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Genomics offered the promise of transforming antibiotic discovery by revealing many new essential genes as good 
targets, but the results fell short of the promise. It is becoming clear that a major limitation was that essential 
genes for a bacterial species were often defined based on a single or limited number of strains grown under a single 
or limited number of in vitro laboratory conditions. In fact, the essentiality of a gene can depend on both genetic 
background and growth condition. We thus developed a strategy for more rigorously defining the core essential 
genome of a bacterial species by studying many pathogen strains and growth conditions. We assessed how many 
strains must be examined to converge on a set of core essential genes for a species. We used transposon insertion 
sequencing (Tn-Seq) to define essential genes in nine strains of Pseudomonas aeruginosa on five different media 
and developed a novel statistical model, FiTnEss, to classify genes as essential versus non-essential across all strain-
media combinations. We defined a set of 321 core essential genes, representing 6.6% of the genome. We 
determined that analysis of 4 strains was typically sufficient in P. aeruginosa to converge on a set of core essential 
genes likely to be essential across the species across a wide range of conditions relevant to in vivo infection, and 
thus to represent attractive targets for novel drug discovery. 
 

The sequencing of the first bacterial genome in 1995 
(1), offered the promise of revolutionizing antibiotic 
discovery by revealing the breadth of genes that could be 
mined for antibiotic targets and paved the way for 
genome-wide genetic screens to identify essential genes in 
a given bacterial species and chemical screens to find new 
antibiotics inhibiting these essential targets. However, the 
experiences of two major pharmaceutical companies in the 
late 1990s to early 2000s suggest that this promise was not 
fulfilled (2, 3). While several factors contributed to the 
disappointing yield of new antibiotic candidates, one 
important factor was that inhibitors of supposedly 
essential targets often failed to have good activity against 
all pathogen strains or to clear infections. 

In retrospect, it is becoming clear that the criteria used 
at the time for declaring a gene to be essential within a 
species were not sufficiently rigorous, with essentiality 
often defined based on the effect of inactivating a gene in 
a single strain of a pathogen species under a single in 
vitro, laboratory growth condition. We now recognize that 
whether a gene is essential may depend on both genetic 
background (i.e, the strain in which it resides) (2) and 
growth conditions (i.e., conditional essentiality) (4, 5). 
Thus, given the diversity of bacterial genomes even within 

a species, genes essential in a single strain need not be 
essential in all strains of a given species. And, given the 
variable environments encountered by bacterial pathogens 
in lab media and different infection types (i.e., blood, 
urine, lung, abscess infections), genes essential in artificial 
laboratory growth conditions need not be essential during 
human infection. Focusing on ‘core essential genes’ – by 
which we mean genes that are essential across virtually all 
strains of a pathogen species and all relevant growth 
conditions – would likely increase the success of antibiotic 
discovery. We therefore sought to develop a robust 
paradigm for defining the core essential genes of a 
bacterial species. 
  We focused on Pseudomonas aeruginosa, a clinically 
significant pathogen that is a major cause of bacteremia, 
pulmonary, and urinary tract infections, with high 
mortality rates (6-8), and for which there is the greatest 
need for new antibiotics. Due to its ability to evade current 
antibiotics or develop resistance, P. aeruginosa clinical 
strains are increasingly resistant to all current antibiotics 
(9, 10). The World Health Organization has recently 
classified P. aeruginosa as a priority pathogen in need of 
research investment and new drugs (11). Alarmingly, only 
1 in 5 antibacterial drugs succeed in clinical trials (12), 
and of the 48 potential antibacterials in development as of 
2018, only 3 have activity against P. aeruginosa with only 
1 of these having a new mechanism of action 
(www.pewtrusts.org/antibiotic-pipeline). 

Here we examine two fundamental questions: How 
accurately can the core essential genome be identified 
based on essentiality in one strain under one laboratory 
growth condition? How many strains must be examined to 
converge on a set of core essential genes that are likely to 
be essential under conditions relevant for infection and 
thus may be good drug targets? We addressed this 
question by using Tn-Seq (also known as TIS, INseq, 
HITS, TraDIS, (13-17)) to perform genome-wide negative 
selection studies on libraries of transposon-insertion 
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mutants under different growth conditions, with the 
distribution of transposon insertions determined by 
sequencing the pool of strains. Genes that are important 
for optimal growth under a specific growth condition can 
be identified, because the corresponding mutants 
containing disrupting transposon insertions in these genes 
will be seriously depleted from the pool of all possible 
mutants. These methods have been applied to the two 
commonly studied reference lab strains of P. aeruginosa, 
PA14 and PAO1, with varying numbers and identities of 
essential genes (18). Here, we applied this method to 
PA14 on Luria-Bertani (LB) media and compared the 
essential genome determined from this single strain on a 
single lab-based media to 8 other diverse strains of P. 
aeruginosa under 5 different growth conditions. The 
strains comprised isolates from various human infections 
(including pulmonary, urinary, blood, wound and ocular) 
and one environmentally isolated strain, while the growth 
conditions comprised three media intended to simulate the 
conditions of human infection (sputum, serum, urine) and 
two lab-based media (LB and M9 minimal media). We 
further developed a novel, simple statistical method, 
called FiTnEss (Finding Tn-Seq Essential genes), that 
maps measurements of fitness of individual transposon 
mutants onto a binary classification of essential or non-
essential with user defined levels of stringency. We 
applied FiTnEss to the Tn-Seq data from all strain and 
media combinations and defined a set of 321 core 
essential genes, which represent 6.6% of the genome, that 
constitute a high-priority list of candidate targets for drug 
discovery against this important pathogen. Finally, we 
calculated that as few as 4 individual species could be 
examined in combination to approach a plateau of core 
essential genes across a given species. 
 
