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Abstract 1 

Humans identify speech sounds, the fundamental building blocks of spoken language, 2 

using the same cues, or acoustic dimensions, as those that differentiate the voices of different 3 

speakers. The correct interpretation of speech cues is hence uncertain, and requires 4 

normalizing to the specific speaker. Here we assess how the human brain uses speaker-related 5 

contextual information to constrain the processing of speech cues. Using high-density 6 

electrocorticography, we recorded local neural activity from the cortical surface of participants 7 

who were engaged in a speech sound identification task. The speech sounds were preceded by 8 

speech from different speakers whose voices differed along the same acoustic dimension that 9 

differentiated the target speech sounds (the first formant; the lowest resonance frequency of the 10 

vocal tract). We found that the same acoustic speech sound tokens were perceived differently, 11 

and evoked different neural responses in auditory cortex, when they were heard in the context 12 

of different speakers. Such normalization involved the rescaling of acoustic-phonetic 13 

representations of speech, demonstrating a form of recoding before the signal is mapped onto 14 

phonemes or higher level linguistic units. This process is the result of auditory cortex’ sensitivity 15 

to the contrast between the dominant frequencies in speech sounds and those in their just 16 

preceding context. These findings provide important insights into the mechanistic 17 

implementation of normalization in human listeners. Moreover, they provide the first direct 18 

evidence of speaker-normalized speech sound representations in human parabelt auditory 19 

cortex, highlighting its critical role in resolving variability in sensory signals.   20 
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Introduction 21 

A fundamental computational challenge faced by perceptual systems is the lack of a 22 

one-to-one mapping between highly variable sensory signals and the discrete, behaviorally 23 

relevant events they reflect[1,2]. A profound example of this problem exists in human speech 24 

perception, where the main cues to speech sound identity are the same as those to speaker 25 

identity[3–5].  26 

For example, to distinguish a given speaker’s /u/ from his or her /o/ (distinguishing “boot” 27 

from “boat”), listeners rely heavily on the vowel’s first formant frequency (F1; the first vocal tract 28 

resonance) because it is lower for /u/ than for /o/[6]. However, people with long vocal tracts 29 

(typically tall male speakers) have overall lower resonance frequencies than those of speakers 30 

with shorter vocal tracts. Consequently, a tall person’s production of the word “boat” and a short 31 

person’s “boot” might be acoustically identical. Behavioral research has suggested that 32 

preceding context allows listeners to “tune-in” to the acoustic properties of a particular voice and 33 

normalize subsequent speech input[7–11]. The most well-known example of this effect is that a 34 

single acoustic token, ambiguous between /u/ and /o/, will be labelled as /o/ after a context 35 

sentence spoken by a tall-sounding person (low F1), but like /u/ after a context sentence spoken 36 

by a shorter-sounding person (high F1)[12]. 37 

The neurobiological foundations of context-based speaker normalization remain largely 38 

unknown. Neural activity in auditory cortex is sensitive to acoustic cues that are critical for both 39 

recognizing and discriminating phonemes[13–19] and different talkers[20–24]. For example, 40 

recent work has shown that speech sound representations in STG are closely related to the 41 

acoustic-phonetic features that define classes of speech sounds, like F1. Vowels with low F1 42 

frequencies (e.g., /u/, /i/) can be distinguished from vowels with relatively higher F1 frequencies 43 

(e.g., /o/, /æ/) based on local activity on STG[25]. A critical question that arises, then, is whether 44 

the feature-based representations in auditory cortex are normalized (i.e., feature rescaling), or 45 

whether they continue to closely reflect the veridical acoustic properties of the input. 46 
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To investigate the influence of context on auditory cortex speech sound representations, 47 

we recorded cortical local field potentials with subdurally implanted high density electrode arrays 48 

that covered the broader peri-sylvian language region in human participants while they listened 49 

to and identified vowel sounds presented in the context of sentences spoken by two different 50 

voices[14,26]. We found direct evidence of speaker-normalized neural representations of vowel 51 

sounds in parabelt auditory cortex, including superior and middle temporal gyri. Normalization 52 

was observed in populations that were selective for acoustic-phonetic (i.e., pre-phonemic) 53 

properties of the speech signal. These effects were at least partly driven by the contrastive 54 

relation between the F1 range in the context sentences and F1 values in the target vowels. 55 

More generally, the results demonstrate the critical role of human auditory cortex in integrating 56 

incoming sounds with surrounding acoustic context.  57 

 58 

Results 59 

We recorded neural activity directly from the cortical surface of five Spanish-speaking 60 

neurosurgical patients while they voluntarily participated in a speech sound identification task. 61 

