8.1 Deep learning instance and set feature vectors 1116

After training, our appended 100-neuron layer (Fig 3B) is a 100-dimensional disease 1117

feature representation for a 224×224px patch. Due to our custom activation function 1118

and regularization (Fig S13), these 100 features are approximately binary (Fig S14C). A 1119

vector sum of these 100-dimensional approximately binary feature vectors is a 1120

6A case of this is from K.H., observing iron pill lesions in stomach biopsy https://twitter.com/Ho_

Khanh_MD/status/963800933716123648.
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100-dimensional feature counter vector, which we relate to set cardinality (Eqn 8). 1121

Inspired by Deep Sets [63] and continuous bag-of-words [64] methods, we sample 21 1122

patches throughout the white-balanced image, then add the 21 100-dimensional feature 1123

vectors to derive a 100-dimensional set representation for the white-balanced image 1124

(Fig 3C). In the set representation, if a feature’s value is 21, then all 21 image patches 1125

have this feature. An approximate intuition follows that if the value is 20, then 1 of the 1126

21 patches does not have this feature. This set-based approach offers limited 1127

interpretability and facilitates learning on large pathology images on social media, 1128

despite the receptive field of a deep neural network being much smaller (1 million pixels 1129

versus 224×224px, respectively). We train a Random Forest on the concatenation of (i) 1130

this 100-dimensional set representation, (ii) our 2,412-dimensional hand-engineered 1131

feature vector, (iii) the 10-dimensional tissue type covariate vector, and (iv) the 1132

1-dimensional marker mention covariate vector (Fig 3C). Like Deep Sets, we use deep 1133

learning for instance learning, and add instance representations for a set representation. 1134

However, our approach differs from Deep Sets in that (i) we use a Random Forest to 1135

learn on set representations and side information (which is not differentiable end-to-end), 1136

(ii) we add approximately binary Centered Soft Clipping (Fig S13) features in the range 1137

(0,1) to implement counter-like set representations rather than add ReLU features in the 1138

range [0,∞) which do not necessarily count instance features, and (iii) we use Random 1139

Forest feature importance to interpret the relative influence of deep features, 1140

hand-engineered features, and optional covariates on prediction/classification (Fig 4). 1141

S5.9 Machine learning sanity checking for search 1142

S5.9.1 Prediction uncertainty quantified with ensemble 1143

For disease state predictions posted to social media by the bot, we use an ensemble of 1144

classifiers to quantify prediction uncertainty. This ensemble consists of the set of 1145

classifiers for leave-one-pathologist-out precision@k search testing, so the ensemble size 1146

is equal to the number of pathologists who contributed data. Leaving one pathologist 1147

out from each classifier’s training ensures some variability between classifiers. One 1148

classifier makes one prediction per image. We use a Z-test to determine if a disease 1149

state prediction’s mean is significantly above chance. If no prediction is above chance, 1150

then the predictions may be due to chance alone and ignored by a pathologist. Likewise, 1151

search results may be ignored. This is our first prospective sanity check, and only 1152

requires a statistical interpretation of predictions. 1153

Training data detection with ensemble This leave-one-out ensemble provides an 1154

additional non-prospective sanity check – if only one classifier in the ensemble makes a 1155

prediction that is strongly different from all the other classifiers in the ensemble, it is 1156

possible that the bot was requested to make a prediction on a case that was in the 1157

training data. This one “outlier” classifier that makes the strongly different prediction 1158

is the classifier that left this pathologist’s case out for training. The distribution of 1159

predictions from these classifiers is depicted in a boxplot posted to social media by our 1160

bot (Fig 1 at lower left). An outlier is indicated by a circle in the boxplot, and a circle 1161

in a strongly different direction that the boxplot’s interquartile range may suggest the 1162

“outlier classifier sanity check” has been encountered. 1163

S5.9.2 Classifier repurposed, so if prediction suspect, then search suspect 1164

If the Z-test of our distribution of predictions indicates the evidence in favor of a 1165

particular disease state, e.g. nontumor, is not due to chance alone, but this is surprising 1166

to a pathologist’s expectations, the pathologist may consider the prediction to be 1167
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suspect, so search results may be suspect as well. This is our second prospective sanity 1168

check, which requires a pathologists’s expert opinion. 1169

Whole-patient prediction and disagreement detection Our method calculates 1170

the probability of a disease state per image, but given 1-4 images are in a tweet, we are 1171

left with two questions. First, what is the overall probability that this patient has a 1172

particular disease state, e.g. malignant? For this, we make the näıve statistical 1173

independence assumption of probabilities, multiply the prediction probabilities, and 1174

normalize them to sum to one. Second, what should we do when the prediction for one 1175

image differs from another for a given patient? In this case, the bot includes a warning 1176

in its tweet message and suggests mistakes are more likely, but we do not consider this a 1177

prospective sanity check, because images could indeed show different disease states. 1178

S5.9.3 Deep learning prediction heatmaps comparable to pathologist 1179

expectations 1180

Heatmaps from our deep learning can localize disease states within an image (Figs 5, 1181

S11), offering our third prospective sanity check to pathologists. If localization of 1182

predicted disease is suspect, then prediction may be suspect, and search may be suspect. 1183

S5.10 Machine learning interpretability for search 1184

S5.10.1 Hand-engineered feature interpretability 1185

We use existing hand-engineered visual features extensively (Fig S9). Image features for 1186

machine learning (Sec S5.8) discusses the combination of color, texture, and edge 1187

features we use (Fig S9). All of have human-defined mathematical or algorithmic 1188

behavior written in software code. We know by definition a color histogram feature is 1189

invariant to rotation, because such a feature may simply be the sum of each pixel’s red 1190

value in an image. Similarly, rotating an image should not change the diagnosis, so 1191

rotation invariance makes sense for disease state prediction. We also know properties of 1192

other features, such as the important Local Binary Patterns Pyramid (LBPP) [59]. 1193

LBPP is globally color-invariant because it operates on grayscale pixel values, not color 1194

pixel values. This may provide robustness to staining protocol differences between 1195

institutions. LBPP is globally scale-invariant because it employs a pyramid for 1196

multi-scale representation. This is the same pyramid used by PHOG [60]. This pyramid 1197

may support robust machine learning despite pathologists sharing images at different 1198

magnifications. LBPP is locally rotation-invariant because it consists of 1199

rotation-invariant local binary patterns at every level of the multi-scale pyramid 1200

representation. These rotation-invariant local binary pattern features are locally robust 1201

to localized orientation changes of a pathology image, e.g. minor perturbations in the 1202

orientation of a cell or tissue fiber. In contrast, PHOG consists of oriented gradients at 1203

every pyramid level, rather than rotation-invariant local binary patterns. LBPP is not 1204

globally rotation-invariant because, like PHOG, most pyramid grid cells are spatially 1205

localized, so a rotated image will have a different feature representation. LBPP is a 1206

texture feature because it compares the value of a center pixel to the value of many 1207

pixels at a particular radius from the center. Prior groups have used texture features to 1208

distinguish stroma, lymphocytes, necrosis, etc. Hand-engineered feature interpretability 1209

provides a simple foundation on which to build more abstract levels of interpretability. 1210

We can also reason about what features do not improve disease state prediction, e.g. 1211

SIFT features, which are thought to cover nuclei. 1212
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Fig S10: Random Forest feature importance for prioritizing only-natural-image-trained deep features, when
non-deep, ImageNet2048, and clinical features are used together for learning. As in Fig 4, we use the mean decrease
in accuracy to measure Random Forest feature importance. However, we consider here ImageNet2048 features, rather than the 100 deep
features trained on histopathology images. No visual features here are designed with histopathology in mind or trained on histopathology
data. This provides an interpretation of what hand-engineered and only-natural-image-trained deep features are important for disease
state prediction, before training the deep neural network on histopathology images and covariates. In this way, we train a Random
Forest on 2412 hand-engineered features, ImageNet2048 features, and the tissue type covariate. The tissue type covariate is exceedingly
important here, highlighting how disease state is reported in our data in a tissue-type-specific manner (Fig 8C1), e.g. infection is more
likely reported in lung than breast. Pyramid histogram of oriented gradient (PHOG) features and color features (color histograms and
Color Correlograms) are important hand-engineered features complimentary to the ImageNet2048 features. PHOG is scale-invariant (due
to pyramids) and color-invariant (due to grayscale), while said color histograms and Color Correlograms are rotation-invariant. Taken
together, these important hand-engineered features may provide robust pathology representations for Random Forest learning. Such
representations may complement ImageNet2048 features, with “r50non1227” being the most important of these 2,048 features from the
Global Average Pooling layer of a ResNet-50 trained only on the natural images (e.g. cats and dogs) of the ImageNet dataset. Thus of
all 2,048 ImageNet2048 features, r50non1227 may be prioritized first for interpretation (Fig S11 shows r50non1227 interpretation via
heatmaps). Random Forest feature importance in the supplement discusses further (Sec S5.10.2).