 
 

Results 
 

Transposon mutagenesis, sequencing, and mapping of 
transposon insertions. We chose strains from a collection 
of 130 clinical P. aeruginosa isolates obtained from 
various sources (see Methods). After performing whole 
genome sequencing of the collection, mapping the isolates 
to a phylogenetic tree formed by 2560 P. aeruginosa 
genomes in NCBI, and testing a subset for their ability to 
be efficiently mutagenized by the Himar1-derived 
transposon MAR2xT7 (19-21), we focused on nine strains 
that represented five different infection types (blood, 
urine, respiratory, ocular and wound), with each strain 
representing a different branch of the dendrogram (NCBI; 
Fig. 1A). The genomes of these 9 strains varied from 6.34 
to 7.15 Mbp.  

We constructed transposon libraries by performing 
tripartite matings of these 9 P. aeruginosa strains with E. 
coli donor strain SM10 carrying an episomal MAR2xT7 
transposon (20) and E. coli strain SM10 carrying an 
episomal hyperactive transposase that results in efficient 
integration at the dinucleotide sequence ‘TA’ (Fig. S1) 
(22). Separating the transposase and transposon increased 
the efficiency of insertion sequencing and mapping, 
relative to the more common system of a single plasmid 
carrying both the transposase and the transposon. We 
obtained at least 5x106 distinct mutants for each strain 
from at least two independent conjugations, and selected 
mutants on each of five different agar media directly to 
avoid a bottleneck from pre-selecting the libraries on a 
given medium. To ensure saturating mutagenesis, a total 
of 1x106 mutants were selected on each medium in 
duplicate, yielding 10-fold more transposon mutants than 
possible insertion sites. The media types included rich 
(LB) and minimal (M9) laboratory media, to provide the 
boundaries (extremes of growth conditions) for essential 
gene identification, and three media intended to resemble 

Figure 1. Tn-seq of P. aeruginosa clinical isolates. A. Phylogenetic dendrogram of 2560 P. aeruginosa genomes 
(NCBI); PAO1 and strains selected for mutagenesis are indicated. B. The variable sequencing reads which map to TA 
sites in an exemplary region of five genes in strain PA14 (including hemL, thiE and thiD) under different growth 
conditions highlights the conditional essentiality of these genes. C. Normalized read counts mapping to the pilY1 gene 
in all nine strains in LB medium demonstrates the variable essentiality of pilY1 in different strains as an example of the 
genomic heterogeneity of P. aeruginosa isolates. 
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infection site fluids: fetal bovine serum, synthetic cystic 
fibrosis sputum (23), and urine. We mapped the 
transposon-insertion sites to the corresponding reference 
genomes for each strain. 

In all, we created 90 Tn-Seq datasets (9 strains grown 
on 5 media, performed in duplicate), with an average 
number of mapped reads of approximately 107. Reads at 
each TA site were highly concordant between replicates, 
with a mean R2 = 0.98 (Dataset S1). 

Visual inspection readily identified examples of genes 
that were variably essential under different growth 
conditions for a certain strain, illustrating the conditional 
essentiality of some genes (Fig. 1B). For example, the 
thiamine synthesis genes thiD and thiE showed few 
insertions in M9 minimal media, which lacks thiamine, 
but an abundance of insertions in rich LB media, 
indicating their essentiality in M9 but not LB. Variability 
is also seen for the hemL gene under different growth 
conditions. We similarly saw examples of genes that were 
variably essential in different strains under the same 
growth condition. For example, the pilY1 gene did not 
tolerate insertions in strain BWH013, but readily tolerated 
insertions in the other 8 strains, when grown on LB — 
highlighting the genomic plasticity of P. aeruginosa (Fig. 
1C). 

To optimize our accuracy in calling genes essential or 
non-essential, we removed from our analysis three classes 
of TA sites that can lead to technical errors. These classes 
include (1) non-permissive insertion sites consisting of the 
sequence (GC)GNTANC(GC), which was recently 
reported to be intolerant to Himar1 transposon insertions 
in Mycobacterium tuberculosis (24) and which we 
confirmed is also intolerant in P. aeruginosa; (2) non-
disruptive terminal insertions within 50 bps of the 5’- and 
3’-gene termini (a distance we optimized empirically) 
which can nevertheless result in the expression of a 
functional, albeit truncated version of the corresponding 
gene product (25); and (3) insertion sequences at which 
genomic sequences flanking a TA site were not unique 
and could not be accurately mapped (Fig. S2 and 
methods). In total, we removed 16,499 of 81,328 TA sites 
(20%) in PA14, which resulted in our inability to assess 
150 genes in PA14 (2.5%). The inability to assess the 
essentiality of genes that contain zero TA sites (35) 
removed another 185 genes from analysis in PA14. In 
total we were able to assess the essentiality of 5708 of the 
5893 total genes in the PA14 genome (97%). The statistics 
were similar for the other 8 strains (Table S1).  
 