They listened to Spanish sentences that ended in a (pseudoword) target, which they 62 

categorized as either “sufu” or “sofo” on each trial with a button press (Figure 1a, b). The 63 

sentence-final targets comprised a digitally synthesized six-step continuum morphing from an 64 

unambiguous sufu to an unambiguous sofo, with four intermediate tokens (s?f?, i.e., spanning a 65 

perceptually ambiguous range). On each trial, a pseudo-randomly selected target was preceded 66 

by a context sentence (A veces se halla…; “At times she feels rather…”). Two versions of this 67 

context sentence were synthesized, differing only in their mean F1 frequencies (Figure 1a, c; 68 

Figure S1), yielding two contexts that listeners perceive as consistent with two speakers: one 69 

with a long vocal tract (low F1; Speaker A) and one with a short vocal tract (high F1; Speaker 70 

B). Critically, F1 frequency is the primary acoustic dimension that distinguishes between the 71 

vowels /u/ and /o/ in natural speech (in both Spanish and English), as well as in our target 72 
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continuum (Figure 1a and Figure S1)[6]. Similar materials have previously been shown to 73 

induce a reliable shift in the perception of an /u/ – /o/ continuum (a “normalization effect”) in 74 

healthy Spanish-, English-, and Dutch-listeners[8]. 75 

As expected, participants’ perception of the target continuum was affected by the F1 76 

range of the preceding sentence context (p < 0.002; Figure 1d). Specifically, participants were 77 

more likely to identify tokens as sofo (the vowel category corresponding to higher F1 values) 78 

after a low F1 voice (Speaker A) compared to the same target presented after a high F1 voice 79 

(Speaker B). Hence, listeners’ perceptual boundary between the /u/ and /o/ vowel categories 80 

shifted to more closely reflect the F1 range of the context speaker. Past work has interpreted 81 

this classical finding in light of the contrastive perceptual effects that are ubiquitous among 82 

sensory systems[27]: the F1 of a speech target will sound relatively higher (i.e., sound more like 83 

an /o/) after a low F1 context sentence than after a high F1 context. This results in a shift of the 84 

category boundary to lower F1 values. 85 

 86 

 87 

Figure 1: Listeners perceive speech sounds relative to their acoustic context. a) Target 88 

sounds were synthesized to create a 6 step continuum ranging from /sufu/ (step 1; low first 89 

formant [F1]) to /sofo/ (step 6; high F1). Context sentences were synthesized to sound like two 90 

different speakers: a speaker with a long vocal tract (low F1 range: Speaker A), and a speaker 91 

with a short vocal tract (high F1 range; Speaker B). Context sentences contained only the 92 

vowels /e/ and /a/, but not the target vowels /u/ and /o/. Following phonetic convention, the 93 
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formant axes are reversed (higher values at the bottom/left sides of the panel). b) Context 94 

sentences preceded the target on each trial (separated by 0.5 seconds of silence), after which 95 

participants responded with a button press to indicate whether they heard “sufu” or “sofo”. c) All 96 

targets were presented after both speaker contexts. d) Listeners more often gave “sofo” 97 

responses to target sounds if the preceding context was spoken by Speaker A (low F1) than 98 

Speaker B (high F1). 99 

 100 

Human auditory cortex exhibits context-dependent speech sound representations. Two of 101 

the most influential hypotheses explaining the phenomenon of speaker normalization posit that: 102 

1) contrast enhancing processes, operating at general auditory processing levels, change the 103 

representation of the input signal before it is mapped onto phonemes or higher level linguistic 104 

units[28–30]; 2) alternatively, it has been suggested that auditory processing of speech cues 105 

remains mostly faithful to the acoustics of the input signal, and normalization is a consequence 106 

of speaker-specific mapping of the veridical acoustics onto meaningful units (i.e., listeners have 107 

learned to associate an F1 of 400Hz to /u/-words for speakers, or vocal tract, that sound short, 108 

but to /o/-words for ones that sound taller)[9,31].  109 

Past neurobiological work has demonstrated that neural populations in the parabelt 110 

auditory cortex are sensitive to acoustic-phonetic cues that distinguish classes of speech 111 

sounds, including vowels, and not to specific phonemes per se[25]. Hence, the primary goal of 112 

the current study was to examine whether the F1 range in preceding context sentences 113 

influence the representation of speech sounds in parabelt (nonprimary) auditory cortex in a 114 

normalizing way. We investigated whether the neural representation of vowel stimuli remains 115 

veridical (i.e., unaffected by context) or, alternatively, whether it becomes shifted towards the 116 

representation typical of /u/ in the context of a high F1 speaker, but towards /o/ in the context of 117 

a low F1 speaker. We first tested whether individual cortical sites that reliably differentiate 118 

between vowels (i.e., discriminate /u/ from /o/ in their neural response) would exhibit 119 
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normalization effects. A secondary goal of the current study was to confirm that the response 120 

profile of  those cortical populations that display normalization was indeed acoustic-phonetic 121 