S5.10.2 Random Forest feature importance 1213

We use Random Forest feature importance to infer which features are important for 1214

disease state predictions. Hand-engineered visual features, clinical covariates, and deep 1215

learning features are concatenated together for a Random Forest to learn to predict 1216

disease state, so this single Random Forest classifier provides interpretability of each 1217

feature, in context together (Fig 4). We use this to infer broad principles, e.g. 1218

important clinico-visual features of disease state are texture (e.g. Local Binary Pattern 1219

Pyramid features) and tissue type covariates. Moreover, Random Forest feature 1220

importance identified several deep features were more important than the others for 1221

disease state prediction, so we focused our analyses on these important deep features. 1222

For a before-and-after-histopathology-image-training comparison, we also consider 1223

feature importances when training a Random Forest with ImageNet2048 features 1224

(Fig S10). ImageNet2048 deep features have not been trained on histopathology images 1225

or the tissue type covariate. We observe that before histopathology training, these 2048 1226

deep features are complemented by scale-invariant color-invariant edge features (i.e. 1227

PHOG) and rotation-invariant color features (color histograms and Color Correlograms). 1228

This may suggest disease state prediction benefits from these (i) invariant properties 1229

and (ii) features of color/stain intensity and distribution, that are not encoded in the 1230

ImageNet2048 feature representation. Moreover, the tissue type covariate is strikingly 1231

important here (Fig S10). Therefore, after training the ResNet-50 on histopathology 1232
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images and the tissue type covariate (Fig 3), we find (i) the tissue type covariate 1233

importance is reduced presumably because the ResNet-50 has to some extent learned to 1234

represent tissue type in its 100-dimensional feature vector, and (ii) scale-invariant 1235

and/or color-invariant texture features (e.g. Local Binary Pattern Pyramid [LBPP] and 1236

Local Binary Patterns [LBP]) become increasingly important presumably because the 1237

ResNet-50 has to some extent learned to represent pathology-relevant edges and color in 1238

its 100-dimensional feature vector while texture features are underrepresented. Thus 1239

texture features (i.e. LBPP/LBP), are important for disease state prediction, but the 1240

deep neural network did not learn similar texture features from the pathology data and 1241

learning methods at hand. We likewise reason that LBPP/LBP texture features may 1242

have low importance in the context of ImageNet2048 features, because ImageNet2048 1243

features may represent similar texture, so LBPP/LBP are redundant with ImageNet2048 1244

for visual texture features predictive of disease state. 1245

We note several of the most important ImageNet2048 features (e.g. r50non1227, 1246

r50non1121, ...) have an importance measure (i.e. mean decrease in accuracy) greater 1247

than the most important hand-engineered features (e.g. PHOG364, ColorHistogram21, 1248

...), which may suggest for disease state prediction that ImageNet2048 features represent 1249

more predictive information than the best hand-engineered features we tested (Fig S10). 1250

Alternatively, the high importance of ImageNet2048 features may be due to biases in 1251

Random Forest learning to choose features that take on many different values [32,65], as 1252

ImageNet2048 features do. 1253

In principle, for classification, any interpretable classifier may be used in place of the 1254

Random Forest, e.g. logistic regression, support vector machine, or generalized additive 1255

model [34]. A careful choice here may demonstrate favorable accuracy and 1256

interpretability. We choose a Random Forest as a simple baseline that requires (i) little 1257

tuning or preprocessing, (ii) learns interpretable nonlinear relationships among features 1258

and covariates, and (iii) provides a measure of similarity for search. 1259

Marker mention and SIFT features excluded from Random Forest feature 1260

importance analysis We excluded from our Random Forest feature importance 1261

analysis the marker mention covariate and SIFT features, primarily because both did 1262

not improve 10-fold cross validation prediction performance when using an ensemble of 1263

classifiers, which performed best for prediction (Fig 9: marker 0.8035±0.0043 vs 1264

0.8025±0.0021, U = 3, p = 0.7; SIFT 0.8035±0.0043 vs 0.8014±0.0022, U = 7, p = 0.4, 1265

two-tailed Wilcoxon rank-sum test). Moreover, SIFT reduces performance when an 1266

ensemble is not used (0.7846±0.023 vs 0.7796±0.0019, U = 85, p = 0.0004114). This 1267

may suggest that for sufficiently strong disease state classifiers using H&E images and 1268

tissue covariates, the marker mention covariate and SIFT features provide at best only 1269

redundant information. For example, if the decision to order a marker test, e.g. IHC, is 1270

typically based on the H&E, and a classifier is sufficiently accurate at predicting disease 1271

state from H&E, the decision to order a marker test provides no additional disease state 1272

information. Secondarily, we excluded the marker mention covariate because it is based 1273

on the clinical opinion of all pathologists commenting on this case. Disease state is 1274

based on the diagnosis, which is also a clinical opinion. Rather than seeking to explain 1275

one opinion in terms of another opinion, we seek to explain opinions in terms of 1276

objective information in the H&E or clinicals, e.g. tissue type. We note 10-fold cross 1277

validation may provide inflated measures of performance, so for a less inflated 1278

examination of the possible contributions of the marker covariate, SIFT features, and 1279

deep features, we turn to leave-one-pathologist-out cross validation for search. Disease 1280

state search, first pan-tissue pan-disease method discusses this (Sec 3.6). 1281
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Fig S11: Interpretable spatial distribution of deep learning predictions and features of multiple cases. We
compare four cases side-by-side, in the manner of Fig 5. The most important histopathology-trained deep feature is r50 46 (Fig 4
at left), which predicts the majority class, e.g. A3 left corresponds to A4 upper left. The second most important feature (r50 30)
predicts the second most abundant class, low grade. The third most important feature (r50 85) predicts the third most abundant
of three classes, nontumor. The strong class correspondence in important deep features may suggest that removing the top layer’s
three class-predictor neurons may incur only a small loss of learned information (Fig 3B top). Shown in A5 at left is the most
important only-natural-image-trained deep feature (i.e. ImageNet2048), “r50non1227” (Fig S10). Continuing left-to-right in A5 we
show ImageNet2048 features in decreasing order of importance: r50non1121 (2nd more important), r50non1170 (3rd), r50non2028 (4th),
r50non1028 (5th), and r50non1591 (6th). As expected, we find no intelligible pathology-related interpretation of these ImageNet2048
features in these heatmaps, because these features are not trained on histopathology data. (A) B.X.: metastatic lobular carcinoma in
satellite lymph node, where malignant activation is high throughout, except the lower right background. (B) C.S.: juvenile polyp,
where nontumor activation is high both for the lentil at lower center (specifically rows 0-2 of columns 1-2 of the 5x5 grid of panel B2,
where the lower left corner is row 0 of column 0) and the dark Ascaris ova at right (specifically the dark cluster in row 1 of column 4,
and evident to some extent in rows 0-2 of columns 3-4), showing the breadth of the nontumor disease state category. (C) R.S.: is a
proliferating epidermoid cyst. Despite viral wart change, we consider this in the low grade disease state (Fig S8). This example also
illustrates a different image size and microscope eyepiece field of view artifact. (D) Y.R.: pulmonary vein lined by enlarged hyperplastic
cells, which we consider to be low grade disease state, and D4 center top highlights these low grade cells.

S5.10.3 Interpretability of important deep features through activation 1282

maps 1283

Deep neural networks have a restricted field of view, but this is an advantage for 1284

interpretability, because one can systematically sweep a trained neural network across 1285

an image to localize deep feature activations. At each location in the sweep, a 1286

224×224px image patch is fed to the trained neural network for interpretation. However, 1287

our Random Forest uses a set representation of the deep features, formed as a sum of 1288

deep feature vectors systematically sampled throughout the overall image of arbitrary 1289

size (Fig 1). Therefore, for spatial localization of disease state we make heatmaps to 1290

depict the deep feature activations at those sampled locations. These heatmaps indicate 1291

a correspondence between the most important deep features and the class labels. This 1292

approach facilitates deductive reasoning about predictions, e.g. (i) in Fig 5 the image 1293

overall is predicted by the deep-learning-random-forest hybrid classifier to be low grade 1294

(not shown), (ii) this classifier includes deep features (Fig 1C), (iii) a deep feature of 1295

ours is by definition a vector sum of images (Fig 1C) shown in the grid (Fig 5D2), (iv) 1296
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Fig S12: Disease state clusters after dimensionality reduction. As in Fig 6 we apply the UMAP [30] algorithm to determine
if there are clusters of patient cases that have meaningful groups of features for the prediction of disease state. However, to investigate
if cluster quality can be improved through dimensionality reduction, we first apply principal components analysis (PCA) to reduce
hand-engineered feature dimensionality from 2,412 to 100 principal components, and follow the same procedure for ImageNet2048
features. In practice, PCA is a common preprocessing step for the t-SNE clustering algorithm [66], but UMAP claims to have no
computational restrictions on input dimension (so PCA is not expected to be required for UMAP) [30]. (A1) We show that 100
principal components explain 98.98% of the variance of the 2,412 hand-engineered features. Our histopathology-trained deep features are
similarly 100 dimensions (Figs 3C, 6C1). (A2) As expected, PCA preprocessing does not qualitatively change UMAP clusters based on
hand-engineered features. (B1) We show that 100 principal components explain 92.35% of the variance of the only-natural-image-trained
ImageNet2048 deep features. (B2) As expected, PCA preprocessing does not qualitatively change UMAP clusters based on ImageNet2048
deep features. We conclude the vague clusters from hand-engineered features or lack of clusters from ImageNet2048 is not a UMAP-related
artifact of their high dimensionality, but instead simply means these features do not clearly group patients by disease state.

the second most important deep feature (r50 30 in Fig 4) is known to correspond to low 1297

grade (e.g. Fig 5C2), (v) r50 30 is active with a value of more than 0.5 for images 1298

shown in the grid center (Fig 5D2), (vi) therefore the classifier predicts low grade partly 1299

because images near the grid center have the low grade feature. Similar to our work, 1300

previous work used Random Forest feature importance for feature selection on a 1301

pretrained deep neural network [67], though to the best of our knowledge we are the 1302

first to use Random Forest feature importance for feature selection on a deep neural 1303

network retrained on the same task as the Random Forest. 1304

S5.11 Machine learning methods discussion 1305

Because our image feature vectors are so wide, e.g. 2,412 dimensions (Fig S9) or more, 1306

we found best results with Random Forests when the number of features to consider for 1307

a decision/split was half (rounded up) of the total attribute count. This was especially 1308

important for covariates, e.g. the tissue covariate for disease state prediction. For search 1309

using Random Forest similarity, we grew each tree to a maximum depth of 10. 1310

S5.11.1 Deep learning 1311

Cross entropy loss for learning We optimize the deep neural network with an
unweighted cross entropy loss (Eqn 1, where Iyi∈Ci

is the indicator function being 1
when the example x class label yi is class Ci, and 0 otherwise)7, for minibatches of size
N = 64 224×224px images and typically C = 3 classes (nontumor, low grade,
malignant). We use stratified bootstrap sampling for each epoch, so all classes have
equal weight.