FiTnEss: a statistical model to identify essential genes. 
We next sought to perform a comprehensive and 
quantitative analysis of the 90 Tn-Seq datasets. While 
various methods exist for analyzing Tn-Seq data (13, 26-
28), they differ in their complexity and their stringency for 
calling a gene as essential. We thus developed a simple 
model and method (FiTnEss, Finding Tn-Seq Essentials) 
for identifying essential genes from Tn-Seq data that 
required minimal assumptions and had good predictive 

power. Importantly, we evaluated essentiality at the level 
of genes rather than individual TA sites. Across the entire 
dataset, we found that the average number of reads per TA 
site for a gene (ng/NTA where ng is total number of reads 
across the gene and NTA is number of TA sites) falls into 
a clear bimodal distribution, with presumed essential 
genes on the left (with a small or zero average ng/NTA) 
and non-essential genes on the right (ng/NTA > 0) (Fig. 
S3). However, we found that this average (ng/NTA) varies 
based on gene length, due to statistical averaging; in 
contrast, we empirically observed that the read-number 
from randomly selected, individual TA sites in non-
essential genes are similar, regardless of the length of the 
gene in which they are contained (Fig. S3), suggesting that 
they are dependent only on mutant fitness. Given these 
findings, we based FiTnEss on modeling the read-number 
distribution for randomly selected, individual TA sites in 
clearly non-essential genes (NTA = 10; top 75% of the 
distribution) and determined the model parameters from 
the data. We posited that this distribution is geometric 
with probability (pg) and that 1/pg further follows a 
lognormal distribution. Thus, requiring only two 
parameters, the mean and the variance of a distribution, 
we were able to accurately capture the behavior of all non-
essential genes (Fig. S3).  

Using the two parameters (determined individually for 
each dataset), we then constructed a theoretical ‘non-
essential’ distribution for different gene sizes for each 
corresponding dataset, and calculated the probability (p-
value) of a given gene coming from this non-essential 
distribution. In order to vary the stringency with which we 
called essentiality, we applied two different levels of 
multiple testing adjustment: one with maximal stringency 
to offer the highest confidence set of essential genes 
(family-wise error rate (FWER)) to identify genes with no 
or very few sequencing reads); and one with high 
stringency, yet slightly relaxed (false discovery rate 
(FDR)) to identify genes that are statistically significant 
yet contain a low number of reads). Genes with an 
adjusted p-value < 0.05 in both replicates were predicted 
to be essential (Fig. 2A and SI methods). Virtually all 
maximal stringency calls are expected to be true essential 
genes, while among the high stringency set, a small 
number of false positives is expected. 
 
Validating FiTnEss using strain PA14. To validate 
FiTnEss’s approach to predicting gene essentiality, we 
compared its predictions to actual viability and growth 
measurements for a set of PA14 mutants in which we 
cleanly deleted particular genes of interest. We created 
clean deletion mutants corresponding to 20 genes that 
FiTnEss identified as non-essential in LB, but were 
essential in one or more of the other media, as well as to 3 
control genes that were predicted to be non-essential in all 
media. We determined the positive and negative predictive 
values of FiTnEss by growing the 23 mutants on the same 
five media as used in the original Tn-Seq experiments, for 
a total of 115 gene-medium combinations. Mutant strain 
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Figure 2. Validation of FiTnEss predictions on a set of 
conditionally essential gene deletions. A. FiTnEss 
prediction for ilvC in urine. The grey histogram is the 
actual distribution of Tn-seq reads for all genes with 18 
insertion sites in PA14 grown in urine, the black line is the 
theoretical distribution calculated by FiTnEss, and the red 
line is where ilvC falls at the far left (i.e. essential) of the 
bimodal distribution. Inset: read numbers at useable (red) 
and removed (blue) TA sites are shown. B. FiTnEss 
essentiality predictions (left; non-essential, high 
stringency essential, and maximal stringency essential 
predictions displayed as dark green circles, light green 
circles, and blank spaces, respectively) of five 
representative gene deletion mutants from PA14; actual 
mutant growth mirrored predicted growth on 5 media 
(right). The red box identifies the absence of growth of 
ΔilvC (the deletion mutant highlighted in panel A), thus 
experimentally confirming its essentiality on urine. The 
full growth profiles of 23 gene deletions can be found in 
Fig. S4. C. A summary of FiTnEss performance based on 
actual deletion mutant growth profiles. Gene-medium 
instances are indicated in parentheses; red and green boxes 
highlight false positive and negative rates, respectively. 
 
 
viability was categorized as essential, intermediate, and 
non-essential using densitometry (<20%, 20-50%, and 
>50% relative to WT, respectively; Fig. 2B-C and Fig. 