(i.e., pre-phonemic) in nature. We therefore assessed populations’ responsiveness during the 122 

context sentences as well (context sentences did not contain the target phonemes /o/ and /u/ 123 

but did traverse the same acoustic F1 region). 124 

To this end, we extracted the stimulus-aligned analytic amplitude of the high-gamma 125 

band (70-150 Hz) of the local field potential at each temporal lobe electrode (n = 406 across 126 

patients; this number is used for all Bonferroni corrections below) during each trial. High-gamma 127 

activity is a spatially- and temporally-resolved neural signal that has been shown to reliably 128 

encode phonetic properties of speech sounds[25,32,33], and is correlated with local neuronal 129 

spiking[34–36]. We used general linear regression models to identify cortical patches involved in 130 

the representation of context and/or target acoustics. Specifically, we examined the extent to 131 

which high-gamma activity at each electrode depended on stimulus conditions during 132 

presentation of the context sentences (context window) or during presentation of the target 133 

(target window; see supplemental materials). The fully specified encoding models included 134 

numerical variables for the target vowel F1 (Steps 1-6) and context F1 (high vs. low), as well as 135 

their interaction. In the following, we focused on “task-related electrodes”, defined as the subset 136 

of temporal lobe electrodes for which a significant portion of the variance was explained by the 137 

full model, either during the target window or the during context window (p < 0.05; uncorrected, 138 

n = 98; see Figure S2). 139 

Among the task-related electrodes, some displayed selectivity to target vowel F1 (Figure 140 

2a). Consistent with previous reports of auditory cortex tuning for vowels[25] we observed that 141 

different subsets of electrodes displayed a preference for either “sufu” or “sofo” targets (color 142 

coded in Figure 2a). Figure 2b and Figure 2c (middle panel) display the response profile for one 143 

example electrode that had a “sofo” preference (e1; p = 6.8*10-19). Importantly, in addition to an 144 

overall selectivity to the target sound F1, the activation level of this electrode was modulated by 145 
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the F1 range of the preceding context (Figure 2b & bottom panel of Figure 2c; p = 5.8*10-6). This 146 

demonstrates that the responsiveness of a neural population that is sensitive to bottom-up 147 

acoustic cues is also affected by the distribution of that cue in preceding context. The direction 148 

of this influence is analogous to the behavioral normalization effect. 149 

To quantify this normalization effect across all electrodes that display selectivity to target 150 

acoustics, we calculated the correlation between electrodes’ target preference (numerically 151 

defined as the glm-based signed t-statistic of the target F1 factor during the target window) and 152 

their context effect (defined as the t-statistic of the context F1 factor during the target window). 153 

We found a correlation between electrodes’ target preferences and context effects (Figure 2d). 154 

Crucially, this strong relationship had a negative slope, such that electrodes that had high-F1 155 

target preferences (sofo > sufu) had stronger responses to targets after low F1 context 156 

sentences (low F1 context > high F1 context; r = -0.65; p = 1.3*10-6). Importantly, this 157 

demonstrates that the relationship between context response and target response reflects an 158 

encoding of the contrast between the formant properties of each, recapitulating the 159 

normalization pattern observed in the behavioral responses (Fig 1d). 160 

 161 
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 162 

Figure 2: The neural response to bottom-up acoustic input is modulated by preceding 163 

context. a) Target vowel preferences and locations (plotted on an MNI brain) for electrodes 164 

from all patients (3 with right hemisphere [RH] and 2 with left hemisphere [LH] grid implants). 165 

Only those temporal lobe electrodes where the full omnibus model was significant during the 166 

context and/or the target window (F-test; p<0.05) are displayed. Strong target F1 selectivity is 167 

relatively uncommon: electrodes with a black-and-white outline are significant at Bonferroni 168 

corrected p<0.05 (n = 9, out of 406 temporal lobe electrodes); a single black outline indicates 169 

significance at only p<0.05, uncorrected (n = 28). Activity from the indicated electrode (e1) is 170 

shown in b and c. b). Example of normalization in a single electrode (e1; z-scored high-gamma 171 

[high-γ] response averaged across the target window [target window marked in c]; +-1SE ). c) 172 