Lunweighted({x1, x2, ..., xN}) = −
1

N

N
∑

i=1

C
∑

c=1

[Iyi∈Ci
]log(pmodel[yi ∈ Ci]) (1)

7For this formula please see https://github.com/keras-team/keras/issues/6444
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Fig S13: Deep learning performance curves. Loss and accuracy for training and validation sets, for one fold of 10-fold cross
validation, using a ResNet-50 to predict disease state, for individual 224×224px image patches. Validation accuracy improves with
training, though high validation accuracy may suggest (i) the ground truth label may not apply universally throughout the image which
is larger than 512×512px, (ii) samples whose state may not fit with our three-class disease state schema, (iii) mislabeled samples, (iv)
deep learning overfit. Indeed, we see in many of our images mixtures of diseases and disease-free tissue, so (i) may be especially likely,
and more advanced methods, such as multiple instance learning, may overcome this as we acquire more data. Observing that validation
accuracy improved with training, we proceeded with this simple supervised deep learning approach as a proof-of-principle.

ResNet-50 learning For our deep learning, we freeze no layers of the ResNet-50. 1312

We train end-to-end with learning rate of 0.01 and Nesterov accelerated gradient 1313

momentum of 0.9 [68–70]. We use Keras’ learning rate decay of 10-5, which reduces the 1314

learning rate each batch. Moreover, we follow a learning rate schedule, where learning 1315

rate is divided by 100 until the end of epoch 1, but by 10 until the end of epoch 3. We 1316

train with Mixup [29], mixing according to draws from a beta distribution with 1317

alpha = 1.4 and beta = 0.4. Our data augmentation is random flips, random free 1318

rotations, grayscale Gaussian noise in RGB color space (mean=0, stdev=0.5), and 1319

random brightness adjustment (uniform distribution, -0.05 to 0.05). We white-balance 1320

images before processing. 1321

Freezing layers lowered validation accuracy. Alternative architectures such as 1322

DenseNet, Inception, and Xception trained more slowly and lowered validation accuracy. 1323

We do not report these results. 1324

S5.11.2 Deep set learning feature interpretation 1325

As our ResNet-50 deep neural network trains (Fig S13), a 100-dimensional feature 1326

representation is learned (Fig S14), by the 100-neuron layer we append to the ResNet-50 1327

(Fig 3C). A spatially-localized empirical interpretation of deep learning predictions and 1328

feature activations is available in Figure 5. We analytically interpret our deep features 1329

through their activation functions, regularization, and relationship with set scalar 1330
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Fig S14: Deep features. We appended a 100 neuron fully connected layer on top of a ResNet-50 to learn a concise 100-dimensional
“bottleneck” feature vector representation of a 224×224px image patch (Fig 3). This feature vector takes different distributions, depending
on regularization. The top row shows a 100-dimensional activation distribution as standard deviations from the mean, and training
proceeds left to right. The bottom row shows the same activation distribution as the top row, but as a histogram, with training
proceeding from dark red at the top to orange at the bottom. (A) Feature values are centered at 0.5 when L1 regularization on the
activation value before a sigmoid squashing function is applied, because a sigmoid transforms a 0 value to 0.5. (B) Feature values are
approximately bimodal when L1 regularization on the activation value after sigmoid squashing is applied, because L1 regularization
enforces sparsity by penalizing non-zero values. (C) Feature values are more strongly bimodal when our binarizing regularization (a.k.a.
centered L1 regularization, Fig S15C3,D) on the activation value after our centered soft clipping activation function is applied, because
this regularization penalizes values near 0.5 and centered soft clipping saturates to 0 or 1 more quickly than a sigmoid. We ultimately
chose our centered L1 regularization and centered soft clipping activation to represent the deep feature space for disease state prediction,
because (i) it performed better with Random Forest learning over feature vector sums of a set of multiple images (Fig S15A), (ii) it
demonstrated comparable validation accuracy in deep learning (Fig S13), (iii) Random Forests have a bias to select features that take
many values [32, 65] so approximately binary deep features may reduce this bias by having a restricted distribution of values, and (iv)
we believe approximately binary deep features to be simple and interpretable as set scalar cardinality, i.e. counters (Fig 5 and Eqn 8).

cardinality, below. 1331

Centered soft clipping activation function definition To learn sharply binary
features from the deep learning, we define a steep activation function, called centered
soft clipping (CSC) (Fig S15B and Eqn 3). This is derived from soft clipping (SC) [71],
which is not centered at x=0 (Fig S15B and Eqn 2). Like centered soft clipping, the
sigmoid and hyperbolic tangent activation functions centered at x=0, but they are not
as steep. There is a steepness parameter (p) in [centered] soft clipping, and we let p = 2
for our experiments (Eqns 2, 3).

SCp(x) =
1

p
log(

1 + epx

1 + ep[x−1]
) (2)

CSCp(x) =
1

p
log(

1 + ep[x+0.5]

1 + ep[x−0.5]
) (3)

Centered soft clipping in the limit as Heaviside step function Furthermore,
we note in the limit p → ∞, centered soft clipping converges to the Heaviside step
function H(x), a type of indicator function which is 1 for positive values, 0 for negative
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Fig S15: Sigmoid vs centered soft clipping performance. (A) Random Forest AUROC when ResNet-50 trained with sigmoid
activation function with L1 regularization, versus centered soft clipping activation function with centered L1 regularization. Centered
soft clipping demonstrates higher performance. Increasing the number of regions of interest (ROI) images in a deep set from 13 to 21
(Fig 1C shows 21) improves performance slightly. Quantizing features to either 0 or 1 slightly reduces performance when using centered
soft clipping. (B) Comparison of sigmoid activation function with soft clipping [71] (Eqn 2) and our centered soft clipping (Eqn 3). Our
centered soft clipping is centered at x=0 and steeper than sigmoid, which we argue is amenable for learning interpretable (Fig 5) and
sharply binary hash codes. (C) Comparison of L1 (Eqn 11), L2, and our centered L1 (Eqn 13) regularizers in two dimensions, x0 and
x1. Our L1 regularizer penalizes values close to 0.5, to encourage a binarized feature representation. (D) Comparison of L1 and our
centered L1 regularizers, in one dimension, for clearer depiction of our centered L1 regularizer’s margin m = 0.1 (Eqn 13), for stable
learning and vanishing gradient avoidance.

values, and 0.5 for zero values (Eqn 6). In the limit p → ∞, CSCp(x) is a binary
indicator of the presence or absence of a feature in a 224×224px image patch (Fig 1B),
representing binary logic. Smaller values, e.g. p = 2, allow the representation of a small
amount of probabilistic uncertainty regarding this presence or absence, where this area
of uncertainty is infinitesimally small for p → ∞.

lim
p→∞

CSCp(x) =
1

p
[log(1 + ep[x+0.5])− log(1 + ep[x−0.5])] (4)

lim
p→∞

CSCp(x) =











1
p
[log(1 + 0)− log(1 + 0)] = 0

p
= 0 ∀x < 0,

1
p
[log(1 + ep(0.5))− log(1 + 0)] = p(0.5)

p
= 0.5 ∀x = 0,

1
p
[p(x+ 0.5)− p(x− 0.5)] = p

p
= 1 ∀x > 0

(5)

lim
p→∞

CSCp(x) = H(x) =











0 ∀x < 0,

0.5 ∀x = 0,

1 ∀x > 0

(6)

Deep feature as set scalar cardinality To our Random Forest, a deep feature is
the scalar cardinality (Eqns 7-8) of the set of these presences measured at 21 different
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locations throughout the original image (Fig 1C). Here, x represents one of the 100
features from the trained layer atop the ResNet-50 in Figure 1B, and I is an indicator
function of set membership.

Card(set) = |set| = |{x1, x2, . . . , xN}| =
N=21
∑

n=1

I(xn) (7)

=
∑

n

H(xn) =
∑

n

[ lim
p→∞

CSCp(xn)] ≈
∑

n

CSCp(xn) ∀p > 0 (8)

Data as Bernoulli process, deep features, and expected value To consider
some input data passed through the ResNet-50, we model a random set as a Bernoulli
process, with each set member taking some value on the interval (0,∞) at probability ϕ,
otherwise some value on the interval (−∞, 0). Let Pϕ(x) be a Bernoulli trial that is
(0,∞) at probability ϕ, otherwise (−∞, 0) A Heaviside step function (Eqn 6), which our
centering soft clipping (CSC) activation function approximates in the limit of p → ∞,
transforms this Pϕ(x) to a standard Bernoulli trial taking value 1 at probability ϕ,
otherwise 0. Thus the cardinality of this random set is proportional to the Bernoulli
trial’s expected value E = ϕ (Eqn 10). In a sense, for a fixed set size e.g. N = 21, the
Random Forest may learn what thresholds of E of these deep features are predictive of
the classes of interest, in the context of the other available deep and non-deep features
(Fig 1C).

Card(set) = |set| = |{Pϕ(x1),Pϕ(x2), . . . ,Pϕ(xN )}| =
N
∑

n

H(Pϕ(xn)) = (9)

=
N
∑

n

[ lim
p→∞

CSCp(Pϕ(xn))] = NE(x) = Nϕ (10)

Centered L1 regularizer in the context of Gaussian initialization Neural
network weights are often initialized with Gaussian noise having mean of zero [68], so
centering the activation function at zero removes initial bias towards learning a 0 or 1
when combined with our centered L1 regularizer (Eqn 3). Whereas a standard L1
regularizer (Eqn 11) penalizes all non-zero values, our centered L1 regularizer penalizes
values close to 0.5 (Eqn 13), with the assumption that all values are between 0 and 1,
which is true for values from centered soft clipping (Eqn 3).

