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Abstract: 

The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized 

that integrating molecular information from databases would yield predictions that could be 

experimentally tested to develop genomic signatures for sensitivity or resistance to specific 

drugs. We analyzed TCGA data for lung adenocarcinoma (LUAD) patients and identified a 

subset where xanthine dehydrogenase expression correlated with decreased survival. We tested 

allopurinol, a FDA approved drug that inhibits xanthine dehydrogenase on a library of human 

Non Small Cell Lung Cancer (NSCLC) cell lines from CCLE and identified sensitive and 

resistant cell lines. We utilized the gene expression profiles of these cell lines to identify six-gene 

signatures for allopurinol sensitive and resistant cell lines. Network building and analyses 

identified JAK2 as an additional target in allopurinol-resistant lines. Treatment of resistant cell 

lines with allopurinol and CEP-33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness 

of allopurinol alone or allopurinol and CEP-33779 were verified in vivo using tumor formation 

in NCR-nude mice. We utilized the six-gene signatures to predict five additional allopurinol-

sensitive NSCLC lines, and four allopurinol-resistant lines susceptible to combination therapy. 

We found that drug treatment of all cell lines yielded responses as predicted by the genomic 

signatures. We searched the library of patient derived NSCLC tumors from Jackson Laboratory 

to identify tumors that would be predicted to be sensitive or resistant to allopurinol treatment. 

Both patient derived tumors predicted to be allopurinol sensitive showed the predicted 

sensitivity, and the predicted resistant tumors were sensitive to combination therapy. These data 

indicate that we can use integrated molecular information from cancer databases to predict drug 

responsiveness in individual patients and thus enable precision medicine.  
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Introduction 

Lung cancers are the most common cause of death related to cancers worldwide (1). Non-small 

cell lung cancer (NSCLC) is a widely occurring lung cancer that includes three main subtypes: 

adenocarcinoma, squamous cell carcinoma and large cell carcinoma (2). Targeted treatment for 

lung cancer based on attacking the major mutational characteristics and responsiveness to 

immunotherapy has significantly increased life span (3-5). Often, many of the mutated gene 

products that are drivers of the cancers are part of, and controlled by, complex networks of 

cellular components within cancer cells. Such cellular regulatory networks give rise to the 

biological capabilities that are characteristic of cancer cells (6). In spite of the steady advances in 

the treatment of lung cancers, a targeted therapy often works only on a subset of patients with the 

target driver mutation. One approach to search for other possible therapies, rests with the 

possibility that many pathways are uniquely dysregulated in individual patients, and these 

pathways can be used to find targets for potential efficacious drugs. Systems level analyses that 

consider different types of omics data can provide both the breadth and depth needed to identify 

pathways that can be targeted therapeutically. Such analyses can also enable the discovery of 

prognostic genomic biomarker sets associated with the therapeutic targets, and thus represent an 

important step in precision medicine. 

 

We used a combination of cancer databases for data integration to identify specific drugs that are 

effective in a predictable manner in individuals. We started with The Cancer Genome Atlas 

(TCGA) (7) to test our hypothesis that integrated consideration of the molecular characteristics 

of individual patient tumors will allow us to identify actionable drug targets. TCGA contains 

both clinical and molecular data from individual patients for different types of cancers including 

lung cancer. These data have led to reclassification of many cancers based on molecular 

characteristics (8-10). We focused on lung adenocarcinoma (LUAD). We explored TCGA data 

from LUAD patients to find new pathways and targets which had not previously been used for 

drug therapy of lung cancer. Our strategy was to focus on targets that are not well-known 

mutations or that have protein kinase activity, to be able to explore unidentified potential cancer 

genes(11). We found the xanthine dehydrogenase (XDH) gene highly expressed in a subset of 

patients with lower survival rates in TCGA LUAD data. XDH and its interconvertible form 

xanthine oxidase have been known as drug targets for over fifty years. In fact, an inhibitor of 
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XDH, allopurinol, was synthesized and tested as an early potential anti-cancer agent. Although 

allopurinol was a not a successful anti-leukemic drug (12), it has been used successfully to treat 

gout for over fifty years and is also used to prevent kidney stones associated with hyperuricemia 

caused by cancer chemotherapy  (13, 14). We then experimentally analyzed LUAD cell lines in 

the Cancer Cell Line Encyclopedia (CCLE) (15) to identify cell lines that are either sensitive or 

resistant to allopurinol. We used molecular data associated with these cell lines to identify the 

transcriptomic signatures that predict sensitivity or resistance to allopurinol.  We also used 

network analysis to predict that cell lines resistant to allopurinol alone could be successfully 

treated with combination therapy of allopurinol with a JAK2 inhibitor. We tested this prediction 

experimentally and found it to be valid.  We then used the molecular signatures from integration 

of TCGA and CCLE data to analyze transcriptomic data from patient-derived tumors (PDX) 

from Jackson laboratory and were able to identify tumors that had allopurinol sensitivity 

indicating that molecular signatures for allopurinol sensitivity can be identified. 

 

Results: 

 

Analysis of TCGA and identification of XDH as a target in NSCLC 

We analyzed methylation and gene expression data (12905 genes) from patients with lung 

adenocarcinoma (LUAD) in TCGA. All differentially expressed genes and methylation markers 

were identified. The genes which were common to both the set of differentially expressed genes 

and the set of differentially expressed methylation markers were selected (25 genes). These 25 

genes then were evaluated for correlation with “days to death” for individual patients. Among 

these 25 genes, we found 16 genes which had either positive correlations between “days to 

death” and DNA methylation signatures or negative correlations between “days to death” and 

gene expression signatures. Of these 16 genes, 4 of them were selected as novel and druggable: 

AGMAT (Agmatinase), ATIC (5-Aminoimidazole-4-Carboxamide Ribonucleotide 

Formyltransferase/IMP Cyclohydrolase), FAM83A (Family With Sequence Similarity 83 

Member A) and XDH (Xanthine Dehydrogenase). We selected AGMAT, ATIC and XDH for 

experimental validation because all had enzymatic activity while FAM83A has no known 

enzymatic function. (Figure 1-A and Figure 1-S1) 
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Using a panel of twelve NSCLC cell lines from CCLE, we evaluated the effect on cell viability 

of knocking down the expression of AGMAT, ATIC and XDH genes by siRNA. Immunoblotting 

analyses showed that all siRNAs efficiently suppressed expression of each of the genes tested 

(Figure 1-S2-A) indicating that the screen results were “on-target”. The siRNA knock-down 

experiments showed differing cell viability in cell lines subjected to gene knock-down (Figure 1-