Activity from e1 across time, separating the endpoint targets (top panel) or the contexts (bottom 173 

panel). The electrode responds more strongly to /o/ stimuli than /u/ stimuli, but also responds 174 

more strongly overall after Speaker A (low F1). This effect is analogous to the behavioral 175 

normalization (Fig. 1d). Black bars at the bottom of the panels indicate significant time-clusters 176 

(cluster-based permutation test of significance). d) Among all electrodes with significant target 177 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/397026doi: bioRxiv preprint 

https://doi.org/10.1101/397026
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

sound selectivity (n = 37 [9 + 28]), a relation exists between the by-electrode context effect and 178 

target preference. Both are expressed as a signed t-value, demonstrating that the size and 179 

direction of the target preferences predicts the size and direction of the context effects. As per a, 180 

symbol style reflects level of significance (solid back = p<0.05 uncorrected; black-and-white = 181 

p<0.05 Bonferroni corrected). e) An LDA classifier was trained on the distributed neural 182 

responses elicited by the “sufu” and “sofo” stimuli using all endpoint selective electrodes of a 183 

patient. This model was then used to predict classes for (held-out) endpoint data and for the 184 

ambiguous steps. Proportions of neurally-based “sofo” predicted trials (thick lines) display a 185 

relative shift between the two context conditions (data from one example patient). Regression 186 

lines were fitted to these data for each participant separately to estimate 50% category 187 

boundaries per condition for panel f (thin lines). f) The neural classification functions display a 188 

shift in category boundaries between context conditions for all patients individually. Symbols 189 

denote individual participants. 190 

 191 

Normalization of distributed vowel representations in all participants. Figure 2d 192 

demonstrates that local populations in auditory cortex that are selective to target vowel F1 193 

exhibit normalization. However, only a few electrodes (n = 9, out of 406 temporal lobe 194 

electrodes) displayed very strong target vowel selectivity (significance at Bonferroni-corrected p 195 

<0.05), while the majority of target F1 selective electrodes displayed only moderate selectivity 196 

and context effects. Moreover, not all participants had such highly target F1 selective electrodes 197 

(see Table S2). The relative sparseness of strong selectivity is not surprising given that the 198 

target vowel synthesis involved only small F1 frequency differences (~30Hz) per step, with the 199 

endpoints being separated by only 150Hz (which is, however, a prototypical F1 distance 200 

between /u/ and /o/[8]). However, past work has demonstrated that even small acoustic 201 

differences among speech sounds are robustly encoded by distributed patterns of neural activity 202 

across auditory cortex[14,37]. In order to determine whether distributed neural representations 203 
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of vowels reliably display normalization across all participants, we trained a multivariate pattern 204 

classifier model (Linear Discriminant Analysis, LDA) on the spatiotemporal neural response 205 

patterns of each participant. Models were trained to discriminate between the endpoint stimuli 206 

(i.e., trained on the neural responses to steps 1 vs. 6, irrespective of context) using all task-207 

related electrodes for that participant. These models were then used to predict labels for held-208 

out data of both the endpoints and the ambiguous steps. For all participants, classification of 209 

held-out endpoint trials was significantly better than chance (Figure S3b). To assess the 210 

influence of target F1 and context F1 on the classifier output, a logistic generalized linear mixed 211 

model was then fit to the proportion of predicted “sofo” responses across all participants. 212 

Figure 2e displays the proportion of “sofo” labels predicted for all stimuli by the LDA 213 

classifier based on the neural data of one example participant (thick lines). Importantly, a shift is 214 

observed in the point of crossing of the category boundary. Regression functions fitted to these 215 

data (thin lines) allowed us to estimate the size and direction of the context-driven neural 216 

boundary (50% crossover point) shift per participant. For all participants, the neural vowel 217 

boundaries were found to be context dependent (Figure 2f; see online methods and 218 

Supplementary Figure S3 for further detail). The combined regression analysis demonstrated 219 

that, across participants, population neural activity in the temporal lobe was modulated both by 220 

the acoustic properties of the target vowel (p = 1.2*10-7) and by the preceding context (p = 221 

4.2*10-8). This effect was not dependent on the approach to exclusively train on endpoint data 222 

(Figure S5). Moreover, this effect was not observed for task-related electrodes outside of the 223 

temporal lobe during the target window (see S4; non-temporal electrodes were mostly located 224 

on sensorimotor cortex and the inferior frontal gyrus).  225 

Importantly, and in analogy to the behavioral results, the neural classification functions 226 

demonstrate that the influence of the context sentences consistently affected target vowel 227 

representations in a normalizing direction: the neural response of a target vowel with a given F1 228 
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is more like that of /o/ (high F1),  after a low F1 context (Speaker A) than after a high F1 context 229 