L1(x0, x1) = |x0 + x1| (11)

CL1penalty(x,m) = max(m, 0.5− |x− 0.5|)−m (12)

CL1(x0, x1,m) = |CL1penalty(x0,m) + CL1penalty(x1,m)| (13)

To approximately binarize deep features, our centered L1 regularizer penalizes output 1332

values close to 0.5, which occur when x = 0 with sigmoid and centered soft clipping 1333

activations. (Fig S15D). For stable learning, and to help avoid the vanishing gradient 1334

problem [72,73] from values infinitesimally close to 0 or 1, our centered L1 regularizer 1335

has no penalty for values less than 0.1 or greater than 0.9. Restated, we let the L1 1336

regularizer’s margin parameter m ∈ [0, 0.5] be m = 0.1. 1337

Binary hash code learning Lin et al [74]. use deep learning with sigmoid 1338

activations to learn binary hash codes for search of clothing images. We intend to learn 1339

sharply binary hash codes with centered soft clipping and centered L1 regularization 1340

together, for interpretability, pathology search, and set representation learning. We find 1341

centered soft clipping performed slightly better for classification (Fig S15A) and 1342

provided a small but significant increase in search performance (Fig 10B). 1343
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S5.12 Disease state search distance function and performance 1344

Pathology search performance is shown in Figure 10B, and detailed in Table S1. We
found a combined distance measure (Eqn 14) worked best for search (i.e. Table S1 top
row). The combined distance between two examples (i.e. Dist(x0, x1)) is the number of
trees in the Random Forest (i.e. 1000), minus the Random Forest similarity of the
covariates and non-deep features (i.e. SimRF(x0, x1)), plus five times (i.e. αSIFT = 5)
the L1 norm of the 5 largest SIFT cluster medoids vector sum (i.e. L1SIFTk5

(x0, x1)),
plus the L1 norm of the top three deep features from each example (i.e.
L1Deep3

(x0, x1)). For Deep3, we use the top three most class-associated features of
example x, one such feature for each of the three classes (nontumor, low grade, or
malignant per Fig 5C). We initially found these three features using Random Forest
similarity (Fig 4), but subsequently identify these features by minimizing the feature’s
error with respect to a class label in the training data, for computational expediency.

Dist(x0, x1) = 1000− SimRF(x0, x1) + [αSIFT]L1SIFTk5
(x0, x1) + L1Deep3

(x0, x1) (14)

S5.13 Supplementary Disease state search results 1345

S5.13.1 Clinical covariates improve search performance 1346

We ask if pathology-specific clinical covariates improve search performance. Including 1347

the tissue type covariate significantly improves performance compared to not using this 1348

covariate (0.5640±0.0024 vs 0.6533±0.0025, U = 100, p = 0.0001796). We find including 1349

the marker mention covariate significantly improves performance further (0.6533±0.0025 1350

vs 0.6908±0.0021, U = 100, p = 0.0001796). Therefore including pathology-specific 1351

clinical covariates for pathology search is currently justified, because these improve 1352

search performance. We reason that disease states are reported at tissue-type-specific 1353

rates, and cases that mention marker tests (e.g. IHC) tend to be more similar to other 1354

cases that mention marker tests. Often, marker tests are used to subtype malignancies 1355

(e.g. TTF-1), but this is not always the case (e.g. Ki-67). We believe this is the first 1356

multimodal classifier that demonstrates improved search performance when combining 1357

pathology imaging features with clinical covariates (i.e. tissue type and mention of 1358

marker tests) that may be missing for some patients (Fig 10B). 1359

S5.13.2 In the context of other features, nuclear features of disease are 1360

better represented by the most prevalent SIFT clusters rather 1361

than all SIFT 1362

Used alone, all SIFT is better than chance, but does not complement other 1363

features We ask if cell nuclei features, as represented by SIFT, may represent disease 1364

state, and if so, which SIFT representations perform better than others for pathology 1365

search. Inspired by continuous bag-of-words methods that represent a context as a 1366

vector sum of words [64] and bag-of-visual-words methods that leverage SIFT [75], our 1367

simplest baseline detects all SIFT interest points in an image, then takes the sum of all 1368

these SIFT feature vectors to represent an image overall. This way, an image is 1369

represented by a 128-dimensional SIFT set representation, where the set cardinality is 1370

equal to the number of SIFT interest points in the image, which varies among images. 1371

Because SIFT features are non-negative and cover nuclei, the magnitude of this vector 1372

may increase as nuclear density increases. This performs better than chance when used 1373

alone (0.4636±0.0024 vs 0.3967±0.0044, U = 100, p = 1.083e-05), but reduces 1374

performance when used in the context of our 2,412 hand-engineered features, tissue 1375

covariate, and marker covariate (0.6908±0.0021 vs 0.5728±0.0022, U = 100, 1376
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Method († = plotted in Fig 10B) prec@k=1 prec@k=2 prec@k=3 prec@k=4 prec@k=5
prec@k=6 prec@k=7 prec@k=8 prec@k=9 prec@k=10

RandomForest(2412 + tissue + marker) + 0.7618±0.0018 0.7003±0.0016 0.6595±0.0011 0.6321±0.0005 0.6124±0.0008
5×SIFTk5 + Deep3 + 0.01×ImageNet2048† 0.5977±0.0006 0.5846±0.0006 0.5739±0.0008 0.5649±0.0008 0.5571±0.0004

RandomForest(2412 + tissue + marker) + 0.7567±0.0016 0.6988±0.0015 0.6597±0.0007 0.6319±0.0007 0.6129±0.0011
5×SIFTk5 + Deep3 + 0.001×ImageNet2048 0.5981±0.0011 0.5853±0.0007 0.5750±0.0006 0.5660±0.0009 0.5582±0.0008

RandomForest(2412 + tissue + marker + 0.7566±0.0014 0.6981±0.0010 0.6594±0.0006 0.6317±0.0010 0.6124±0.0012
ImageNet2048) + 5×SIFTk5 + Deep3 0.5974±0.0009 0.5850±0.0006 0.5748±0.0006 0.5658±0.0010 0.5580±0.0008

RandomForest(ImageNet2048 + tissue + 0.7517±0.0025 0.6940±0.0014 0.6563±0.0008 0.6294±0.0012 0.6113±0.0012
marker) 0.5962±0.0008 0.5842±0.0010 0.5738±0.0007 0.5644±0.0006 0.5565±0.0006

RandomForest(2412 + tissue + marker) + 0.7341±0.0012 0.6639±0.0010 0.6256±0.0009 0.5969±0.0005 0.5784±0.0004
5×SIFTk5 + Deep3 + 0.1×ImageNet2048 0.5620±0.0006 0.5492±0.0005 0.5381±0.0003 0.5296±0.0004 0.5220±0.0003

RandomForest(2412 + tissue + marker) + 0.7006±0.0026 0.6493±0.0023 0.6196±0.0017 0.5983±0.0009 0.5826±0.0007
5×SIFTk5 + Deep3† 0.5698±0.0007 0.5597±0.0007 0.5511±0.0008 0.5440±0.0007 0.5380±0.0005

RandomForest(2412 + tissue + marker) + 0.6991±0.0023 0.6483±0.0022 0.6194±0.0012 0.5984±0.0009 0.5833±0.0008
1×SIFTk5 + Deep3 0.5708±0.0007 0.5610±0.0007 0.5519±0.0006 0.5443±0.0008 0.5382±0.0005

RandomForest(2412 + tissue + marker) + 0.6983±0.0016 0.6479±0.0018 0.6187±0.0017 0.5977±0.0012 0.5828±0.0009
Deep3 0.5705±0.0011 0.5604±0.0009 0.5516±0.0006 0.5442±0.0005 0.5381±0.0006

RandomForest(2412 + tissue + marker) + 0.6982±0.0026 0.6491±0.0013 0.6177±0.0013 0.5965±0.0013 0.5811±0.0007
5×SIFTk5 + EnsDeep3 0.5687±0.0007 0.5591±0.0011 0.5505±0.0010 0.5432±0.0010 0.5376±0.0011

RandomForest(2412 + tissue + marker) + 0.6974±0.0025 0.6474±0.0016 0.6182±0.0015 0.5970±0.0014 0.5815±0.0007
EnsDeep3 0.5689±0.0009 0.5594±0.0007 0.5510±0.0007 0.5440±0.0008 0.5381±0.0007

RandomForest(2412 + tissue + marker) + 0.6948±0.0032 0.6449±0.0021 0.6154±0.0016 0.5941±0.0016 0.5791±0.0014
5×SIFTk5 0.5668±0.0011 0.5569±0.0011 0.5479±0.0008 0.5404±0.0002 0.5344±0.0007

RandomForest(2412 + tissue + marker) + 0.6935±0.0029 0.6439±0.0021 0.6152±0.0012 0.5943±0.0016 0.5793±0.0015
1×SIFTk5 0.5669±0.0012 0.5569±0.0012 0.5484±0.0009 0.5412±0.0008 0.5350±0.0008

RandomForest(2412 + tissue + marker + 0.6918±0.0030 0.6436±0.0021 0.6166±0.0020 0.5965±0.0017 0.5819±0.0010
SIFTk5) + Deep3 0.5699±0.0010 0.5608±0.0009 0.5518±0.0008 0.5443±0.0008 0.5380±0.0008

RandomForest(2412 + tissue + marker)† 0.6908±0.0021 0.6435±0.0017 0.6148±0.0015 0.5941±0.0013 0.5793±0.0016
0.5671±0.0014 0.5568±0.0009 0.5482±0.0009 0.5409±0.0012 0.5351±0.0009

RandomForest(2412 + tissue) + Deep3 0.6602±0.0022 0.6129±0.0019 0.5845±0.0014 0.5656±0.0010 0.5530±0.0005
0.5419±0.0008 0.5333±0.0006 0.5265±0.0010 0.5209±0.0010 0.5156±0.0005

RandomForest(2412 + tissue)† 0.6533±0.0025 0.6064±0.0023 0.5784±0.0013 0.5599±0.0010 0.5481±0.0009
0.5386±0.0008 0.5297±0.0009 0.5227±0.0008 0.5167±0.0007 0.5119±0.0007

RandomForest(2412 + tissue + 0.6527±0.0024 0.6073±0.0027 0.5803±0.0014 0.5638±0.0018 0.5518±0.0016
SIFTk5) + Deep3 0.5412±0.0016 0.5331±0.0012 0.5262±0.0010 0.5202±0.0012 0.5148±0.0010

L1(ImageNet2048) 0.6432±0.0000 0.5839±0.0000 0.5543±0.0000 0.5346±0.0000 0.5204±0.0000
0.5099±0.0000 0.5002±0.0000 0.4930±0.0000 0.4874±0.0000 0.4830±0.0000