B). To further investigate the role of these genes in cell survival, we used siRNA gene knock-

down on 3 of the cell lines (NCI-H358, NCI-H460 and A549) each of which had its viability 

decreased by a third or more after knockdown of each of the 3 genes. Apoptosis, indicated by 

percent of Annexin V positive cells, was significantly induced by knock-down of each of these 3 

genes compared to non-targeting siRNA (Figure 1-C). Knock-down of each of these 3 genes also 

resulted in changes in cell cycle phases. Knock-down of XDH in NCI-H358 and NCI-H460 cells 

significantly increased the cells arrested in G2/M phase compared to control and non-targeting 

siRNA (Figure 1-S2-B) 

 

Allopurinol-sensitive and allopurinol-resistant phenotypes in NSCLC 

We selected XDH for subsequent investigations, because there is already an FDA-approved drug, 

allopurinol, that inhibits the enzyme, and that failed as an anti-neoplastic drug when it was first 

synthesized and tested. (12). Based on our correlation analysis of TCGA data, XDH was among 

those genes whose higher level of expression correlated with lower survival rates for a subset of 

patients. Hence, we reasoned that inhibiting XDH could potentially change the course of cancer 

cell progression. We treated our panel of twelve NSCLC cell lines with allopurinol and 

calculated the IC50 of allopurinol for cell viability. Figure 1-D shows list of these cell lines, their 

histology, IC50 of allopurinol and its 95% confidence interval and the presence of RAS 

mutations. All of these cell lines were adenocarcinoma. Rank ordering of mean IC50s revealed a 

greater than 2 fold increase between NCI-H460 (431 µM) and Calu-3 (1172 µM), and their 95% 

confidence intervals did not overlap. We thus chose an IC50 =754µM (midway between the upper 

bound of the confidence interval for NCI-H460 and the lower bound of the confidence interval 

for Calu-3 as the dividing line between sensitivity and resistance to allopurinol (Figure 1-D and 

E). Of the five sensitive cell lines, 4 were positive for KRAS mutations, and one for NRAS. The 

log-concentration-response plots for the 5 sensitive cell lines, and the 7 resistant cell lines are 

presented in Figure 1-F. Allopurinol could also, in a concentration-dependent manner, induce 
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apoptosis in sensitive cell lines (Figures 1-G and Figure 1-S3-A) and it also could increase the 

percentage of cells arrested in G2/M phase of the cell cycle compared to vehicle-control (Figure 

1-S3-B).  

 Basal level of expression of XDH protein in these 12 cell lines negatively correlated with IC50 

for allopurinol (Spearman r=-0.8667, P=0.002) which implies an addiction to XDH protein in 

sensitive cell lines (Figure 1-S4).  

We then tested two allopurinol sensitive (NCI-H358 and NCI-H460) and one allopurinol-

resistant cell line (NCI-H1975) in an NCR-nude mouse xenograft model. Administration of 

allopurinol (200mg/kg by oral gavage,  three times a week) for 30 days reduced  the tumor size 

significantly in mice bearing NCI-358 and NCI-H460 cells at day 23 and 14 compared to 

placebo group,  but had no significant effect on tumor size in mice bearing NCI-H1975 cells 

(Figure 1-H) (Comparisons were made on the last day all mice in each group were alive; some of 

the mice either died or were sacrificed prior to 30 days based on IACUC protocols for treatment 

of animals). Expression of cleaved caspase 3 in tumor samples after 30-day allopurinol treatment 

showed apoptosis induction in sensitive cells engrafted in mice compared to placebo groups. 

There was no remarkable increase in cleaved caspase 3 levels in tumors formed by NCI-1975 

cells, which are allopurinol-resistant (Figure 1-S5-A). Immunofluorescence images of tumor 

samples from xenograft models revealed allopurinol-induced apoptosis indicated by cleaved 

caspase 3 expression as well as decreased blood vessel density indicated by CD31 expression 

(Figure 1-S5-B). Figure 1-S6 shows that there was no significant changes in the body weight for 

the xenograft models of all treatment regimens. 

 

Genomic signatures of responsiveness to allopurinol 

A key mutation differentiating allopurinol-sensitive and allopurinol-resistant cell lines appears to 

be KRAS.  However, it is neither necessary nor sufficient. KRAS mutations were found in 4 out 

of 5 sensitive cell lines (the remaining one had an NRAS mutation), but in only 1 out of 7 

resistant cell lines (one other of which had an NRAS mutation).  Given this variability, we 

reasoned that additional molecular determinants could provide a more predictive signature. To 

find the genomic determinants of responses of these cell lines to allopurinol, we used CCLE 

transcriptomic data to find differentially expressed genes in allopurinol-sensitive and allopurinol-

resistant cells. We used a t-test (p < 0.001) to identify the genes with the highest expression 
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levels in each group (Figure 2-A and B and Figure 2-S1). Gene set enrichment analysis using 

these sets of signatures revealed possible pathways involved in responses to allopurinol treatment 

(Figure 2-S2). In sensitive cells, pathways and processes related to oxidative stress were most 

prominent. Reactive oxygen species (ROS) and their metabolic functions are possible pathways 

regulating this response. Previous integrative analysis of TCGA data of NSCLC (7) has shown 

that alterations of oxidative stress pathways are among the recurrent aberrations of key 

regulatory processes in lung adenocarcinoma.  In resistant cells, fatty acid catabolic processes 

and other functions related to metabolism of lipids are likely to be dominant. Gene signatures 

(combined and separately) also were subjected to pathway enrichment analysis using Molecular 

Biology of the Cell Ontology (MBCO) (16), (Figure 2-S2-A). Bar diagrams visualize the 

negative log10(p-values) (Fisher's Exact Test) of the top 5 predicted sub-cellular processes 

(SCPs) of the levels 1 (brown), 2 (red) and 3 (blue) (16).  Among processes enriched for 

combined signatures (all 12 genes) were cellular responses to stress, lipid metabolism, cellular 

responses to oxidative stress, and the JAK-STAT signaling pathway. 

Based on the pathways enriched by gene signatures and the known biochemistry of XDH activity 

in purine metabolism and redox balance in cells (12) (Figure 2-S3-A), we built a toy 

computational model of addiction to XDH. The observation of higher XDH protein expression in 

allopurinol-sensitive cell lines (Figure 1-S4) suggests that the XDH level regulates 

reprogramming of metabolic dependency of lung adenocarcinoma cells. Figure 2-S3-B presents a 

toy mathematical model to explain this phenomenon using arbitrary parameters and a fuzzy 

membership function (17). Increased XDH protein expression (Figure 1-S4) is assigned to 

dependency on the pentose phosphate pathway (PPP) which balances higher reactive oxygen 

species (ROS) levels produced by XDH activity. This balance is important for cell survival, as 

otherwise, increased ROS will induce apoptosis. Inhibiting XDH should dramatically affect PPP 

and this perturbation leads to cell death because cells are addicted to PPP. This is the case in 

allopurinol-sensitive cells, however, resistant cells have lower levels of XDH which makes them 

not require PPP because they can use fatty acid catabolism instead. Reducing XDH activity 

cannot cause cell death in these cells.  