(Speaker B; see Supplementary Figure S3 and S4b for more detail). 230 

 231 

Normalization as sensitivity to contrast in acoustic-phonetic features. It has been 232 

suggested that a major organizing principle of human parabelt auditory cortex concerns the 233 

acoustic phonetic features that define classes of speech sounds, and not phonemes (or even 234 

higher level linguistic representations) per se[13,25,38]. Here we demonstrated normalization in 235 

these representations. However, auditory cortex processing is diverse and may contain regions 236 

that are in fact selective for (more abstract) phonemes. For example, auditory cortex has been 237 

found to display properties that are typically associated with abstract sound categories such as 238 

categorical perception, too[14]. Hence, we next assessed whether the normalization effects 239 

observed here involved a rescaling in patches of cortex that display sensitivity to acoustic-240 

phonetic features (i.e., relating to more general F1 characteristics) or, instead, only in those 241 

patches that may be selective for discrete phonemes (or the target words as a whole). Because 242 

the context sentence did not contain the target vowels /u/ or /o/, but did traverse the same 243 

general F1 range, assessing electrodes’ responses during the context window could inform us 244 

about the nature of their preferences. 245 

To this end we again relied on the glm-based t-statistics of all target selective temporal 246 

lobe electrodes (n = 37; as per Figure 2d). Among these electrodes, however, we examined the 247 

relationship between their preferences for context F1 during the context window and for target 248 

F1 during the target window. Figure 3a displays context and target preferences on the cortex of 249 

a single example patient. Among the electrodes that displayed target F1 selectivity, some also 250 

displayed selectivity for the context F1 during the context window (indicated with a black-and-251 

white outline). Figure 3b displays the activation profile of one example electrode (e2). 252 

Importantly, e2 responds more strongly to low F1 targets during the target window (sufu 253 

preferent: p = 2.4*10-21) but also to low F1 contexts during the context window (Speaker A 254 
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preferent: p= 1.7*10-14). This demonstrates that this neural population responded more strongly 255 

to low F1 acoustic stimuli in general and is not exclusively selective for a discrete phoneme 256 

category. Importantly, e2 also displayed normalization, as its activity was affected by context F1 257 

during the target window (p = 2.7*10-4), and the direction of that context effect was consistent 258 

with contrastive normalization (cf. Fig. 2d). 259 

Extending this finding to the population of electrodes, we found a significant positive 260 

correlation across all target-selective temporal lobe electrodes between an electrode’s target 261 

preference and its context preference (r = 0.64; p = 1.42*10-5; Figure 3c). Hence, neural 262 

populations that are selective for target F1 in fact often displayed a more general preference to 263 

specific F1 frequency ranges. Moreover, when restricting the test of normalization (assessed as 264 

the correlation between target preferences and the context effect, as per Figure 2d) to those 265 

electrodes that displayed significant selectivity for both target F1 and context F1, normalization 266 

was again found (Figure S6). These findings confirm that normalization affects acoustic-267 

phonetic (i.e., pre-phonemic) representations of speech sounds in parabelt auditory cortex. 268 

 269 

 270 

Figure 3: Sensitivity to contrast in acoustic-phonetic features. a) Electrode preferences for 271 

both target F1 (during target window) and context F1 (during context window) from a single 272 

example patient. Some populations display both target F1 selectivity and context F1 selectivity 273 

(marked with a black-and-white outline), indicating a preference for higher or lower F1 frequency 274 

ranges. Others are only selective for target F1 or context F1 (marked with a single black outline 275 
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in their respective panels). Significance assessed at p<0.05 uncorrected. b) Mean (+/-1 SE) 276 

high-gamma activity at an example electrode (e2) from the example patient in panel a 277 

(conditions split as described in Fig 2c). Activity is displayed for a time window encompassing 278 

the full trial duration (both precursor sentence and target word). Black bars represent significant 279 

time points (p < 0.05; cluster-based permutation). c) A relation exists between the by-electrode 280 

context preference and target preference: electrodes that display a preference for either high or 281 

low target F1 typically also display a preference for the same F1 range during the context. 282 

 283 

Discussion 284 

A critical challenge for human speech perception is the fact that different speakers 285 

produce the same speech sounds differently[1,3]. That is, speakers display different effective 286 

ranges with respect to their most informative speech cues (here, formants). We investigated the 287 

neural underpinnings of the behavioral finding that listeners rely on speaker-specific information 288 

to constrain phonetic processing. First, we observed behavioral normalization effects, replicating 289 

previous findings[7,8,10,11]. More importantly, analogous speaker-normalized representations 290 

of vowels were found in parabelt auditory cortex processing. These normalized representations 291 

were observed broadly across parabelt auditory cortex and were observed for all participants 292 

individually. Normalization was found to involve a context dependent change in the response 293 

strength of cortical populations that are selective for acoustic-phonetic features. These findings 294 

demonstrate that normalization is a highly robust phenomenon that results in a rescaling of 295 

representations that precede the mapping onto phonemes or higher level linguistic units. 296 