S4). Of the 35 combinations predicted to be essential by 
the maximal stringency criteria, 30 were indeed found to 
be as essential and 5 were of intermediate growth. 
Importantly, no strains within this criterion were in fact 
non-essential. By relaxing the stringency slightly to 
‘highly stringent’, 15 additional strain-medium 
combinations were predicted to be essential, 8 of which 
were truly essential or of intermediate growth and the 
remaining 7 were non-essential, corroborating our 
prediction that some false positives would be expected in 
this category. Of the 65 combinations predicted to be non-
essential, none were found as essential, but 6 instances 
were found to be of intermediate growth. In this limited 
dataset, FiTnEss had a positive predictive value of 100% 
by using maximal stringency and 86% using the high 
stringency predictions (if intermediate genes are classified 
as essential). The negative predictive value of FiTnEss is 
91% or 100% (depending on the classification of 
intermediate genes). Notably, all 3 control strains behaved 
as predicted, growing on all media, despite our having 
chosen these control strains with p-values that fall at the 
boundary drawn to distinguish essential and non-essential 
genes, further reinforcing the accuracy of this binary 
classification. All together, these results support FiTnEss’s 
ability to accurately call essential and non-essential genes, 
and that FiTnEss’s stringency can be varied based on user 
tolerance of false positive versus false negative 
predictions. Importantly, FiTnEss correctly predicted gene 
essentiality despite the presence of a small number of 
mapped insertions in the primary Tn-Seq data of some 
genes, as exemplified in the case of the ilvC gene 
encoding ketol-acid reductoisomerase (Fig. 2A). 
 
Defining the core genome. We first defined the core 
genome consisting of 5109 protein-coding genes (genes 
present in all 9 strains) using the orthogroup clustering 
software Synerclust (29). The size of the core genome 
defined by these 9 strains is comparable to what has been 
previously described for P. aeruginosa (5316 total genes, 
(30)). Of these genes, 4903 were present in single-copy 
with TA sites that allowed assessment by Tn-Seq; the 
remaining genes (86 multi-copy genes in which reads 
could not be accurately mapped due to sequence 
homology, and 120 small genes that do not have TA sites 
permissive to transposon insertion) could not be assessed 
(Dataset S2). The accessory genome within each strain 
(the genes that are present in the strain but not in all 
strains) ranged from 655-1369 genes. 
 
Defining the core essential genome. We then examined 
the FiTnEss predictions for all 90 datasets to identify the 
core essential genes across the P. aeruginosa species 
(Dataset S3 and Table 1). If one examines only a single 
strain in a single medium, the number of essential genes 
varies widely between 354 and 727 genes, even when 
using the maximal stringency prediction (Table 1). If one 
examines only genes common to all strains (the core 
genome), however, the number of essential genes from 
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strain to strain was much more tightly distributed (337 to 
386; Fig. S5). In contrast, the number of essential genes in 
the accessory genome of each strain varied widely from 
59 to 478 genes (Fig. S5); interestingly, the number was 
roughly proportional to genome size (Fig. S5). 

When combining all 9 strains across the 5 media and 
applying maximal stringency, we found that there are only 
249 core essential genes (5.1% of the genome). This 
number is up to three-fold fewer than the number found 
for a single strain and medium. If we apply the slightly 
lower standard of high stringency (to allow for the 
possibility of some false negatives in the data), an 
additional 72 genes (1.5% of the genome) are included —
 resulting in 321 genes. We define this set as the core 
essential genome. 

To assess whether the number of core essential 
genome had reached a plateau, we calculated how the 
number of essential genes decreases with additional 
strains (with strains added in 10,000 different random 
orders) (Fig. 3A). We found that the median across these 
trajectories typically plateaued after 4 strains, but that 5 
strains would ensure 90% of all trajectories reaching a 
plateau defined as a < 5% false positive rate (Fig. 3B). 
Beyond the 4 strains, the maximum number of core 
essential genes declined by only 13 genes. These genes 
just failed to reach the essential p-value threshold, 
suggesting that they were false negatives (Dataset S4). If 
we were to include these 13 genes, the core essential 
genome would reach 334 genes.  
 

Figure 3. Core essential genome definition plateau. A. 
10,000 random calculations (grey) of the trajectory of the 
number of core essential genes determined upon the 
sequential introduction of additional strains, up to a total 
of 9 strains. The 10th and 90th percentiles (black lines) and 
mean (red line) calculated trajectories of core essential 
genome sizes are highlighted. B. False positive rate of 
core essential genes upon the introduction of strains as 
calculated in A. The dashed line represents a 5% false 
positive rate, with the median (blue) number of strains to 
cross this threshold being 4, and the 10th (red) and 90th 
percentile (green) crossing the threshold at 3 and 5 strains, 
respectively. 
 
 

We examined the identities and functions of the core 
essential genes. Of the 321 core essential genes, 263 
correspond to cytosolic proteins, with 132 involved in 

metabolic pathways (50%) and 119 involved in 
macromolecular synthesis including DNA replication, 
transcription or  
translation (45%). Another 56 correspond to cytoplasmic 
membrane, periplasmic and outer membrane proteins with 
the majority involved in cell structure and division, 
metabolism, or act as transporters/chaperones (13, 12 and 
26 genes, respectively). The remaining 12 of the 321 
genes are completely uncharacterized (Fig. 4A and 
Dataset S5).  
 