 

Combination therapy: Allopurinol with a JAK2 inhibitor 
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 We used network analysis to find additional drug targets in allopurinol-resistant cells. Statistical 

cutoffs with high stringency (p=0.001) resulted in small lists of genes (6 genes in each category) 

that do not form networks. Relaxation of stringency and selecting the top 10 down-regulated and 

the top 10-up-regulated genes from differentially expressed genes led to a larger list (20 genes) 

that could form networks with the addition of intermediary nodes from the human protein-

protein interaction network (Figure 2-C).  One of these nodes was JAK2 which is a target for 

FDA approved drugs. For example, ruxolitinib is approved for treatment of myelofibrosis and 

tofacitinib is approved for treatment of rheumatoid arthritis and psoriatic arthritis (18-20). JAK2 

inhibitors like baricitinib, gandotinib and lestaurtinib are being tested in clinical trials for a 

variety of diseases including acute myeloid leukemia (21-23). Another line of evidence for the 

role of JAK2 in responsiveness to allopurinol is the gene set enrichment analysis of gene 

signatures (Figure 2-S2). We significantly decreased JAK2 protein expression (Figure 2-S4-A) 

using siRNA knock-down in one allopurinol sensitive cell line (NCI-H358) and two allopurinol-

resistant cell lines (NCI-H1650 and NCI-H1975).  Allopurinol treatment (400µM) after JAK2 

gene knock-down significantly decreased cell viability compared to treatment with allopurinol 

alone or JAK2 gene knock-down alone, indicating boosting and restoration of the sensitive 

phenotype (Figure 2-D). Treatment of resistant cells (HCC827 and NCI-H1975) with a 

combination of allopurinol and a JAK2 inhibitor (CEP-33779) significantly decreases cell 

viability compared to treatment with allopurinol alone. Treatment with a combination of 

allopurinol and CEP-33779 is synergistic. We calculated the combination index (CI) (24) for 6 

different combinatory concentrations of allopurinol  and CEP -33779 and the resulting CI was 

less than 1 in 5 combinations in each of these 2 cell lines indicating a synergistic effect (Figure 

2-F). CI analysis also shows synergism of allopurinol and CEP-33779 in three other allopurinol-

resistant cell lines (Figure 2-S5). These synergistic effects were observable even at low 

concentrations of CEP-33779 (1.6 and 3.2µM) combined with allopurinol (Figure 2-E and F and 

Figure 2-S5). Combination treatment also significantly diminished colony formation for both an 

allopurinol- sensitive (NCI-H358) and an allopurinol-resistant (NCI-H1975) cell line in soft agar 

gel compared to vehicle-control (Figure 2-S6). These observations indicate that combination 

therapy with allopurinol and CEP-33779 also can boost the anti-neoplastic effect of allopurinol 

in sensitive cells. 
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We evaluated the effect of combination therapy with allopurinol and CEP-33779 on xenograft 

models with three resistant cell lines (Figure 2-G and 2-S7). NCR-nude mice bearing HCC827, 

NCI-H1650 and NCIH-1975, cells were administered placebo (phosphate buffered saline (PBS)), 

allopurinol (200mg/kg), CEP-33779 (10mg/kg), or the combination 3 times per week by oral 

gavage. The tumor size in mice bearing HCC827 and NCI-H1650 and receiving combination 

therapy was significantly decreased compared to placebo and single treatment groups at day 18. 

The tumor size in mice bearing NCI-H1975 and receiving combination therapy was significantly 

decreased compared to placebo and single treatment groups at day 14 (Comparisons were made 

on the last day all mice in each group were alive; some of the mice either died or were sacrificed 

prior to 36 days based on IACUC protocols for treatment of animals)). (Figure 2-G and 2-S7) 

 

Gene signatures are capable of predicting responsiveness to allopurinol and combination 

therapy  

The gene signatures derived from CCLE data were used to evaluate their predictive capability on 

additional NSCLC cell lines in the CCLE. For this we used a scoring system which was able to 

rank CCLE cell lines based on gene signatures and assign a quantitative characteristic to them 

for defining likelihood of sensitivity to allopurinol (Figure 3-A). This algorithm was used to 

identify the most likely resistant and sensitive NSCLC cell lines in CCLE. These cell lines are 

listed in Figure 3-B and C. Using a cell viability assay, we calculated the IC50 of allopurinol in 

each of these cell lines. Among the 5 cell lines predicted as sensitive, three had a RAS mutation, 

and all had an allopurinol IC50 less than 754µM. None of the four predicted resistant cell lines 

had any RAS mutation, and all had an allopurinol IC50  greater than 754µM. (Figure 3-B and C) 

The cell line with the highest IC50 for allopurinol in the sensitive group,  HCC15 was a squamous 

cell lung carcinoma, all others were adenocarcinomas, the cell type used to establish the IC50 

cutoff. Figure 3-D shows log concentration-response curves in both sensitive and resistant cell 

lines. Except for NCI-H2106, the three other predicted allopurinol-resistant cell lines showed a 

synergistic effect of combination treatment with allopurinol and CEP-33779. Figure 3-E presents 

the comparison of cell viability after treatment with allopurinol and CEP-33779 alone and 4 

combinatory doses of both drugs in COR-L105 and NCI-H1568 cell lines.  Combination of both 

drugs significantly decreased cell viability compared to single treatment with allopurinol. Figure 
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3-F shows the CI for 6 combinatory doses of these drugs in these 2 cell lines indicating 

synergism, and Figure 3-S1 shows the CI for the NCI-H2170 cell line.  

 

Gene signatures and the allopurinol sensitivity in PDX models of NSCLC 

To test the efficacy of allopurinol and combination therapy with CEP-33779 in patient-derived 

xenograft (PDX) models of NSCLC, and to evaluate the power of gene signatures to assign 

tumors for best treatment options, we used the gene signatures of sensitivity and resistance to 

allopurinol in the PDX models of NSCLC provided by The Jackson Laboratory. We analyzed the 

gene signatures in two sets of data available from the Jackson Laboratory NSCLC PDX models: 

RNAseq data was used to select one PDX model as allopurinol sensitive and Affymetrix gene 

expression data was used to select one PDX model as allopurinol-sensitive and one as 

allopurinol-resistant. We used an algorithm similar to cell line selection by defining a score for 

sensitivity and resistance based on gene signatures, and we also considered the RAS mutation 

status (Figure 4-A). In this algorithm, carrying a KRAS or NRAS mutation was a boolean 

function to select sensitive models, as RAS mutation was previously observed in most sensitive 

cell lines. These PDX models were grafted as subcutaneous tumors in NSG mice, and allopurinol 

(70 mg/kg daily), CEP-3379 (10 mg/kg daily) and combination therapy (Allopurinol 50 mg/kg 

and CEP-33779 2.5 mg/kg daily) were administered by oral gavage for 30 days. Control mice 

received placebo (PBS) daily. In models predicted to be allopurinol-sensitive (TM01563 selected 

using RNAseq data and TM00206 selected using Affymetrix data), treatment with allopurinol 

alone, significantly decreased the tumor size in mice bearing them compared to the placebo-

treated group.  After 30 days of treatment, tumor weights in the allopurinol group were 

significantly lower than those in the placebo group (Figure 4-B and C). 