Recent research has demonstrated that auditory cortex responds to the acoustic cues 297 

that are critical for both recognizing and discriminating phonemes[13–19] and different 298 

talkers[20–24] by means of different patterns of activation[37]. However, since cues that are 299 

critical for speaker and speech sound identification are conflated in the acoustic signal, these 300 

findings could be consistent either with a cortical representation of veridical acoustic properties 301 
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(e.g., reflecting the absolute F1 of a stimulus) or of context-dependent perceptual properties 302 

(e.g., its relative – or normalized – F1). Here, we were able to directly address the interaction 303 

between speaker and speech sound representations by presenting them to listeners at separate 304 

points in time and leveraging their immediate integration in auditory cortex processing. This 305 

approach demonstrated that rapid and broadly distributed normalization, or rescaling, is a basic 306 

principle of auditory cortex’s encoding of speech sounds. 307 

In behavioral research on normalization, the effect has often been discussed in relation 308 

to its contrastive nature. Indeed, we observed that a low F1 context led to more high F1 target 309 

percepts, which is consistent with an increase of perceptual contrast. Similar contrast enhancing 310 

operations have been widely documented in human and animal processing of various 311 

(nonspeech) acoustic stimuli[39–42], involving phenomena such as adaptive gain control[41] or 312 

stimulus specific adaptation[40,42]. An intuitive mechanism for the implementation of contrast 313 

enhancement involves sensory adaptation. This could be based on neuronal fatigue. When a 314 

neuron, or neuronal population, responds strongly to a masker stimulus, its response during a 315 

subsequent probe is often attenuated when the frequency of the probe falls within the neurons’ 316 

excitatory receptive field[43,44]. But in addition to such local forms of adaptation, and possibly 317 

even more relevant for the effects observed here, adaptation also arises through (inhibitory) 318 

interactions between separate populations of neurons (which may have partly non-overlapping 319 

receptive fields)[39,41]. In the present study, spectral differences between the two context 320 

sentences and those between the endpoint target vowels were similar (see Figure S1). 321 

Adaptation may, hence, play a role in the type of normalization observed here. Indeed, we 322 

observed a number of populations for which a strong preference for one of the context 323 

sentences during the context window was associated with a decreased response during the 324 

target window (i.e., the normalization effect; Figure 3). Given the general nature of adaptation 325 

effects a relevant observation from the behavioral literature is the fact that various non-speech 326 

context sounds (e.g., broadband noise and musical tones) have also been observed to affect 327 
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the perception of speech sounds in a way that is at least qualitatively similar to those observed 328 

here[28,29,45]. This finding suggests that normalization effects may not be speech specific, and 329 

may, at least partly, be explained by adaptation effects.  330 

An interesting additional question concerns the main locus of emergence of 331 

normalization. Broadly speaking, normalization could be inherited from primary auditory or 332 

subcortical processes (from which we were unable to record); it may largely emerge within 333 

parabelt auditory cortex processing itself; or it could be driven by top-down influences from 334 

regions outside of the auditory cortex. In our study, context and target sounds were separated in 335 

time by a 500ms silent interval. It has been suggested that adaptation effects over such longer 336 

latencies become especially dominant at cortical levels of processing[46,47]. Furthermore, 337 

behavioral experiments have demonstrated robust normalization effects with contralateral 338 

presentation of context and target sounds[28,45]. Both observations thus suggest that 339 

normalization can arise when the contribution of context effects that dominate peripheral 340 

auditory processing may be limited. With respect to the potential role of top-down modulations 341 

from regions outside of the auditory cortex, inferior frontal and sensorimotor cortex have been 342 

suggested to be involved in the resolving of perceptual ambiguities in speech perception[48,49] 343 

and could be expected to play a role in normalization too. Here we observed considerable 344 

activation in these regions, but they did not display normalization during the processing of the 345 

target sounds (see Figure S4). While tentative, these combined findings highlight the auditory 346 

cortex as the most likely locus for the emergence of normalization of speech sounds at this 347 

stage. 348 

The current experiment involved data from cortical sites in both the left and right 349 

hemispheres. It has previously been demonstrated that the right hemisphere is more strongly 350 

involved in the processing of voice information[50,51]. Here, normalization was observed in left 351 

and right hemisphere patients (Figure 2f). Importantly, however, data included only two left 352 
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hemisphere and three right hemisphere patients in total, so no strong conclusions regarding 353 

lateralization can be drawn based on this dataset. 354 

Despite broadly observed normalization of vowel representations, responses were not 355 

completely invariant to speaker differences during the context sentences (see for example the 356 

behavior of example electrode e2 in Figure 3b which displays a preference for the Low F1 357 

sentence though most of the context window: i.e., it is not fully normalized). And indeed, our 358 