RandomForest(ImageNet2048) 0.6406±0.0046 0.5875±0.0028 0.5572±0.0021 0.5390±0.0017 0.5253±0.0019
0.5144±0.0013 0.5057±0.0009 0.4988±0.0008 0.4934±0.0008 0.4887±0.0007

RandomForest(2412 + tissue + marker) + 0.6376±0.0014 0.5875±0.0016 0.5549±0.0010 0.5351±0.0009 0.5214±0.0009
SIFT 0.5119±0.0005 0.5034±0.0008 0.4961±0.0006 0.4900±0.0004 0.4851±0.0005

RandomForest(2412 + tissue + marker + 0.5728±0.0022 0.5329±0.0023 0.5108±0.0013 0.4969±0.0009 0.4874±0.0010
SIFT)† 0.4803±0.0011 0.4751±0.0008 0.4701±0.0007 0.4654±0.0008 0.4617±0.0007

RandomForest(2412) + Deep3 0.5720±0.0036 0.5363±0.0027 0.5153±0.0021 0.5014±0.0024 0.4915±0.0016
0.4839±0.0015 0.4774±0.0009 0.4728±0.0010 0.4692±0.0008 0.4658±0.0007

Table S1: Case similarity search performance in detail. Precision@k for search as shown in Figure 10B, with additional
experiments. To estimate 95% confidence intervals, recall standard error of the mean is the sample standard deviation (i.e. stdev)
divided by

√
10, since we perform ten replicates. This table and further details continue on the following page.
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Method († = plotted in Fig 10B) prec@k=1 prec@k=2 prec@k=3 prec@k=4 prec@k=5
prec@k=6 prec@k=7 prec@k=8 prec@k=9 prec@k=10

RandomForest(2412 features)† 0.5640±0.0024 0.5283±0.0025 0.5085±0.0018 0.4955±0.0021 0.4854±0.0014
0.4775±0.0012 0.4717±0.0010 0.4667±0.0010 0.4631±0.0007 0.4600±0.0006

L1(2412 features)† 0.5479±0.0000 0.5124±0.0000 0.4927±0.0000 0.4831±0.0000 0.4746±0.0000
0.4672±0.0000 0.4626±0.0000 0.4568±0.0000 0.4536±0.0000 0.4510±0.0000

RandomForest(Deep + tissue + marker) 0.5455±0.0020 0.5206±0.0018 0.5067±0.0013 0.4964±0.0006 0.4895±0.0010
0.4839±0.0008 0.4796±0.0007 0.4758±0.0006 0.4727±0.0008 0.4701±0.0006

RandomForest(2412 + tissue + Deep) 0.5427±0.0025 0.5135±0.0015 0.5001±0.0015 0.4915±0.0017 0.4860±0.0011
0.4806±0.0010 0.4756±0.0007 0.4719±0.0007 0.4690±0.0007 0.4671±0.0007

RandomForest(SIFT)† 0.4636±0.0024 0.4489±0.0021 0.4389±0.0016 0.4353±0.0013 0.4326±0.0009
0.4304±0.0011 0.4282±0.0008 0.4266±0.0008 0.4249±0.0009 0.4235±0.0009

L1(SIFT)† 0.4630±0.0000 0.4495±0.0000 0.4399±0.0000 0.4376±0.0000 0.4324±0.0000
0.4296±0.0000 0.4268±0.0000 0.4260±0.0000 0.4252±0.0000 0.4242±0.0000

L1(SIFTk5) 0.4205±0.0000 0.4127±0.0000 0.4125±0.0000 0.4109±0.0000 0.4107±0.0000
0.4107±0.0000 0.4102±0.0000 0.4104±0.0000 0.4112±0.0000 0.4105±0.0000

RandomForest(SIFTk5) 0.4102±0.0050 0.4097±0.0020 0.4087±0.0017 0.4088±0.0014 0.4089±0.0013
0.4092±0.0017 0.4090±0.0015 0.4088±0.0015 0.4087±0.0012 0.4088±0.0011

RandomForest(2412 + tissue), 0.3967±0.0044 0.3991±0.0036 0.3999±0.0033 0.3996±0.0030 0.4001±0.0033
permutation test† 0.3999±0.0027 0.4000±0.0029 0.3996±0.0030 0.3997±0.0027 0.3998±0.0026

Table S1: Case similarity search performance in detail (continued). L1(. . . ) indicates distance is the L1 norm of
the feature vector. RandomForest(. . . ) indicates distance is the number of trees in the forest (i.e. 1000) minus Random Forest
similarity calculated on the feature vector. Tissue and/or marker covariate use are indicated by “tissue” and/or “marker”, respectively.
“2412”/“2412 features” indicates our 2,412 hand-engineered features are used (Fig S9). However, “ImageNet2048” indicates the 2,048
top-level features are used from a ResNet-50 trained only on ImageNet images. No histology images are used to train this ResNet-50’s
2,048 features, but these features are summed over 21 locations, just as the ‘histology-image-trained ‘Deep” features are (Fig 1C). “Deep”
indicates the full 100-dimensional feature vector is used (Fig 1B,C). “Deep3” indicates only the top 3 class-correlated features are used
(Fig 5, see Eqn 14 for combining distances). “EnsDeep3” indicates the top 3 class-correlated features are used, averaged across three
neural networks in an ensemble. “SIFT” indicates all SIFT interest points are summed to represent an image. “SIFTk5” indicates the 5
largest of 25 medoids are summed to represent an image. “5×SIFTk5” indicates the SIFTk5 vector is multiplied by five (i.e. αSIFT = 5),
which changes L1-based distances (Eqn 14). We find best performance for “RandomForest(2412 + tissue + marker) + 5×SIFTk5 +
Deep3”, which is 1000 minus Random Forest similarity, plus five times L1(SIFTk5), plus L1(Deep3).

median median 95% CI mean stdev mean 95% CI

prec@k=1 0.7819 0.7499-0.8065 0.7470 0.1167 0.6978-0.7896
prec@k=2 0.7237 0.6643-0.7482 0.6941 0.0967 0.6550-0.7300
prec@k=3 0.6766 0.6320-0.6938 0.6523 0.1030 0.6115-0.6922
prec@k=4 0.6373 0.6000-0.6769 0.6304 0.0975 0.5920-0.6676
prec@k=5 0.6112 0.5771-0.6563 0.6123 0.0962 0.5742-0.6501
prec@k=6 0.5982 0.5401-0.6451 0.5984 0.0931 0.5622-0.6345
prec@k=7 0.5858 0.5236-0.6378 0.5847 0.0907 0.5494-0.6203
prec@k=8 0.5736 0.5117-0.6301 0.5741 0.0879 0.5399-0.6079
prec@k=9 0.5620 0.5042-0.6230 0.5644 0.0886 0.5296-0.6003
prec@k=10 0.5526 0.4964-0.6132 0.5558 0.0884 0.5210-0.5899

Table S2: Case similarity search performance per-pathologist. Precision@k per-pathologist, corresponding to Fig 10C at
right, for the best performing search method RandomForest(2412 + tissue + marker) + 5×SIFTk5 + Deep3 + 0.01×ImageNet2048,
c.f. Table S1. Leave-one-pathologist-out cross validation is repeated ten times. We considered 24 of 25 pathologists for this analysis,
excluding one pathologist who shared no human acceptable H&E images for disease state prediction (Fig S4 details acceptability criteria).
Each included pathologist’s performance is averaged over these ten repetitions. This average performance is plotted in Fig 10C, where
the 24 lines correspond to 24 pathologists, and error bars are standard error for these ten replicates. For precision@k=1 mean, each of
the 24 pathologists’ ten-repetition average precision@k=1 is averaged and reported. In this way, the mean prec@k=1 (i.e. 0.7470) is
what precision@k=1 may be expected for a pathologist whose data we have not seen before, when averaged over many images for that
pathologist. Bootstrapped confidence intervals (CI) for median and mean are shown for 10,000 replicates. There is not a significant
difference between the means and medians, so any differences may be due to chance alone.
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p = 0.0001796). We conclude that näıvely using SIFT features this way to estimate 1377

nuclear density allows limited discrimination of disease state when used alone, but does 1378

not complement other features when used together for pathology search. 1379

SIFT learning challenging, but a combined distance function of L1 norm 1380

and Random Forest similarity improves search In light of the aforementioned 1381

reduced performance with SIFT, we ask if Random Forest similarity contributes to this 1382

performance reduction. We observe the SIFT L1 norm and SIFT Random Forest 1383

similarity performance differences may be due to chance alone (0.4630±0.0000 vs 1384

0.4636±0.0024, U = 40, p = 0.4429). The Random Forest does not appear to learn from 1385

this SIFT representation. We additionally observe search performance is reduced less 1386

when adding the SIFT L1 norm to Random Forest similarity as a combined distance 1387

measure (Eqn 14), rather than training the Random Forest on SIFT features 1388

(0.5728±0.0022 vs 0.6376±0.0014, U = 0, p = 0.0001796). This may suggest the 1389

Random Forest overfits or cannot learn from these continuous bag-of-words SIFT 1390

features, but this may be mitigated by a combined distance function that does not rely 1391

on Random Forest learning from SIFT features (Eqn 14). 1392

SIFT clusters provide complimentary information for search We then ask if 1393

SIFT may provide complimentary information for search, when using SIFT to estimate 1394

nuclear shape and edge distributions, rather than nuclear density. For this approach, we 1395

(i) detect all SIFT interest points in an image, (ii) form 25 clusters using k-medoids++ 1396

clustering with the L1 norm of the SIFT feature vectors for all interest points, (iii) 1397

retain the 5 medoids corresponding to the 5 most abundant clusters, and (iv) take the 1398

sum of the medoid SIFT features to represent the image overall. This way, an image is 1399

represented by a 128-dimensional SIFT set representation, where the set cardinality is 1400

always 5, the number of retained medoids. We call this a SIFTk5 set representation, for 1401

k=5 medoids from k-medoids++ clustering. Because SIFT features represent shapes 1402

and edges, and because we use only the most abundant cluster medoids, this vector may 1403

represent the prevailing shapes and edges of nuclei in the image overall. This performs 1404

better than chance when used alone (0.4102±0.0050 vs 0.3967±0.0044, U = 100, 1405

p = 0.0001817), and significantly improves performance when used in the context of 1406