Mice bearing TM00188 and TM00939 model tumors (predicted as allopurinol-resistant using 

Affymetrix data and RNAseq data respectively), showed a significant decrease in tumor size 

after receiving combination therapy compared to the placebo group while neither allopurinol 

alone nor CEP-33770 alone had a significant effect on tumor size compared to the placebo 

group. After 30 days of treatment, tumor weights in the combination therapy group were 

significantly lower than in placebo, allopurinol alone and CEP-33779 alone groups (Figure 4-D). 

Figure 4-S1 shows the images of 3 tumors from each treatment group after sacrificing the mice at 

the end of treatment, showing the size reduction in allopurinol groups for allopurinol-sensitive 
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tumors (TM01563 and TM00206) and combination therapy groups for allopurinol-resistant 

tumors (TM00188 and TM00939). 

Cleaved caspase 3 was expressed in TM01563 (sensitive) tumors receiving allopurinol and in 

TM00188 (resistant) tumors receiving combination therapy indicating apoptotic cell death 

(Figure 4-S2). 

Using a pan-caspase in vivo assay revealed activation of caspases as indicators of cell death in 

mice bearing allopurinol-sensitive tumors and receiving allopurinol. This assay also showed that 

mice bearing allopurinol-resistant tumors receiving combination therapy had more activation of 

caspases and more cell death (Figure 4-S3). Drug treatment did not lead to any significant weight 

loss of weights in mice bearing tumors (Figure 4-S4). 

Taken together, these data indicate that genomic signatures derived from TCGA can correctly 

predict allopurinol and allopurinol/CEP-33779 responsiveness in patient derived tumors. 

 

Discussion 

TCGA has been very useful in developing molecular classifications of cancer subtypes that 

underlie key concepts of precision medicine. In addition, as TCGA contains both molecular and 

clinical data, it is possible to analyze the relationship between these classes of data to develop 

predictive signatures for progression of cancers in individuals. Additionally, as our study shows, 

TCGA data sets are a gold mine for identifying targets for new drugs, drug repurposing and 

combination therapy. A fundamental premise for such mining is that a particular drug therapy is 

likely to be effective in only a subset of patients. The transcriptomic signature provides a clear 

way to identify these patients.  While our study was being completed, several papers have 

described the potential value of transcriptomic signatures. Shukla et al. (25) have published a 

computational study using TCGA data to identify a four gene transcriptomic signature that 

predicts survival in the TCGA cohort.  Li et al. (26) have used a combination of transcriptomic 

data sets to identify an individualized immune signature for prediction of survival. These two 

studies have focused on predicting survival without specifying the nature of the drug therapy. 

Lee et al. (27) used transcriptomic signatures to predict repositioning of drugs for cancer therapy.  

Although superficially similar, our approach differs from these studies in the following important 

ways. In our initial search of TCGA we considered all molecular changes including genomic and 

epigenomic variations individually, not just transcriptomic changes, for predictions (Figure 1-A). 
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We subsequently focused on gene expression levels, as this was a facile way to integrate TCGA 

and CCLE data, using the signatures to identify individual NSCLCs, both in the CCLE cell lines 

and the PDX tumors. We used network building and analyses to identify relationships between 

drug targets. The two approaches we have used should be broadly useful in identifying additional 

drug targets and predicting responsiveness for these drugs in other cancers as well.  Combining 

identification of targets for a drug with specification of which patients might benefit from 

treatment with that drug, can be a substantive step forward in precision medicine 

  

We focused on allopurinol both for historical and practical reasons.  As described by Elion in her 

Nobel Prize essay (28) allopurinol was among the earliest potential anti-cancer  drugs 

synthesized in the 1950’s. Although some of the original biochemical reasoning from over fifty 

years ago for focusing on allopurinol remains valid today, anchoring its use in molecular 

characteristics of an individual’s tumor enables accurate prediction of drug sensitivity.  Thus, it 

appears that systems biology approaches have enabled the rediscovery of allopurinol as an anti-

cancer drug. At a practical level, allopurinol is a relatively safe and inexpensive FDA approved 

drug which could readily be tested in the clinic for patients whose molecular profiling indicates 

that it could be effective.  

Our data indicate that two characteristics predict effectiveness: a RAS mutation and a precision 

transcriptomic signature are both necessary for treatment of NSCLCs with allopurinol and for 

combination therapy with allopurinol and a JAK2 inhibitor  The role of RAS mutation in 

NSCLC has been shown to be related to heterogeneity in metabolic dependencies and metabolic 

reprogramming (29, 30). It has been shown that transcriptomic profiles of tumors present a 

metabolic heterogeneity among individual patients which needs to be taken into account for 

designing precision therapeutics (31). In our cell line studies, most. but not all, sensitive cell 

lines had a RAS mutation and most, but not all, resistant cells lacked a RAS mutation. This fact 

indicates the need for a dual signature set including both RAS mutation and gene expression 

pattern for assignment for treatment with allopurinol or allopurinol plus a JAK2 inhibitor. 

Although the histology of all cells and tumors in this study was NSCLC, the TCGA data were 

from adenocarcinoma tumors and all but one of the cell lines used to find the signatures were 

also adenocarcinoma while some of the predicted cell lines and PDX models were not 

adenocarcinoma. Interestingly, one of the cell lines predicted as sensitive with squamous cell 
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carcinoma histology was at the border of sensitivity and resistance compared to other predicted 

cell lines which were adenocarcinoma. 

 

This study starts with data from individual patients and ends with predictive treatment of tumors 

from individual patients. Although cost considerations prevented us from testing a large number 

of PDX tumors, the two tumors we predicted would be allopurinol sensitive were shown to be so.   

This combination of computational predictions and experimental testing demonstrates the 

potential power of integrating molecular data in both TCGA and CCLE when used in training 

sets to predict responsiveness of new patients.   We anticipate that clinical decision support 

systems that integrate molecular characteristics with clinical outcomes can become a useful tool 

for drug selection for individual patients and an important component of a precision medicine 

strategy in cancer. 