Conditionally essential genes. In addition to the core 
essential genes, the core genome also contains 
conditionally essential genes that are essential in one or 
more – but not all – media. Sputum and M9 had the 
highest number of conditionally essential genes (118 and 
110, respectively), consistent with these being the most 
nutritionally depleted media. LB had 103 conditionally 
essential genes, while urine and serum had the fewest (69 
and 91, respectively) (Table 1). While the numbers of 
essential genes required in each growth condition did not 
vary significantly from condition to condition, the actual 
gene identities did vary (Dataset S5). Importantly, we 
identified an additional 24 conditionally essential genes 
required for growth in all three infection-relevant media 
(serum, sputum, and urine; Fig. 4B) but not in both of the 
lab-based media (LB, M9). Several of these genes are 
involved in pyrimidine and purine synthesis and are not 
required in LB, suggesting that sufficient nucleotide 
intermediates may be present in LB to sustain growth in 
vitro but that these genes may be valid targets during in 
vivo infection.  

When we applied Multiple Correspondence Analysis 
(MCA) to all sets of essential genes for every strain-
growth condition, we find that indeed, the vast majority of 
strains formed distinct clusters based on growth condition 
(Fig. S6). Interestingly, one strain, PA14, an extensively 
used laboratory strain, was an outlier under two 
conditions, M9 and urine. This behavior could be a result 
of the strain simply having genetic idiosyncrasies that, for 
example, may contribute to its unique ability to colonize a 
wider host range than other P. aeruginosa strains (31, 32). 
Alternatively, this might be a consequence of PA14 being 
a laboratory strain which has adapted to laboratory 
conditions over a long period of time, perhaps providing a 
slight cautionary flag if attempting to extrapolate PA14 
behavior to the species in general.  
Contained within the sets of conditionally essential genes 
for each growth condition are genes that are essential only 
in a single medium, termed unique conditionally essential 
genes. Considering only the three infection-relevant 
conditions while ignoring the laboratory conditions, 
sputum had 29, serum had 16, and urine had 17 unique 
conditionally essential genes. These unique conditionally 
essential genes carry the intriguing potential of becoming 
infection site-specific targets for infection type specific 
antibiotics, for example, a urine specific anti-pseudomonal 
antibiotic, as long as their essentiality is not 
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Figure 4. Core and conditionally essential gene 
functions in P. aeruginosa. A. Chord diagram of the 321 
core essential genes showing the relationship between 
subcellular location (bottom) and general function (top), 
with the number of genes for each category indicated. B. 
Venn diagram showing the number of essential genes in 
all strains across three infection-relevant media.  
 
 
dependent on factors that are variable from patient to 
patient.  

The essential genes unique to sputum consist mainly 
of biosynthetic pathways such as thiamine, pyridoxine, 
and tryptophan synthesis, with the former two cofactors 
being required for multiple cellular processes including 
synthesis and catabolism of sugars and amino acids and 
the latter requirement suggesting that tryptophan levels in 
sputum may not be sufficient for growth (23). Similarly, 
urine-specific essential genes almost exclusively consist of 
genes involved in amino acid biosynthesis, specifically 
valine, leucine, and isoleucine pathways. Meanwhile, 
methionine and arginine pathways are essential in both 
urine and serum. The urine findings are consistent with the 
fact that these amino acids are among the least abundant in 
urine (33). However, despite the low abundance of proline 
and cysteine in urine, classical proline and cysteine 
biosynthesis genes are not essential, likely because 
alternative, functionally redundant synthesis pathways 
exist in P. aeruginosa for these amino acids (34, 35). 

In contrast, most genes involved in amino acid 
biosynthesis are dispensable in serum, as are genes 
involved in heme biosynthesis (pdxA,H, and 
hemA,B,C,D,E,F,H,J,L), likely due to the ability to 
scavenge amino acids (36) and heme from free 
hemoglobin (37, 38) from serum. Interestingly, despite the 
non-essentiality of porphyrin genes in serum, genes 
involved in the formation and utilization of porphyrin-
containing cytochrome c were uniquely essential in serum 
and no other media, including the cytochrome c 
biogenesis protein CcmH (PA14_57540), Cytochrome c1 
(Cyt1; PA14_57540), the ubiquinol cytochrome c 
reductase (PA14_57570), and cytochrome c oxidase cbb3-
type subunit I (CcoN; PA14_44370). P. aeruginosa’s 
respiratory chain is highly branched and able to use 
diverse electron donors and acceptors under different 
environments (39). Here we find that in an environment 
containing high concentrations of heme, P. aeruginosa’s 
respiratory flexibility is lost, as it becomes dependent on a 
single pathway. 
To validate in vivo a strategy of targeting conditionally 
essential genes identified from our in vitro Tn-Seq 
experiments, we tested a set of PA14 deletion mutants for 
their ability to survive in different in vivo mouse models 
of P. aeruginosa infection. Using a neutropenic mouse 
model where the bacteria are administered intravenously 
to test translation of the in vitro serum growth condition, 
we infected mice with 6 strains: wild-type PA14; 3 
mutants containing deletions of metabolic genes predicted 
to be essential in serum, sputum, and urine but not LB 
(pyrC, pyrimidine biosynthesis; tpiA, glycolysis; and 
purH, purine biosynthesis); one mutant containing a 
deletion in a gene predicted be essential in serum and 
urine but not sputum (argG, arginine biosynthesis); and 
one mutant containing a deletion in a gene predicted to be 
conditionally essential in sputum alone but not serum or 
urine (thiC, thiamine biosynthesis; Fig. 5A). In 
concordance with their predicted conditional essentiality, 
the pyrC, tpiA, and purH mutants were significantly 
attenuated in the neutropenic mouse model with a 3-4 log 
reduction in total CFU in the spleen 16 hours post 
infection. Interestingly, the argG mutant was not 
attenuated as predicted. To understand this discrepancy, 
we compared its growth on agar plates supplemented with 
mouse, bovine (which was used in the Tn-Seq 
experiments), or human serum. Indeed, the mutant was 
able to grow on mouse serum, but not bovine or human 
serum, thereby explaining the lack of mutant attenuation 
in the mouse model, likely due to the higher levels of 
arginine available in mouse serum (40-42) (Fig. 5B). 
Finally, as predicted, the thiC mutant was not significantly 
attenuated in the neutropenic mouse model; it was 
however, attenuated in an acute pneumonia mouse model, 
where the inoculum is delivered intranasally followed by 
colonization of the lungs, which is consistent with 
FiTnEss predictions (Fig. 5C). Together, these datasets 
highlighted the tremendous differences required by P. 
aeruginosa in different microenvironments that 
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Figure 5. In vivo murine infection with gene deletion 
mutants of conditionally essential genes identified by 
FiTnEss. A. Bacterial burden in the spleen of neutropenic 
mice infected intravenously with WT PA14 and DpyrC, 
DpurH, DtpiA, DargG, and DthiC deletion mutants; 
statistical significance was determined with a Kruskal-
Wallis test, n = 9.  B. Growth of WT PA14 and the DargG 
deletion mutant in human, fetal bovine, and mouse sera. 
C. Bacterial burden in the lungs from mice infected 
intranasally with PA14 or the DthiC deletion mutant; 
statistical significance was determined with a Mann-
Whitney test, n = 15. A and C. Bacterial burden 
determined at 16 hours post infection; each dot represents 
a single mouse with a line indicating the median; 
significance is displayed at p < 0.001 (***) or p < 0.01 
(**); dashed line indicates the limit of detection of the 
assay; data is a combination of two biological replicates. 
 