2,412 features, tissue covariate, and marker covariate (0.6908±0.0021 vs 0.6935±0.0029, 1407

U = 19.5, p = 0.02308), though the effect is small. 1408

Combined distance function coefficient allows SIFT prioritization, but 1409

careful calibration not needed Because SIFT feature vector magnitude is small, 1410

and the number of medoids we retain is small (i.e. 5), we ask if search would benefit 1411

from a SIFT coefficient greater than one in the combined distance function (i.e. αSIFT 1412

in Eqn 14), to increase the relative contribution of SIFT features to search. We let 1413

αSIFT = 5. When combined with deep features, which we discuss later, we report a very 1414

small but significant improvement in search performance when αSIFT = 5 1415

(0.6983±0.0016 vs 0.7006±0.0026, U = 21.5, p = 0.03423) but not when αSIFT = 1 1416

(0.6983±0.0016 vs 0.6991±0.0023, U = 34, p = 0.2408). However, search performance is 1417

not significantly different depending on the choice of αSIFT here (0.6991±0.0023 vs 1418

0.7006±0.0026, U = 30, p = 0.14). Therefore, we do not observe compelling evidence in 1419

favor of selecting αSIFT carefully, and caution that careful selection risks overfit. We 1420

note αSIFT = 5 may be viewed as a micro-optimization, but this effect is very small. It 1421

appears this effect is carried by SIFTk5 rather than αSIFT, so we conclude it may be 1422

better to focus on feature engineering or learning, rather than coefficient selection. We 1423

report this to show α selection in the combined distance function has only a slight effect. 1424
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S5.13.3 Deep features synergize with other features, informing search 1425

more than nuclear SIFT features, but less than clinical covariates 1426

For deep features, a combined distance function of L1 norm and Random 1427

Forest similarity also improve search Because search performance improves 1428

when considering SIFTk5 set features in a combined distance function, we ask if search 1429

performance improves when considering deep set features in a combined distance 1430

function (Eqn 14). We observe that näıvely concatenating the full 100-dimensional deep 1431

set representation with other features for Random Forest learning reduces performance 1432

(0.6533±0.0025 vs 0.5427±0.0025, U = 100, p = 0.0001796). We then select the 1433

interpretable top 3 most class-associated deep features (Figs 4, 5D1-3) and observe using 1434

these in a combined distance function improves search performance (0.6533±0.0025 vs 1435

0.6602±0.0022, U = 4, p = 0.0005773). Performance remains improved when including 1436

the marker mention covariate (0.6908±0.0021 vs 0.6983±0.0016, U = 0, p = 0.0001817). 1437

Given that both SIFT set features and deep set features both perform better in a 1438

combined distance function rather than within Random Forest similarity, we suspect 1439

our Random Forest parameters facilitate sensitive learning from few covariates, but may 1440

be oversensitive to a large number of set features that each take many different values. 1441

Machine learning methods discussion in the supplement discusses (Sec S5.11). We 1442

conclude an interpretable reduced representation of deep set features improves search 1443

performance when considered in a combined distance function, though this effect is 1444

small. We expect the effect to increase with more data, because deep learning can refine 1445

feature representations in a scalable data-driven manner, and because more advanced 1446

deep learning methods may be possible with more data. 1447

Deep features from supervised learning inform search more than nuclear 1448

SIFT features Given that both SIFTk5 and Deep3 features improve search 1449

performance, we ask if pathology-specific Deep3 features improve search performance 1450

more than pathology-agnostic SIFTk5 features. Indeed, we observe Deep3 features 1451

improve search performance significantly (i) more than SIFT features (0.6983±0.0016 vs 1452

0.6376±0.0014, U = 100, p = 0.0001817), (ii) more than 1×SIFTk5 features 1453

(0.6983±0.0016 vs 0.6935±0.0029, U = 94, p = 0.0003248), and (iii) more than 1454

5×SIFTk5 features (0.6983±0.0016 vs 0.6948±0.0032, U = 83.5, p = 0.01251). We 1455

conclude learned pathology-specific deep features inform pathology search more than 1456

hand-engineered pathology agnostic SIFT features, though SIFT may cover nuclei. 1457

Deep features and SIFT features are complementary To determine if SIFT 1458

and deep features represent non-overlapping concepts in pathology, we ask if combining 1459

SIFTk5 and Deep3 features improves performance, compared to using either one, in the 1460

context of other features. We observe Deep3 features significantly improve performance 1461

when considering 5×SIFTk5 and all other features (0.6983±0.0016 vs 0.7006±0.0026, 1462

U = 21.5, p = 0.03423). We likewise observe 5×SIFTk5 features significantly improve 1463

performance when considering Deep3 and all other features (0.6948±0.0032 vs 1464

0.7006±0.0026, U = 7, p = 0.0004871). These small effects suggest SIFTk5 and Deep3 1465

features represent complementary, rather than redundant, pathology features for search. 1466

Deep features improve search performance less than tissue and marker 1467

clinical covariates Interested in the relative importance of deep features and clinical 1468

covariates, we then ask if Deep3 features or the tissue type covariate are more important 1469

for search. In the context of our 2,412 hand-engineered features, we find Deep3 features 1470

improve search performance less than the tissue type covariate (0.5720±0.0036 vs 1471

0.6533±0.0025, U = 0, p = 0.0001806). We additionally ask if Deep3 features or the 1472
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marker mention covariate are more important for search. In the context of our 2,412 1473

features and tissue type covariate, we find Deep3 features improve search performance 1474

less than the marker mention covariate (0.6602±0.0022 vs 0.6908±0.0021, U = 0, 1475

p = 0.0001817). We conclude that for our dataset’s size and diversity, search benefits 1476

most from carefully identifying and integrating simple clinical covariates for context, 1477

rather than focusing on advanced image analysis techniques such as deep learning. 1478

S5.13.4 Deep features trained only on natural images outperform 1479

hand-engineered features for search, and offer best performance 1480

when combined with other features 1481

Deep features trained only on natural images offer best measured 1482

performance, when combined with other features To determine if deep 1483

convolutional neural networks trained only on natural images (e.g. cats and dogs) 1484

represent useful information for histopathology disease state search beyond what we 1485

have represented, we ask if ImageNet2048 features improve search performance beyond 1486

the best performance we could achieve without ImageNet2048 features. Therefore, we 1487

consider performance in the context of including 2412 hand-engineered features, tissue 1488

type and marker mention covariates, SIFTk5 features, and Deep3 features. We find 1489

ImageNet2048 features significantly improve search performance to a substantial degree 1490

(0.7006±0.0026 vs 0.7618±0.0018, U = 0, p = 0.0001817). We conclude for pathology 1491

search that there is complementary information represented in the ResNet-50 deep 1492

neural network trained only on natural images. 1493

Deep features trained only on natural images outperform hand-engineered 1494

features, in the context of clinical covariates Both (a) the ImageNet2048 1495

features from a deep convolutional neural network and (b) the 2,412 hand-engineered 1496

features from a variety of human-designed published algorithms are made for natural 1497

images, rather than histopathology images. The hand-engineered features are 1498

intrinsically interpretable, because a human defined each step of the algorithm’s 1499

behavior a priori. In contrast, deep convolutional features are the result of many layers 1500

of nonlinear transformations defined through training on data to minimize a loss 1501

function, so deep features are not interpretable as human-designed features are. To 1502

determine the pathology search performance penalty, if any, from using (a) less 1503

interpretable deep features of natural images rather than (b) more interpretable 1504

hand-engineered features of natural images, we compare search performance using (a) 1505

ImageNet2048 features to (b) the 2,412 hand-engineered features. In the context of 1506

tissue type and marker mention clinical covariates, we find ImageNet2048 features 1507

significantly improve search performance, again to a substantial degree, compared the 1508

the 2,412 hand-engineered features (0.6908±0.0021 vs 0.7517±0.0025, U = 0, 1509

p = 0.0001806). Excluding these covariates, to compare only ImageNet2048 features to 1510

the 2412 hand-engineered features alone, we again find ImageNet2048 performs 1511

significantly better (0.5640±0.0024 vs 0.6406±0.0046, U = 0, p = 0.0001817). In the 1512

context of tissue type and marker mention clinical covariates, we find (a) ImageNet2048 1513

features also significantly improve search performance compared to (b) the 2,412 1514

hand-engineered features combined with both SIFTk5 features and 1515

histopathology-trained Deep3 features (0.7517±0.0025 vs 0.7006±0.0026, U = 0, 1516

p = 0.0001817), which indicates ImageNet2048 features are the most important visual 1517

feature we measured. In the context of clinical covariates and ImageNet2048 features, 1518

search performance is significantly (albeit only slighty) improved when also considering 1519

the 2,412 hand-engineered features, SIFTk5 features, histopathology-trained Deep3 1520

features (0.7517±0.0025 vs 0.7618±0.0018, U = 0, p = 0.0001806), demonstrating the 1521

synergy among these features. We conclude deep features are more effective than 1522

March 8, 2020 52/65

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 9, 2020. ; https://doi.org/10.1101/396663doi: bioRxiv preprint 

https://doi.org/10.1101/396663
http://creativecommons.org/licenses/by-nc-nd/4.0/


hand-engineered features for encoding histopathology images for search. This result may 1523

be confounded due to ImageNet2048 features encoding every image corner-to-corner in a 1524

grid fashion (which does not omit pixels, as grid cells have typically >50% overlap), 1525

while the 2,412 features are all based on a 512×512px center crop (which omits some 1526

pixels from the original image) (Fig 3C). However, we find best search performance 1527

when combining deep features, hand-engineered features, and SIFTk5 features. 1528