 

Methods: 
 
Ethics Statement  
All animal experiments adhered to a protocol approved by the Institutional Animal Care and Use 
Committee (IACUC) at the Icahn School of Medicine at Mount Sinai and were performed 
according to the Office of Laboratory Animal Welfare (OLAW, National Institute of Health) and 
Animal Welfare Act (AWA, United States Department of agriculture) guidelines. 

Materials 
AGMAT, ATIC, XDH, JAK2 and scrambled siRNA were purchased from GE Healthcare., Inc. 
Anti-XDH antibody was purchased from Sigma-Aldrich. Anti-GAPDH, Cleaved-Caspase 3, and 
JAK2 were purchased from Cell Signaling Technology, Inc. Anti-CD31 antibody was purchased 
from Fisher Scientific Company. Allopurinol was purchased from Cayman Chemical Company 
and CEP-33779 was purchased from Selleck Chemicals LLC. For in vitro experiments, 
allopurinol and CEP-33779 were dissolved in Dimethyl Sulfoxide (DMSO) and then diluted in 
complete medium to a final DMSO concentration less than 1%. For in vivo experiments, 
allopurinol and CEP-33779 were diluted in phosphate buffered saline (PBS). 

Cell Lines 
The human NSCLC cell lines HCC827, NCI-H1437, NCI-H1734, NCI-H358, NCI-H1781, NCI-
H2170, NIC-H1650, NCI-H2160, NCI-H2087, NCI-H2347, NCI-H441, Hs 618.T, NCI-H1299, 
NCI-H460, NCI-H1975, NCI-H1568, NCI-H23, Calu-3 and A549 were obtained from the 
American Type Culture Collection (ATCC, Manassas, VA). The human NSCLC cell line COR-
L105 was purchased from Sigma-Aldrich and human NSCLC cell line HCC-15 was purchased 
from Creative Dynamics. The HS618.T cell line was cultured in Dulbecco’s Modified Eagle’s 
medium (DMEM), supplemented with 10% fetal bovine serum (FBS). A549 was cultured in F-
12K medium, supplemented with 10% FBS. NCI-H2160 was cultured in HITES medium 
supplemented with 5% FBS. Calu-3 was cultured in Eagle's Minimum Essential Medium 
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(EMEM) supplemented with 10% FBS. NCI-H2087 was cultured in RMPI-1640 medium 
supplemented with 5% FBS. All other cell lines were maintained in RMPI-1640 medium 
supplemented with 10% FBS. Cells were grown at 37°C in a humidified 5% CO2:95% air 
atmosphere. 

Cell Cycle and Cell Viability Assay and Calculation of IC50 and CI 
For cell cycle analysis, cells were fixed in 70% ethanol. Fixed cells were treated with RNase for 
20 minutes before addition of 5µg/mL Propidium Iodide (PI) and analyzed by FACS.  Cell 
viability was detected by luminescent cell viability dye (CellTiterGlo, Promega Corporation, 
USA). Cells were seeded in triplicate into 96-well plates in full growth media. After 24 hours, 
drugs of interest (allopurinol and/or CEP-33779) were added in 12 different concentrations 
(varying from 0 to 4mM) and after 48 hours of drug treatment, 20µL of dye was added to each 
well containing 100µL of treated media. Cell viability was calculated by dividing each 
luminescent reading by the average of the luminescent readings obtained for vehicle-control. 
Concentration-response curves were generated and fitted in Prism 7.0 (GraphPad Software, Inc., 
USA). The IC50 values were generated using the log inhibitor-normalized response variable slope 
function: Y=100/(1+10^((X-LogIC50))). IC50 values are shown with 95% confidence interval 
from at least three independent experiments. To evaluate synergism, CI values were calculated 
based on the method proposed by  Chou and Talalay (24) using CompuSyn software (32). The 
following single doses of allopurinol were used: 400µM, 800µM and 1000µM. The following 
single doses of CEP-33779 were used: 1.6µM, 3.2µM and 16µM. The following combination 
doses were used: Allopurinol=400µM combined with CEP-33779 (1.6µM, 3.2µM and 16µM) 
and Allopurinol=800µM combined with CEP-33779 (1.6µM and 3.2µM and 16µM).  

Xenograft Cell Line in vivo Experiment 
NCR-nude female athymic mice were purchased from Taconic Farms, Inc. Mice were injected in 
the flank region with 1.5*106 cells, while anesthetized with a combination of ketamine and 
xylazine. Size of tumors was measured in three dimensions using a caliper and tumor volume 
was calculated by this formula: V=0.5*length*width*height. When tumors reached a minimum 
size of 100mm3, mice were randomly assigned to treatment groups and drug treatment was 
administered by oral gavage. Allopurinol (200mg/kg three times a week) and CEP-33779 (10 
mg/kg three times a week) were diluted in PBS for treatment groups and PBS was given to the 
control group as placebo. Tumors and weights of the mice were measured 3 times a week.  

Colony Formation in Soft Agar 
Cells (1×105 to 2×105 per plate) were suspended in soft agar containing 5% serum, dosed with 
vehicle and drugs and allowed to grow for 2 to 3 weeks with periodic dosing to keep the dosing 
media fresh and the agar hydrated. Viable colonies were stained with Iodonitrotetrazolium 
Chloride at 0.5 mg/mL overnight. Colonies larger than 0.3 mm in each field were manually 
scored using a light microscope. 

Immunofluorescent and Western Blot analysis of Tumor Tissue 
Mice bearing subcutaneous tumors were sacrificed after the treatment course and tumors were 
resected. These resected tumors were snap-frozen in isopentane, submerged in liquid nitrogen 
and sectioned onto positive slides. Unstained frozen sections were fixed for 15 minutes in ice-
cold acetone, dried, rehydrated in PBS and blocked in Tris-buffered saline (TBS) containing 1% 
Bovine Serum Albumin (BSA), 10% goat serum followed by overnight (4°C) incubation with 
primary antibodies for caspase 3 and CD31. After washing, Alexafluor 568-Goat anti-rabbit 
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secondary antibodies (Fisher Scientific Company) were incubated with the tissue for 1 hour at 
room temperature, followed by 4',6-diamidino-2-phenylindole (DAPI) (Molecular Probes) 
staining. Staining was visualized using an Olympus MVX10 Macroview microscope with a 2X 
Apochromat lens with 5× zoom. For western blot analysis, a 2 to 3 mm cross-sectional slice of 
the tumor was lysed in RIPA buffer by sonication and the resulting lysates were analyzed by 
western blot following standard methods.  