 
could be exploited in the development of infection 
condition specific therapeutics. 
 
Discussion 
 

Target-informed antibiotic discovery and development 
has been predicated on knowing which genes within a 
given species constitute good targets, with genomic 
technologies such as Tn-Seq paving the way for more 
comprehensive definition of essential targets. However, 
comprehensive genomic methods for defining essential 
targets, such as Tn-Seq, have largely been applied to only 
a single or a few bacterial strains under a single or few 
growth conditions, with the implicit assumption that these 
results will apply to the entire species under infection-
relevant conditions. Here we show that the number of 
essential genes for a given strain on a single media can 
vary widely among strains within a bacterial species and 
under different growth conditions. We thus sought to 

develop a robust paradigm for defining the core essential 
genes of a bacterial species, requiring an analysis of 
essential genes across multiple media and among multiple 
strains. We empirically determined that the analysis of 
essential genes among 4 strains was enough for P. 
aeruginosa to converge on a set of core essential genes 
that are likely to be essential in a wide range of conditions 
relevant to in vivo infection, and therefore represent the 
most attractive targets for novel drug discovery.  

Using Tn-Seq and a novel method of analysis, 
FiTnEss, to establish the core essential genome of P. 
aeruginosa, we determined that while a single strain has 
~400-800 essential genes, the core essential genome 
across all strains analyzed is approximately 321 genes, 
thus demonstrating the limitations in determining species 
essentiality based on a single strain. Further, there are an 
additional 24 essential genes required for growth in the 
three infection-relevant media examined, which are non-
essential in LB and M9 media. Finally, we find that there 
are ~15-30 unique, conditionally essential genes for each 
of the infection-relevant media examined, with their 
corresponding biological pathways important for survival 
only within a particular host tissue environment; these 
genes may represent a unique set of targets for infection-
type specific therapeutics with the obvious caveat that 
their essentiality cannot be dependent on 
microenvironmental factors that vary widely from patient 
to patient. 

Previous transposon mutagenesis studies of two 
common lab strains, PA14 and PAO1, have found varying 
numbers of essential genes, as reviewed in (18). These 
studies have predominantly focused on identifying genes 
refractory to transposon mutagenesis when bacteria are 
selected for growth on lab media including LB, BHI, and 
minimal media (20, 43-46), though recent studies have 
extended growth conditions to include sputum or sputum-
like media (45, 46) in vitro. A comparison of all of these 
datasets combined, revealed an intersection of only 109 
essential genes common to all studies (Dataset S6). This 
low concordance is likely due to methodological or 
analytical differences between the studies. One way in 
which our study differs from the majority of previous 
studies is that we did not initially select transposon 
mutants on a rich (isolation) medium, i.e., LB, prior to 
selection on the condition of interest, thereby eliminating 
a bottleneck that prevents evaluation of genes essential in 
the isolation media. By omitting the initial isolation step, 
we were able to identify 103 conditionally essential genes 
which are required in LB, but not in at least one of the 
other 4 media. In addition to these in vitro studies, in vivo 
Tn-Seq studies can be valuable in determining what genes 
are required for fitness in the context of an active infection 
(44); however, they also suffer from the problem of 
experimental bottlenecks that practically limit the ability 
to truly interrogate essentiality on a genome-wide scale. 
These bottlenecks include the required isolation step 
before inoculating into an animal and the depletion of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 12, 2019. ; https://doi.org/10.1101/396689doi: bioRxiv preprint 

https://doi.org/10.1101/396689


      Poulsen B.E. et al.  8 

mutants in vivo due to stochastic loss rather than a true 
fitness loss of the mutant itself (13).  