Deep features trained only on natural images have intrinsically general 1529

properties that inform histopathology search, rather than learned 1530

nonlinear relationships of these features informing histopathology search 1531

Given that natural-image-derived ImageNet2048 features provide a powerful 1532

representation for histopathology image search, we ask if this representational power 1533

comes from (a) general-purpose properties from the ImageNet2048 features themselves 1534

that hold even for pathology or (b) the Random Forest learning pathology-specific 1535

nonlinear relationships among the ImageNet2048 features for histopathology applications. 1536

To test this, we compare search performance of (a) the L1 norm of the ImageNet2048 1537

features to (b) the Random Forest similarity trained on the ImageNet2048 features. We 1538

find the L1 approach marginally outperforms the Random Forest similarity approach, 1539

but this is not statistically significant, so any performance differences may be due to 1540

chance alone (0.6432±0.0000 vs 0.6406±0.0046, U = 70, p = 0.1153). This suggests the 1541

Random Forest does not learn nonlinear relationships among ImageNet2048 features that 1542

improve histopathology search performance. Rather, this suggests general properties of 1543

the ImageNet2048 features themselves are important for histopathology search. 1544

Moreover, we do find some ImageNet2048 features are more important than others for 1545

disease state prediction (Fig S10). However, we did not observe interpretable 1546

correspondences between ImageNet2048 feature activations and histopathology (Fig S11). 1547

We also do not observe that ImageNet2048 features form clusters of patients (Fig 6B). 1548

We conclude that although ImageNet2048 features empirically perform well, it may be 1549

desirable to use features that both empirically perform well and have general properties 1550

that “make sense” for histopathology. 1551

S5.14 Supplementary Experimental design and evaluation 1552

We evaluate our classifiers using 10-fold cross validation, which is the default evaluation 1553

scheme in Weka [35]. Our data are saved in ARFF file format, so our findings can be 1554

reproduced in Weka without the need for writing software code. This approach allows 1555

software code we write to be compared against the unperturbed gold standard of Weka 1556

defaults. We follow Weka’s default of ten replicates of 10-fold cross validation, to 1557

estimate bounds of accuracy and Area Under Receiver Operating Characteristic 1558

(AUROC) performance metrics. This approach will give reproducible results wherever 1559

Java and Weka run, e.g. a laptop, a server, a supercomputer, or a cloud computer. This 1560

approach will work on all operating systems that support Java, e.g. Linux, Mac, and 1561

Windows. 1562

S5.15 Supplementary Computational hardware and software 1563

We use Weka version 3.8.1 [35] on a ASUS Intel core i7-6700HQ 2.6GHz 4-CPU laptop 1564

with 16GB RAM for baseline analyses and Random Forests This laptop was also used 1565

for software development and automatically downloading Twitter data from 1566

participating pathologists. This laptop ran the Windows 10 operating system, which in 1567

turn ran the Oracle VirtualBox virtual machine manager, which in turn ran Debian 1568

Jessie 3.16.7-ckt20-1+deb8u3 and Linux kernel 3.16.0-4-amd64. Weka and our other 1569

pipeline components ran within Debian. 1570
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For deep learning, we use Keras version 2.1.4 and TensorFlow version 1.10.0 on an 1571

MSKCC supercomputer with several Nvidia Titan-X GPUs and dozens of Nvidia GTX 1572

1080 GPUs running CUDA 8 and cuDNN 5. 1573

S5.16 Supplementary Comparison with prior studies 1574

S5.16.1 Pathology-agnostic neural nets, SIFT nuclear features, and 1575

texture features 1576

Many other groups perform pathology search with deep neural networks or 1577

hand-engineered features. Komura et al [18]. and Hegde et al [19]. use a deep neural 1578

network for pathology image search, taking a pathology-agnostic approach by not 1579

performing machine learning on histopathology images. Hegde et al. go further by 1580

comparing search performance of their neural network method, called SMILY, to a 1581

simpler baseline method using Scale-invariant feature transform (SIFT) [45]. Zhang et 1582

al. suggest SIFT interest points tend to cover cell nuclei [76]. However, Lowe, the author 1583

of SIFT, notes SIFT features do not represent color or texture, “features [. . . ] use only 1584

a monochrome intensity image [and] texture measures [. . . ] could be incorporated” [45]. 1585

For pathology search this may handicap SIFT compared to a neural network that can 1586

represent color or texture. Indeed, when we train our neural-network-random-forest 1587

hybrid classifier (Fig 3) on pathology images, we find features that represent texture 1588

(Local Binary Patterns Pyramid [59], Local Binary Patterns [58]) and color (Color 1589

Histogram [54], Color Correlogram [56], etc [55, 57]) are the most important non-deep 1590

visual features (Fig 4). For decades, texture and color have been known to be important 1591

in pathology [46], and this motivates reproducible procedures for staining and slide 1592

preparation. Recently, Linder et al [47]. report Local Binary Patterns are important 1593

texture features to distinguish epithelium from stroma in colorectal cancer. Kather et 1594

al [48] go further, using Local Binary Patterns and other texture features to distinguish 1595

stroma, epithelium, immune cells, normal tissue, etc in colorectal cancer. Linder posit 1596

Local Binary Patterns are robust to changes in staining, illumination, and camera 1597

settings – useful properties for building a robust classifier from a globally distributed 1598

dataset like ours. Though we find using SIFT features alone for search performs better 1599

than chance, we find SIFT-based features alone perform worse that every other 1600

alternative feature representation we tested (Fig 10, Table S1). This may suggest that 1601

the visual signatures of disease state in pathology involve more than covering cell nuclei, 1602

and some of these signatures may be uncovered by a Random Forest [31] as nonlinear 1603

relationships of texture and color. For pathology search, we use Random Forest 1604

similarity derived from our interpretable classifier trained on pathology images, rather 1605

than require explicit similarity annotations from pathologists as training data [77]. We 1606

find pathology-specific covariates improve our classifier and search performance (Figs 9, 1607

10B). A variety of search approaches for pathology search, also known as Content-based 1608

image retrieval (CBIR), have been reported [78,79], including SIFT [43], SIFT with 1609

neural networks [44], and dimensionality reduction [80]. 1610

S5.16.2 Pathology-specific neural networks 1611

Otàlora et al [20]. take a transfer learning [12–15] approach to pathology search by 1612

adding an auxilary layer on top of a frozen pretrained deep neural network. They train 1613

this auxilary layer to predict if a prostate image shows Gleason [81] grade of 4 or more, 1614

or not. They do not report classification performance. The auxiliary layer feature vector 1615

is used for prostate image search, and the search is shown to perform better than a 1616

simple baseline, i.e. Color and Edge Directivity Descriptor (CEDD) [55]. We also use 1617

CEDD in our work and find it important (Fig 4). However, our classifier training is 1618
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pan-tissue and pan-disease, neither specifically prostate nor specifically high Gleason. 1619

Like Otàlora, we search PubMed (Fig 1). However, to filter PubMed for histopathology 1620

images, Otàlora use a light microscopy detection algorithm [82] while we use a Random 1621

Forest trained for H&E detection with leave-one-pathologist-out AUROC of 0.95 (Fig 7). 1622

In prior work, we trained a deep neural network end-to-end to predict SPOP mutation 1623

in prostate and repurposed the classifier for search [16]. Peng et al [83]. jointly train a 1624

deep neural network for prediction and search, using colorectal histopathology images 1625

labeled with nine possible classes, i.e. adipose tissue, background, cellular debris, 1626

lymphocytes, extra-cellular mucus, smooth muscle, normal colon mucosa, 1627

cancer-associated stroma, and colorectal cancer epithelium. However Peng do not report 1628

search performance as mean average precision or precision@k for k=1,2,3,. . . ,10 1629

(Fig 10B), so Peng’s results may be difficult for others to interpret. Instead, Peng report 1630

how many images had “perfect retrieval precision of 10 true neighbours”, and find their 1631

method performs 30% higher than their baseline. Peng cite Cao [84] and Cao [85] for 1632

reporting this way, but both report mean average precision, so Peng search performance 1633

between data sources are not clear to us. 1634

S5.16.3 Computational pathology studies not pan-tissue pan-disease 1635

For dermatopathology, Esteva et al [40]. predict if an image shows disease that is 1636

benign, malignant, or either benign/malignant – but do not consider nontumoral disease 1637

such as infections. For a few tissues including prostate, Campanella et al [42]. predict if 1638

an image shows cancer or not, but similarly do not differentiate non-neoplastic from 1639

benign disease, which may be an important clinical consideration [22]. Neither perform 1640

search. From optimal coherence tomography (OCT) imaging of eye pathology, De Fauw 1641

et al [41] predict referral urgency as urgent, semi-urgent, routine, or observation. This is 1642

not a prediction of disease state. De Fauw do not mention cancer, but instead focus on 1643

diseases we consider to be nontumor, such as diabetes and macular degeneration. We 1644

are not aware of any pan-tissue pan-disease datasets other than ours. We believe our 1645

pan-disease method serves patients with diseases of poverty (e.g. many forms of 1646

infection, ˜ 1
5 of diseases in our data) as well as patients with diseases of affluence (e.g. 1647

many forms of cancer, ˜2
5 of diseases in our data). 1648

S5.16.4 Deep and shallow learning not on same task 1649

In the field of cardiology, deep learning has been trained on a separate task (i.e. 1650

epicardial adipose tissue volume), then used by shallow learning (i.e. XGBoost) to 1651

predict myocardial infarction [86]. Our approach differs in that we train both deep and 1652

shallow learning (i.e. a Random Forest) on the same task, namely disease state 1653

prediction (Fig 3B,C). In principle, our approach allows deep learning to, in a 1654

data-driven manner, derive features that are important for disease state prediction, 1655

which may complement the hand-engineered features and clinical covariates we use for 1656

shallow learning. Indeed, we find there are such important and complementary deep 1657

features for shallow learning of disease state prediction (Fig 4) and search (Fig 10). 1658

S5.17 Supplementary Caveats 1659

S5.17.1 Patient case across multiple tweets 1660

A feature of these data is that a particular patient might be represented in more than 1661

one image. Any given patient might be discussed in multiple tweets, each of which 1662

contain one or more images. A patient case may be spread across multiple Twitter 1663

threads as well, e.g. the first tweets asks pathologists for their opinions as a quiz, while 1664

a second tweets in a new thread provides the correct diagnosis. We believe 1665
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leave-one-pathologist-out cross validation is a reliable way to prevent the same patient’s 1666

data from being in both a training and a test set for machine learning evaluation. 1667