PDX Models in vivo Experiments 
PDX models were purchased from the Jackson Laboratory and they were received as a single 
tumor engrafted subcutaneously in a NSG mouse (The NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ). This 
original mouse was sacrificed and the tumor was divided and engrafted in 5 other NSG mice 
subcutaneously and allowed to grow. Then each of the new tumors was engrafted in 5-10 more 
mice. Drug treatments were started at passage 4 when enough tumor samples were available. All 
NSG mice were purchased from the Jackson Laboratory. When tumor sizes were between 50-
150 mm3, mice bearing tumors were randomly assigned to treatment groups. Each group had at 
least 8 mice at the beginning of the experiments. Drug preparation, administration and tumor 
measurements were the same as in the xenograft cell line in vivo experiment, but the allopurinol, 
CEP-33779, and combination therapy were applied at the following doses: allopurinol (70 mg/kg 
daily), CEP-33779 (10mg/kg daily) and combination therapy (allopurinol 50mg/kg daily+CEP-
33779 2.5mg/kg daily). Tumors and weights of the mice were measured 3 times a week. After 
the treatment course (30 days), 3 mice from each group were used for in vivo imaging using Pan 
Caspase (VAD-FMK) near infrared assay (Vergent Bioscience) in The IVIS® Spectrum in vivo 
imaging system.   

Statistical Analysis 
All experimental data are shown as mean±SEM. Unpaired t-test and one-way ANOVA were 
used and p<0.05 was considered as significance. All statistical analyses of experimental data 
were done in GraphPad Software 7. 

TCGA Candidate Gene Signature Identification 
In brief, we identified patients with both methylation data and gene expression data from the 
TCGA-LUAD dataset (Snapshot 12/2012). In addition, we excluded any patient who did not 
have tissue level control samples. We divided samples into four categories: case-male, case-
female, control-male, and control-female. We evaluated the significance of the difference 
between case-control by determining the absolute difference among the mean divided by the 
square root of the sum of variance among each of the groups for each gene. This is given by the 
formula below: 

 
 

!" =
$%& + $%( − $*& − $*(

+,%&- + ,%(- + ,*&- + ,*(-
.  

 
In this formula !" is the significance of a gene expression, $/ is the average gene expression for 
the specified category, ,/ is the standard deviation of the gene expression for the specified 
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category. The gene expressions were determined by the Agilent 4502A microarray. We selected 
for gene targets that had a positive gene expression change where !" > 1.5. 
 
We repeated this procedure selecting for methylation markers assessed by Illumina Human 
Methylation 27k microarray. In this procedure we selected for markers that had a !" < -2. We 
repeated the procedure for markers assessed by Illumina Human Methylation 450k microarray. 
We identified methylation patterns that were selected based on both array formats. We then 
selected genes that were selected by both gene expression and methylation differentials. 
 
Upon identifying gene signatures of interest, we correlated the gene expression signatures and 
methylation signatures to the “days to death”. We used linear correlations to evaluate the 
associations between molecular data and clinical data. A gene signature was identified as 
correlated if it had a correlation coefficient that had a one-sided P < 0.05 as evaluated by the 
student’s T distribution. Through this, we identified genes that had either positive correlations 
between “days to death” and DNA methylation signatures or negative correlations between “days 
to death” and gene expression signatures. (Supplemental Files 1, 2, and 3) 
 

Extracting the Gene Signatures of Sensitivity and Resistance to Allopurinol 
CCLE gene expression data of 12 cell lines tested for siRNA screening were used. A Welch's t-
test, with P<0.001 was used to compare the differentially expressed genes in two sets of cell lines 
of allopurinol sensitive and allopurinol-resistant. 12 genes were found (6 in each set) which were 
differentially expressed. 
 
Network analysis of Gene Signatures 
To find a gene set capable of forming a protein-interaction network, we selected the top 10 
upregulated genes and top 10 down-regulated genes. We used X2K to build a protein interaction 
network using these new gene sets.  
 
Selecting Cell Lines for Validation of Gene Signatures 
For predicting new cell lines as allopurinol-sensitive and allopurinol-resistant, we extracted 
CCLE gene expression data of all NSCLC cell lines. We then used mean of normalized 
expression of all genes in gene signature of allopurinol sensitivity to rank all of these cell lines; 
this rank of cell lines was called sensitivity rank. We also used mean of normalized expression of 
all genes in gene signature of allopurinol resistance to rank all of these cell lines, this rank of cell 
lines was called resistance rank. We calculated sensitivity score as Sensitive Score=Resistance 
Rank-Sensitive Rank and we calculated resistance rank as Resistance Score=Sensitivity Rank-
Resistance Rank. We selected the top 5 cell lines (those available to purchase) with highest 
sensitivity score as allopurinol-sensitive cell lines (if a cell line was not available, we used the 
next available cell line in the ranked list of allopurinol-sensitive cell lines). The same method 
was used to select allopurinol-resistant cell lines and 4 cell lines were selected for validation in 
vitro.  
 
Selecting PDX Models for Validation of Gene Signatures 
We extracted gene expression and RAS mutation data of all NSCLC PDX models provided by 
the Jackson Laboratory. We analyzed the data based on the technology used for measuring gene 
expression separately (Supplemental files 4, 5 and 6). There were 35 NSCLC PDX models 
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available with RNAseq expression data and 18 NSCLC PDX models available with Affymetrix 
hg10st gene expression data. For selecting allopurinol-sensitive models, we first calculated the 
sensitive score and resistance score the same way we calculated them for the cell lines. Then 
among models with highest sensitivity score and positive for RAS mutation, we selected a model 
for validation as an allopurinol-sensitive model using RNAseq and Affymetrix hg10st gene 
expression data (TM01563 model and TM00206 Model respectively). 
Among models with highest resistance score and negative for RAS mutation, we selected a 
model for validation as an allopurinol-resistant model using Affymetrix hg10st gene expression 
data (TM00188). 
 
Gene Set Enrichment Analysis 
The sets of gene signatures (allopurinol-sensitivity and allopurinol-resistance) were used for 
gene set enrichment analysis by Enricher (Go ontology and WikiPathways) and MBC 
ontology(16, 33). 
 