Experimental methods for identifying gene 
essentiality have varied greatly through the years. Despite 
significant advances for defining fitness costs of gene 
disruptions on a genome-wide scale using sequencing (Tn-
Seq), limitations persist. They include (1) analysis of 
mutant behavior in pools where there can be both 
competition as well trans complementation, factors which 
can cause mutant growth in a pool to diverge from growth 
in isolation, (2) transposon sequence insertion biases (24, 
47), and (3) polar effects on adjacent genes conferred by 
transposon insertion. These limitations prevented us from 
evaluating the essentiality of approximately 5% of the 
genome and can technically lead to errors in assessing 
fitness and essentiality. We indeed found examples of 
discordance where our Tn-Seq data classified genes as 
essential even though mutants of these genes are available, 
albeit growth defective, such as hfq, rpoN, and gidA (48-
50). These cases could be due to FiTnEss errors; 
alternatively, one must consider the possibility that these 
mutants have reduced fitness when grown in competition 
but not in isolation, or that reported mutants could contain 
compensatory mutants acquired in their construction that 
allow deletion of the gene of interest. 

A major challenge to analysis is translating 
measurements that quantify a continuum of fitness to a 
binary classification of essentiality versus non-essentiality, 
in order to define the best antibiotic targets. Approaches 
can vary substantially, with different systematic errors and 
different tolerances for false positive versus false negative 
predictions (Fig. S7 and SI methods). We therefore 
developed a Tn-seq analysis pipeline, FiTnEss, that 
balances false positive and false negative rates with the 
aim of accurately classifying gene essentiality, while 
providing two levels of stringency depending on one’s 
tolerance for false positive versus false negative 
predictions. We validated FiTnEss using clean gene 
deletions mutants (Fig. 2 and Fig. S4).  

We used FiTnEss to perform the binary classification 
of the 4903 genes in the core genome that could be 
assessed across 9 P. aeruginosa isolates. The great 
majority of core essential genes can be broadly 
categorized as being involved in metabolic pathways or 
macromolecular synthesis such as DNA replication, 
transcription or translation. That the core essential genome 
is dominated by genes involved in macromolecular 
synthesis (i.e. protein and nucleic acid) may explain in 
part why most current antibiotics seem to target this 
limited set of functions. There has been greater reticence 
to target metabolic pathways given concern over the 
ability of bacteria to scavenge nutrients from the host, 
thereby rendering their biosynthesis nonessential during 
infection. Indeed, we see variable requirements for 
metabolic genes in our identification of conditionally 
essential genes, such as a greater dependence on amino 
acid biosynthesis in urine than other growth conditions. 
We have however, demonstrated that this conditional 

essentiality can in fact be exploited in vivo, as mice 
infected with the pyrC, tpiA, and purH mutants that are 
significantly growth impaired on infection-relevant media, 
have dramatically reduced bacterial burden in a systemic 
infection model. Further, the thiC mutant, found to be 
essential in M9 and sputum alone, was attenuated in an 
acute pneumonia model, yet was still virulent if 
introduced systemically, demonstrating variable 
metabolite levels in different infection sites in vivo and 
raising the possibility of infection-site specific 
therapeutics.  

In summary, we suggest the apparent failure of 
genomics to transform antibiotic discovery in the late 
1990s to early 2000s was due not to a fundamental flaw 
with the concept of targeting essential genes, but rather 
with challenges in implementing the approach — namely, 
defining essential genes based on limited information. 
Advances in genomic technologies now make possible 
studies on a much greater scale, allowing us to define 
essential genes in a way that overcomes previous 
shortcomings. Our work describes a general approach 
applicable to other pathogens, given the explosion in 
available bacterial genomes. While the number of strains 
required to reach a plateau in essential genes for different 
species may vary based on the genomic diversity of a 
species, the basic paradigm should apply broadly. By 
selecting diverse strains across the phylogenetic tree of 
any species, renewed efforts to identify the essential genes 
in all major bacterial pathogens may allow us to more 
effectively work towards the discovery and development 
of new, much-needed antibacterial therapeutics. 
 
Materials and Methods 
 

Strain selection and plasmid construction. A genome 
tree report of 2560 sequenced P. aerguinosa strains was 
downloaded from NCBI (organism ID: 187) and 
visualized with iTOL (51). Nine strains were selected for 
genetic diversity and graciously gifted from various 
sources: PA14, 19660, X13273 obtained from Frederick 
M. Ausubel (52); BWH005, BWH013, BWH015 were 
collected through Brigham and Women’s Hospital 
Specimen Bank per protocol previously described (53); 
BL23 from Bausch & Lomb (54); PS75 from Paula 
Suarez, Simon Bolivar University, Venezuela; and CF77 
from Boston Children’s Hospital (55). pC9 containing a 
hyperactive transposase was derived from pSAM-DGm 
(44) and pMAR containing the Himar1 transposon was 
derived from pMAR2xT7 (20). 
  