(and previous[8,9,28]) findings show that, even for target sound processing, surrounding 359 

contexts never results in complete normalization. While the F1 in the context sentences differed 360 

by roughly 400 Hz, the normalization effect only induces a shift of ~50 Hz in the position of the 361 

category boundaries (in behavior and in neural categorization). Normalization should thus be 362 

seen as a mechanism that biases processing in a context-dependent direction, but not one that 363 

fully constrains processing. Furthermore, context-based normalization is not the only means by 364 

which listeners tune-in to specific speakers. Listeners categorize sound continua differently 365 

when they are merely told they are listening to a man or a woman, demonstrating the existence 366 

of normalization mechanisms that do not rely on acoustic context[52]. In addition, formant 367 

frequencies are perceived in relation to other formants and pitch values in the current signal, 368 

because those features are correlated within speakers (e.g., people with long vocal tracts 369 

typically have lower pitch and lower formant frequencies overall). These “intrinsic” normalization 370 

mechanisms have been shown to affect auditory cortex processing of vowels as well[53–57]. 371 

Tuning-in to speakers in everyday listening is thus the result of the combination of at least these 372 

three distinct types of normalization[10]. 373 

To conclude, the results presented here reveal that the processing of vowels in auditory 374 

cortex becomes rapidly influenced by speaker-specific properties in preceding context. These 375 

findings add to recent literature that is ascribing a range of complex acoustic integration 376 

processes to the broader auditory cortex, suggesting that it participates in high-level encoding of 377 

speech sounds and auditory objects[14,25,58–60]. Recently, it has been demonstrated that 378 
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patches of parabelt auditory cortex represent speaker-invariant contours of intonation that 379 

speakers use to focus on one or the other part of a sentence[61]. The current findings build on 380 

these and demonstrate the emergence of speaker-normalized representations of acoustic-381 

phonetic features and phonemes, the most fundamental building blocks of spoken language. 382 

This context-dependence allows auditory cortex to partly resolve the between-speaker variance 383 

present in speech signals. These features of auditory cortex processing underscore its critical 384 

role in our ability to understand speech in the complex and variable situations that we are 385 

exposed to every day. 386 

 387 

Materials and Methods 388 

Patients. A total of five human participants (2 male; all right handed; mean age 30.6 years), all 389 

native Spanish speaking (the US hospital at which participants were recruited has a 390 

considerable Spanish speaking patient population), were chronically implanted with high-density 391 

(256 electrodes; 4 mm pitch) multi-electrode cortical surface arrays as part of their clinical 392 

evaluation for epilepsy surgery. Arrays were implanted subdurally on the peri-Sylvian region of 393 

the lateral left (n = 2) or right (n = 3) hemispheres. Placement was determined by clinical 394 

indications only. All participants gave their written informed consent before the surgery, and had 395 

self-reported normal hearing. The study protocol was approved by the UC San Francisco 396 

Committee on Human Research. Electrode positions for reconstruction figures were extracted 397 

from tomography (CT) scans and co-registered with the patient’s MRI.  398 

Stimulus synthesis. Details of the synthesis procedure for these stimuli have been reported 399 

previously[8]. All synthesis was implemented in Praat software[62]. In brief, using source-filter 400 

separation, the formant tracks of multiple recordings of clear “sufu” and “sofo” were estimated. 401 

These estimates were used to calculate a single average time-varying formant track for both 402 

words, now representing an average of the formant properties over a number of instances of 403 

both [o] and [u]. The height of only the first formant of this filter model was increased and 404 
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decreased across the whole vowel to create the new formant models for the continuum from [u] 405 

to [o] covering the distance between endpoints in 6 steps. These formant tracks were combined 406 

with a model of the glottal-pulse source to synthesize the speech sound continuum. Synthesis 407 

parameters thus dictated that all steps were equal in pitch contour, amplitude contour and had 408 

identical contours for the formants higher than F1 (note that F1 and F2 values in Figure 1a and 409 

S1 reflect measurements of the resulting sounds, not synthesis parameters). The two context 410 

conditions were created through source-filter separation of a single spoken utterance of the 411 

sentence “a veces se halla” (“at times she feels rather…”). The first formant of the filter model 412 

was then increased or decreased by 100 Hz and recombined with the source model following 413 

similar procedures as for the targets. 414 

Procedures. The participants were asked to categorize the last words of a stimulus as either 415 