Fuzzy Metabolic Switch Model 
A form of the Wilson-Cowan equation (34) was used as a fuzzy member function to generate a 
toy model of a fuzzy metabolic switch as follows: 

01!234567	91:1;<1;7= = 1
>0.5(/>%)2

B  
For the toy model presented in figure 2-S3, x was considered to be XDH protein level, σ=1.5, 1 
and 0.9 and c=0.1, 0.05 and 2.9. The model was simulated in MATLAB R2017a. 
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Figure Legends: 

Figure 1:  A) Analysis of 12905 genes in TCGA led to finding 25 differentially regulated genes 
in patients with lung adenocarcinoma, of these genes, 16 correlated with clinical outcome. Four 
of these 16 genes were novel druggable genes and 3 of them were selected for siRNA 
knockdown validation. B) siRNA knockdown validation of 3 gene targets in 12 NSCLC cell 
lines, the results are shown as percent cell viability (mean±SEM). C) Percent of apoptosis in 
cells (expressed as percent of Annexin V positive cells) induced by siRNA knock-down of these 
three gene targets in 3 NSCLC cell lines (mean+SEM). siRNA knock-down increased apoptosis 
compared to control. (One-way ANOVA, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). D) 
List of 12 cell lines, their histology, their RAS mutation status, the allopurinol IC50 for reduction 
of viability and its 95% confidence interval E) Comparing allopurinol IC50s in the different cell 
lines (error bars are 95% confidence intervals). An IC50 < 754µM (red dotted line) was chosen as 
the criterion for considering a cell sensitive to allopurinol. F) Log concentration-response plots 
for cell lines sensitive to and resistant to allopurinol. (mean±SEM) G) Allopurinol-induced 
apoptosis (expressed as percent of Annexin V positive cells) in NCI-H358 and NCI-H460 cell 
lines in a concentration-dependent manner (mean+SEM, One-way ANOVA, *p<0.05, 
**p<0.01). H) Xenograft models were used to assess the effect of allopurinol on 2 cell lines 
sensitive to allopurinol (NCI-H358 and NCI-H460) and one cell line resistant to allopurinol 
(NCI-H1975). Allopurinol (200mg/kg) was administered by oral gavage 3 times a week to 
treatment groups (n=15 for NCI-H358, n=10 for NCI-H460 and n=8 for NCI-H1975)   and PBS 
by oral gavage to the placebo groups (n=7 for NCI-H358, n=4 for NCI-H460 and n=9 for NCI-
H1975). The tumor size in mice bearing NCI-358 and NCI-H460 cells and receiving allopurinol 
was significantly decreased compared to placebo at day 23 and 14 respectively. (mean±SEM, 
unpaired t-test, *p<0.05, ****p<0.0001) Allopurinol did not have any significant effect on tumor 
size of mice bearing NCI-H1975 cells.  

Figure 1-S1 

The pipeline used to analyze TCGA data combining molecular alterations and clinical outcome 
to find new targets which are determined by the clinical outcomes in patients.  

Figure 1-S2 

A) Western blots showing the protein levels of 3 selected gene targets after siRNA knockdown 
in 2 of the 12 cell lines tested. 

B) Comparison of cell cycle phases in 2 cell lines after knockdown of AGMT, ATIC and XDH 
compared to control. XDH knock-down increased cells arrested in G2/M phase (one-way 
ANOVA, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

Figure 1-S3   

A) Apoptosis induction by allopurinol shown by detection of cleaved caspase 3 in NCI-H358 and 
NCI-H460 cell lines. B) Compared to control-vehicle, allopurinol arrested the cells (NCI-H358 
and NCI-H460) in G2/M phase shown by cell cycle analysis using flow cytometry.  

Figure 1-S4 
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 A) Basal XDH protein levels in the NSCLC cell lines. B) XDH protein levels negatively 
correlate with the IC50 for allopurinol in cell lines (Spearman r=-0.8667, P=0.0022). Cell lines 
sensitive to allopurinol have higher levels of XDH protein indicating an addiction to XDH 
protein.  

Figure 1-S5 

  A) Allopurinol-induced apoptosis presented as expression of cleaved caspase 3 in xenograft 
models of allopurinol-sensitive cell lines (NCI-H358 and NCI-H460) but not in NCI-1975 which 
is allopurinol-resistant. T1-T3 show three different tumor samples.  B) Immunofluorescence 
images of xenografts from PBS and allopurinol-treated mice. Apoptosis induced by allopurinol is 
indicated by cleaved caspase 3 expression while decreased blood vessel density is indicated by 
CD31expression.  

Figure 1-S6 Changes in body weight for the xenograft models of all treatment regimens.  
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Figure 2: A and B) Genomic signatures of sensitivity and resistance to allopurinol. Each genomic 
signature includes a set of 6 genes considered to have high expression in either sensitive or 
resistant cell lines. The sensitive phenotype is also characterized by the presence of a RAS 
mutation.   C) Protein interaction network built using genomic signatures. Relaxation of 
stringency led to a gene set capable of forming a network with additional intermediary nodes like 
JAK2. D) Validation of combination treatment with allopurinol (400µM) and knockdown of 
JAK2 in 3 cell lines, percent of cell viability compared to control is shown. Combination 
treatment significantly decreased cell viability compared to allopurinol treatment alone and JAK2 
knockdown alone. (mean+SEM, One-way ANNOVA test, ***p<0.001, ****p<0.0001) E) 
Effects of combination treatment with CEP-33779 and allopurinol on cell viability of NCI-
H1975 and HCC827 cell lines. Combination therapy significantly decreased cell viability 
compared to allopurinol treatment alone. Percent of cell viability compared to vehicle-control is 
shown. (mean±SEM, one-way ANNOVA, *p<0.05, **p<0.01, ****p<0.0001) F) Combination 
Index (CI) for different doses of CEP-3379 and allopurinol in NCI-H1975 and HCC827 cell 
lines. CI lower than 1 indicates a synergistic effect; which is the case for most of the combination 
doses. G) Combination therapy with CEP-33779 and allopurinol in xenograft models using 3 
different cell lines. PBS, allopurinol (200mg/kg) alone, CEP-33779 (10mg/kg) alone and 
combination doses of allopurinol (200mg/kg) and CEP-33779 (10mg/kg) were administered by 
oral gavage 3 times a week. [placebo group (n= 6 for HCC827, n=6 for NCI-H1650 and n=5 for 
NCI-H1975), allopurinol treatment group (n= 6 for HCC827, n=6 for NCI-H1650 and n=5 for 
NCI-H1975), CEP-33779 treatment group (n=7 for HCC827, n=6 for NCI-H1650 and n=6 for 
NCI-H1975) and combination therapy group (n=7 for HCC827, n=7 for NCI-H1650 and n=8 for 
NCI-H1975)]. The tumor size in mice bearing HCC827 and NCI-H1650 and receiving 
combination therapy was significantly decreased compared to placebo and single treatment 
groups at day 18. The tumor size in mice bearing NCI-H1975 and receiving combination therapy 
was significantly decreased compared to placebo and single treatment groups at day 14 
(mean+SEM, unpaired t-test, *p<0.05, **p<0.01, ****p<0.0001) 

 

Figure 2-S1 Number of genes in genomic signatures (genomic signature size) is determined by 
stringency of statistical analysis on genomic profiles of samples (cell lines). By increasing the p 
value, the genomic signature size increases. Using p<0.001 leads to a genomic signature with 
size of 12 (sensitivity signature size of 6 and resistance signature size of 6). Panel A shows 
changes of size of genomic signature (Resistance and Sensitivity together) for different p values. 
Panel B shows changes of size of sensitivity genomic signature (red line) and resistance genomic 
signature (blue line) for different p values. 