However, in the future, we may find a patient is shared by multiple pathologists, e.g. 1668

when a pathologist donates his/her slides to another pathologist. Currently, we have not 1669

observed the same patient case being shared by multiple pathologists. 1670

S5.17.2 Near-duplicate detection 1671

There is room for improvement in automated duplicate detection methods. A 1672

pathologist may first tweets an image that has no hand-drawn marks, but later reply 1673

with an image that includes hand-drawn marks such as circles and arrows to indicate a 1674

region of interest. Pathologists may also re-share the cases of other pathologists, with 1675

minor modifications, such as white balancing. In future work, these near-duplicates 1676

should be automatically detected. Duplicates may artificially inflate performance 1677

metrics. 1678

S5.17.3 Disease state annotations vary in text 1679

Our dataset is only as good as the accuracy of the hashtags and diagnoses made by the 1680

collaborating pathologists and pathologists who comment on the cases. The more 1681

pathologists that contribute to the database, the higher the risk for errors and 1682

inconsistencies. Indeed we note some uses of the #bstpath hashtag to describe breast 1683

pathology (Section S5.6.1). We should remember the fun and voluntary nature of 1684

sharing cases on social media. 1685

While our disease state text processing algorithms take a consensus vote among the 1686

pathologists discussing the patient case, these methods are not perfect, and our manual 1687

annotations to correct this may be incomplete. We hope that by sharing our data with 1688

the community, more corrections may be made, improving the quality of our dataset. 1689

S5.17.4 Disease state evidence varies in images 1690

For our Random Forest baselines, we crop images to convert rectangular images to be 1691

uniformly square for the machine learning. However, pathologists may include 1692

diagnostic information only at the extreme edges of an image that are cropped out. A 1693

case of this from B.X. involves a hydatid cyst in the extreme right of an image, which 1694

would be cropped out8. This hydatid cyst indicates Echinococcus infection, so the case 1695

is nontumoral. Our set-based deep learning approach is an incomplete remedy to this 1696

problem, where we train on 224×224px image patches sampled throughout the original 1697

image, then test using 21 224×224px patches systematically sampled throughout the 1698

original image. Although this approach samples the entire image, the remedy is 1699

incomplete in that the ground truth is not uniform throughout the image. For example, 1700

it is only based on one corner of the image that there is histological evidence of 1701

nontumor disease. It may be helpful here to use more advanced methods, which make 1702

fewer assumptions about the ground truth and allow weaker supervision, but such 1703

methods may come at a cost of requiring more data than we have currently. 1704

S5.17.5 Algorithm and labeling inaccuracies 1705

We do not expect that our text classification algorithm (Fig S8) perfectly interprets 1706

disease state from the text associated with an image. Moreover, we also do not expect 1707

8Case at https://twitter.com/BinXu16/status/980404471833313280 “Kudo to @drkennethtang
@luishcruzc and @DrGeeONE The answer of this case can be seen in the right corner of the 3rd picture.
Dx: Echinococcus (hydatid cyst) with necrotizing pneumonia, abscess, and granulomatous inflammation.
Additional high power pictures attached.”
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our manual annotation process to be perfect, e.g. some stains may be incorrectly 1708

labeled as H&E, IHC, etc. We manually curate 10,000+ images, so human error as low 1709

as 1% means a handful of images are incorrectly labeled, but there could be more. By 1710

sharing our data with more pathologists and data scientists, we intend to gather 1711

feedback and correct any inaccuracies here, then measure disease state classification 1712

performance changes. 1713

S5.17.6 No automated quality control 1714

Finally, the size of the dataset is both a blessing and a curse. A large and diverse 1715

dataset is required to provide the most benefit to computational pathology. However, 1716

quality control for such large datasets is most feasible if done automatically, and 1717

automated quality control cannot deal with all issues. For example, some pathology 1718

images include marks designating a particular pathologist as the contributor of that 1719

image. Other pathology images have been marked by pathologists with arrows and 1720

circles. Our automated quality control pipeline enables us to rapidly discriminate 1721

pathology from non-pathology images, but is not able to address these other challenges. 1722

Future steps will need to be taken for more specialized quality control. 1723

S5.18 Supplementary Future directions 1724

S5.18.1 Acquiring more data 1725

The first step is to expand the size of this dataset by recruiting more pathologists via 1726

social media. With more data, we hope to improve performance on discriminations that 1727

were the most difficult (e.g. those involving gynecological pathology). More data may 1728

facilitate machine learning methods that discriminate between similar but less 1729

frequently used stains, such as H&E vs Diff-quik, rather than H&E vs IHC. More data 1730

might also enable us to distinguish particular organs or tissues within a histopathology 1731

tissue type, e.g. distinguish kidney tissue from bladder tissue. With increased sample 1732

size and increased tissue of origin granularity, it may be possible to predict metastatic 1733

tissue of origin. Finally, a larger dataset might also include more rare cases that can be 1734

useful for machine learning techniques that can support diagnoses. 1735

S5.18.2 Expanded and specific hashtags 1736

A second step is advocacy on social media, for (i) sharing normal tissue data, and (ii) 1737

expanded pathology hashtags. Normal tissue complements our existing “relatively 1738

unimportant” artifact and foreign body data, such as colloids and gauze, which are 1739

typically not prognostic of disease. Normal tissue also complements the description of 1740

tissue morphology in our data, if we tend to have only cancerous or diseased tissue. 1741

Separately, more descriptive hashtags may reduce our manual annotation burden, and 1742

obviate the need for us to ask pathologists to clarify what stain was used or what the 1743

tissue is. Moreover, molecular hashtags may complement the histology we see. However, 1744

we understand that for pathologists sharing cases on social media is probably a fun and 1745

voluntary activity, rather than a rigorous academic endeavor, so it may not be 1746

appropriate for us to suggest pathologists use terms from synoptic reporting in hashtag 1747

format in their Tweets. Moreover, the size of tweets is limited to 280 characters, so 1748

more than 3-4 hashtags per tweets is probably infeasible. Some pathologists are already 1749

close to this limit without using additional hashtags. 1750

We encourage the adoption of hashtags that explicitly identify what stains or 1751

techniques are used (this is not an exhaustive list): 1752

1. #he indicates there are one or more H&E-stained images in the tweets. 1753
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2. #ihc indicates there are one or more IHC-stained images in the tweets. 1754

3. #pas indicates there are one or more periodic acid-Schiff images in the tweets. 1755

4. #diffq indicates there are one or more diff-quik images in the tweets. There is a 1756

common misspelling of diff-quick, so our hashtag avoids this misspelling. 1757

5. #gross indicates one or more gross section images are in the tweets. This is 1758

typically fresh cut tissue, e.g. an entire excised tumor or a large piece of an organ. 1759

6. #macro indicates an unmagnified picture of a microscopy slide. Unfortunately, 1760

such pictures are occasionally referred to as gross. 1761

7. #endo indicates one or more endoscopy images are in the tweets. 1762

8. #ct indicates one or more CT scan images are in the tweets. 1763

9. #xray indicates one or more X-ray images are in the tweets. 1764

We encourage hashtags to describe not only the histological features of a case, but 1765

also the molecular features of a case. Again, this hashtag list is far from exhaustive. 1766

1. #braf indicates the BRAF gene is known to be mutated, perhaps through 1767

sequencing. 1768

2. #msi indicates micro-satellite instability, which again may be evident from 1769

sequencing. 1770

3. #desmin indicates that the IHC used targets desmin. 1771

We encourage the adoption of hashtags that explicitly identify any artifacts, art, or 1772

pathologist annotations/marks on the image. 1773

1. #artifact or #artefact indicates there are artifacts or foreign bodies in one or 1774

more images, such as colloids, barium, sutures, SpongostanTM, gauze, etc. We 1775

encourage the tweets message text to identify what the artifact or foreign body is. 1776

2. #pathart is a hashtag in use today, but unfortunately it is used in two ways: (i) 1777

to identify naturally-occurring and unmodified pathology images that are “pretty” 1778

or “interesting” as natural works of art, and (ii) to identify images that have been 1779

modified by the pathologist herself/himself to be “funny” or “interesting”. The 1780

trouble is (i) is “acceptable” pathology for analysis while (ii) is not. We advocate 1781

for the continued use of the #pathart hashtag, but with clarification, below: 1782

3. #drawn or #annotated indicates the pathologist made hand-drawn marks on one 1783

or more images, such as arrows, circles, or artistic manipulations. Artistic 1784

manipulations may include drawing exclamation points, question marks, eyes, 1785

mouths, faces, skulls, cartoon bodies, etc on the image. So, “#pathart #drawn” is 1786

likely a pathology image with artistic drawn marks that prevents the image from 1787

being an “acceptable” pathology image for analysis, while “#pathart” without 1788

“#drawn” is likely a pathology image that is a naturally occurring unmodified 1789

histology image that is an “acceptable” pathology image for analysis. 1790

4. Alternatively, “#pathfun” or “#pathdrawing” may refer artistically manipulated 1791

pathology pictures, leaving “#pathart” exclusively for naturally-occurring 1792

pathology that are “pretty” or “interesting” from an artistic perspective. 1793

We encourage the adoption of hashtags that give other information about the image. 1794

1. #pathbug is an existing hashtag that indicates a parasite or other co-occurring 1795

non-human organism is depicted in one or more images in the tweets. The 1796

#parasite tag is sometimes used instead. 1797

2. #panel indicates one or more multi-panel images are in the tweets. 1798
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We encourage all adopted pathology-related hashtags to be registered in an ontology, 1799

e.g. https://www.symplur.com/healthcare-hashtags/ontology/pathology/. A 1800

hashtag ontology can standardize the hashtags used, which in turn can (i) help 1801

pathologists in the same subspecialty find each other, and (ii) simplify computational 1802

analyses of hashtag text. 1803
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