Transposon library construction and sequencing.  
Recipient P. aeruginosa strains were prepared for mating 
as previously described (56). P. aeruginosa and mid-log 
cultures of E. coli SM10(pC9) and E. coli SM10(pMAR) 
were collected by centrifugation, washed and re-
suspended in LB. A total of 3 x 1011 CFU were mixed in a 
2:2:1 ratio of pC9:pMAR:recipient and collected by 
centrifugation. The cell mating mixture was re-suspended 
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to a concentration of 1010 CFU/ml and 30 μl spots were 
dispensed to a dry LB agar plate. Mating plates were 
incubated at 37°C for 1.5 hours before cells were scraped, 
resuspended in phosphate buffered saline (PBS), mixed 
with glycerol to a final concentration of 40%, aliquoted, 
and flash frozen before storage at -80°C. Matings were 
performed at least twice for each recipient strain and 
efficiencies were quantified by plating to LB selective 
agar. 250 mL of each medium containing 1.5% agar, 5 
μg/ml irgasan, and 30 μg/ml gentamicin was prepared in a 
Biodish XL (Nunc). LB and M9 minimal agar (US 
Biologicals), and synthetic cystic fibrosis medium agar 
(SCFM) (23) were prepared. Pooled, filter-sterilized urine, 
and fetal bovine serum (FBS) (ThermoFisher) were 
warmed to 55°C and mixed with a 5% agar solution 
(Teknova) to achieve a 1.5% final agar concentration. 
500,000 CFU of each transposon-integrated strain were 
plated to each medium in duplicate and grown at 37°C for 
24 hours (LB, FBS, SCFM) or 48 hours (urine, M9) 
before scraping and re-suspending cells in PBS. Genomic 
DNA was isolated and Illumina libraries were prepared 
using a custom method described in the SI (Fig. S1 and 
Dataset S7). Sequencing was performed with an Illumina 
Nextseq platform to obtain 50 bp genomic DNA reads. 
  
Determining essential genes from Tn-Seq data using 
FiTnEss. All software scripts are freely available 
(https://github.com/ruy204/FiTnEss). Genomes and 
annotations for each strain were obtained from 
www.pseudomonas.com and www.patricbrc.org (57). The 
core and accessory genomes were determined by gene 
clustering analysis across the strains tested using 
Synerclust (29). Illumina reads were mapped to each 
respective genome using Bowtie (58) using the options for 
exact and unique read mapping. Reads potentially 
mapping to more than one location in a genome were 
discarded and homologous TA sites were removed from 
analysis by searching the genome using custom scripts. 
TA insertion sites at the distal 50bp from each end of the 
gene and non-permissive insertion sites containing the 
sequence (GC)GNTANC(GC) were removed using 
custom scripts. Reads mapped to each TA site were tallied 
using scripts modified from (28). For each Tn-Seq dataset, 
a lognormal – negative binomial distribution was 
conservatively fit using genes with median number of TA 
sites, and top 75% of reads per gene (non-essential genes) 
to identify parameters (!, #). Then a theoretical 
distribution ($%∗ ) was constructed using these two 
parameters for each gene size category based on the 
number of TA sites per gene ('()). Background 
distributions for these categories were obtained from 
numerical sampling of the theoretical distribution. The 
actual number of reads for each gene was compared to the 
background distribution for the corresponding '() 
category, and a p-value was calculated as the probability 
of obtaining the number reads ($%) or less by chance. 
Two-layer multiple comparison adjustments were 

conducted. First, to obtain a maximally stringent essential 
set, we adjusted for family-wise error rate (FWER) using 
the Holm-Bonferroni method. Second, to reduce the risk 
of losing targets we relaxed the stringency slightly to 
obtain a highly stringent essential set, by adjusting for 
false-discovery rate (FDR) using the Benjamini-Hochberg 
method. After either correction process, genes with 
adjusted p-value smaller than 0.05 in both replicates are 
identified as essential. For a full description and 
calculations please see the SI. 
 
Method validation with clean gene deletions. Gene 
deletions were performed as previously described in strain 
PA14 (56). Gene deletions were confirmed by PCR 
amplification and sequencing. Successful gene deletion 
strains were grown in duplicate in LB at 37°C for 16 hours 
before diluting 10-4 in PBS. 5 μl diluted culture was 
spotted to the five solid media used in this study and 
grown at 37°C for 24 hours. Images were captured, 
densitometry was performed using ImageJ, and growth 
was categorized relative to 10 wild type replicates: 
essential (0-20%), growth-defective (21-50%), and non-
essential (>50%). 
 
In vivo mouse models. All vertebrate animal experiments 
were done with with the approval of Massachusetts 
General Hospital’s Institutional Animal Care and Use 
Committee. Bacteria were grown to mid-log, collected by 
centrifugation, washed and resuspended in PBS. For the 
systemic infection model, 9 week old female BALB/c 
mice (Jackson Laboratory) were injected intra-peritoneally 
with 4 mg cyclophosphamide 3 days prior to infection. 
Mice were infected intravenously with 5 X 105 CFU per 
mouse. For the acute pneumonia model, mice were 
infected intranasally with 1 X 106 CFU per mouse. For 
both infection models, mice were euthanized 16 h post 
infection and spleens (systemic) or lungs (pneumonia) 
were harvested and homogenized in 1 mL PBS + 0.1% 
Triton-X100 using a TissueLyser LT (Qiagen) before 
plating to LB agar + 5 μg/ml irgasan to enumerate 
bacterial burden. 
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