Figure 2-S2 Gene set enrichment analysis of genomic signatures of allopurinol sensitivity and 
resistance using GO terms (A and B, for sensitivity genes set and resistance genes set 
respectively) MBC ontology (C) and WikiPathways (D). 

 

Figure 2-S3 A) Schematic mechanism of allopurinol and function of XDH protein in cells 

B) A theoretical toy model (A Fuzzy Metabolic Switch) that can explain addiction to XDH 
protein in allopurinol-sensitive cells which have higher levels of basal XDH protein. Based on 
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the genomic signatures and enrichment analysis these cell lines can be more dependent to 
Pentose Phosphate Pathway (PPP) by increasing their XDH protein level while resistant cell 
lines can be more dependent on Fatty Acid Oxidation (FAO) and Glycolysis. Allopurinol inhibits 
XDH protein leading to a metabolic stress and cell death. 

 

Figure 2-S4 Western blot showing the protein levels of JAK2 s after siRNA knockdown. 

Figure 2-S5 CI for different doses of CEP-33779 and allopurinol for 3 resistant cell lines. 

Figure 2-S6 A and B) Cell viability after treatment with allopurinol, CEP-33779 and combined 
allopurinol and CEP-33779 represented by proliferation in soft agar gel in one resistant and one 
sensitive cell line (Allopurinol 400µM and CEP-33779 1.6µM) . The quantification in panel B is 
presented as mean±SEM. Comparison was done between all 3 treatments and vehicle-control 
(**p<0.01, ****p<0.0001) 

Figure 2-S7 Changes in the body weight of mice used as xenograft models for 3 different cell 
lines to evaluate combination therapy with CEP-33779 and allopurinol (mean±SEM) 
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Figure 3: A) Flowchart describing the process of selecting new cell lines as allopurinol-sensitive 
and allopurinol-resistant. B) List of predicted cell lines, their histology, RAS mutation status, 
calculated IC50 for allopurinol and its 95% confidence interval. 

C) IC50 comparison for the predicted cell lines shown as mean±SEM; error bars are 95% 
confidence intervals. The IC50 cut-off to determine sensitive and resistant cells was considered to 
be 755µM (red dotted line).  D) Concentration-response curves for allopurinol treatment in 
predicted sensitive and resistant cell lines (mean±SEM). E) Effects of combination treatment 
with allopurinol and CEP-33779 on two cell lines predicted as resistant (COR-L105 and NCI-
H1568). Combination therapy significantly decreased cell viability compared to treatments with 
allopurinol alone. Percent of cell viability compared to vehicle-control is shown. (mean+SEM, 
one-way ANNOVA, *p<0.05, **p<0.01) F) CI for different concentrations of allopurinol and 
CEP-33779 in COR-L105 and NCI-H1568 cell lines; most of the combinations showed 
synergistic effects (CI < 1). 

 

Figure 3-S1: CI for different doses of allopurinol and CEP-33779 in NCI-H2170. 

Figure 3-S2: Effects of combination treatment with CEP-33779 and allopurinol on cell viability 
of NCI-H2106. This cell line was inactive in response to single treatments and combination 
treatments. 
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Figure 4:  

A) Flowchart describing how the sensitive and resistant PDX models were selected from a set of 
available PDX models. B, C and D) Post-treatment tumor size and tumor weight in 4 PDX 
models; TM01563 and TM00206 models were predicted as sensitive to allopurinol and 
TM00188 and TM00939 models were predicted as resistant to allopurinol based on the genomic 
signatures. Tumor size was significantly lower in the allopurinol group compared to placebo 
group and at the end of the study tumor weights were significantly lower in the allopurinol group 
compared to placebo group in TM01563 and TM00206 models. Combination therapy decreased 
the post-treatment tumor size and tumor weight significantly in the TM00188 and TM00939 
models compared to single treatment with allopurinol while allopurinol alone and CEP_33779 
alone were not able to decrease the tumor size compared to placebo (PBS). (mean+SEM, 
unpaired t-test, *p<0.05, **p<0.01, ***p<0.001) (Allopurinol (70 mg/kg daily), CEP-3379 (10 
mg/kg daily), combination therapy (Allopurinol 50 mg/kg and CEP-33779 2.5 mg/kg daily) and 
PBS as placebo daily) 

Figure 4-S1: Images of 3 tumors of different treatment groups after treatment of 4 different PDX 
models. (Allopurinol (70 mg/kg daily), CEP-3379 (10 mg/kg daily), combination therapy 
(Allopurinol 50 mg/kg and CEP-33779 2.5 mg/kg daily) and PBS as placebo daily) 

Figure 4-S2: Western blots of tumor samples after treatment course; apoptosis was measured by 
presence of cleaved caspase 3 in TM01563 and TM00188 models. (Allopurinol (70 mg/kg 
daily), CEP-3379 (10 mg/kg daily), combination therapy (Allopurinol 50 mg/kg and CEP-33779 
2.5 mg/kg daily) and PBS as placebo daily) 

Figure 4-S3: In vivo imaging in mice bearing PDX tumor models to detect apoptosis using a pan-
caspase assay done after the treatment course  

 A) TM01563 PDX Model 

1: Mouse with no tumor and with no pan-caspase assay 2: Mouse with no tumor but receiving 
pan-caspase assay 3: Mouse from placebo treatment group receiving pan-caspase assay 4: Mouse 
from allopurinol treatment group receiving pan-caspase assay 

 

B) TM00188 PDX Model 

1 (I, II, III): Mouse with no tumor and with no pan-caspase assay 

 2 (I, II, III): Mouse with tumor and pan-caspase assay but not getting any treatment  

3 (I, II, III): Mouse from placebo treatment group receiving pan-caspase assay  

4 (I): Mouse from allopurinol treatment group receiving pan-caspase assay 

 4(II): Mouse from CEP-33779 treatment group receiving pan-caspase assay 

 4(III): Mouse from combination therapy group receiving pan-caspase assay 

C) TM00206 PDX Model 
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1: Mouse with no tumor and with no pan-caspase assay 2: Mouse with tumor and pan-caspase 
assay but receiving no treatment 3: Mouse from placebo treatment group receiving pan-caspase 
assay 4: Mouse from allopurinol treatment group receiving pan-caspase assay  

Figure 4-S4: Changes in body weights for the mice used for in vivo study of PDX tumor models 
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