“sufu” or “sofo”. Listeners responded using the two buttons on a button box. The two options 416 

"sufu" and "sofo" were always displayed on the computer screen. Each of the 6 steps of the 417 

continuum was presented in both the low- and high-F1 sentence conditions. Context conditions 418 

were presented in separate mini-blocks of 24 trials (6 steps * 4 repetitions). Participants 419 

participated in as many blocks as they felt comfortable with. 420 

Data acquisition and preprocessing. Cortical Local Field Potentials (LFPs) were recorded 421 

and amplified with a multichannel amplifier optically connected to a digital signal acquisition 422 

system (Tucker-Davis Technologies) sampling at 3,052 Hz. The stimuli were presented 423 

monaurally from loudspeakers at a comfortable level. The ambient audio (recorded with a 424 

microphone aimed at the participant) along with a direct audio signal of stimulus presentation 425 

were simultaneously recorded with the ECoG signals to allow for precise alignment and later 426 

inspection of the experimental situation. Line noise (60Hz and harmonics at 120 and 180 Hz) 427 

was removed from the ECoG signals with notch filters. Each time series was visually inspected 428 

for excessive noise, and trials and or channels with excessive noise or epileptiform activity were 429 

removed from further analysis. The remaining time series were common-average referenced 430 
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across rows of the 16x16 electrode grid. The time-varying analytic amplitude was extracted from 431 

eight bandpass filters (Gaussian, with logarithmically increasing center frequencies between 432 

70–150 Hz, and semi-logarithmically increasing bandwidths) with the Hilbert transform. High-433 

gamma power was calculated by averaging the analytic amplitude across these eight bands. 434 

The signal was subsequently down-sampled to 100Hz. The signal was z-scored based on the 435 

mean and standard deviation of a baseline period (from -50 to 0 ms before the onset of the 436 

context sentence) on a trial by trial basis. In the main text, high-γ will refer to this measure. 437 

Single-electrode encoding analysis. We used ordinary least-squares linear regression to 438 

predict neural activity (high-γ) from our stimulus conditions (target F1 steps, coded as -2.5, -1.5, 439 

-0.5, 0.5, 1.5, 2.5; and context F1, coded as -1 and 1; as well as their interaction). These factors 440 

were used as numerical predictors to neural activity that was averaged across the target window 441 

(from 70 to 570 ms after target vowel onset) or across the context window (from 250 to 1450 ms 442 

after context sentence onset –a later onset was chose to reduce the influence of large and non-443 

selective onset responses present in some electrodes-). For each model R-squared (Rsq) 444 

provides a measure of the proportion of variance in neural activity that is explained by the 445 

complete model. The p-value associated with the omnibus F-statistic provides a measure of 446 

significance. We set the significance threshold at alpha = 0.05 and corrected for multiple 447 

comparisons using the Bonferroni method, taking individual electrodes as independent samples. 448 

Figure S2a & b demonstrate that most of the variance in the context was explained by the factor 449 

context F1. During the target window however, both target F1 and context F1 explain a 450 

considerable portion of the variance. The interaction term was included to accommodate a 451 

situation where the context effect is more strongly expressed on one side of the target 452 

continuum than the other (see e.g., figure 2b, where the context effect is larger towards “sofo”), 453 

but is not further interpreted here. 454 

 For Figures 2d and Figure 3c, linear correlations between signed t-statistics of target F1 455 

preferences and context effects (Figure 2d) or context preferences (Figure 3c) were computed 456 
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over all significant (9 [corrected] + 28 [uncorrected] = 37) electrodes. For Figure S6a, linear 457 

correlations were computed separately for those electrodes that displayed significant selectivity 458 

for Target F1 and Context F1 (n = 9; (marked with a black-and-white outline in S6a; r = -0.73; p 459 

= 0.03), and for electrodes that displayed selectivity to Target F1 only (n = 28; S6a; r = -0.61; p 460 

= 5.07*10-4). For Figure S6b the same approach was applied for each high-gamma sample 461 

separately. 462 

Cluster-based permutation analyses. For single example electrodes, a cluster-based 463 

permutations approach was used to assess significance of differences between two event 464 

related high gamma time courses (Figure 2c and Figure 3b; following the method described 465 

in[63]). For each permutation, labels of individual trials were randomly assigned to data (high-y 466 

time courses), and a t-test was performed for each timepoint. Next, for each time point (across 467 

all 1000 permutations) a criterion value was established (the highest 95% of the [absolute] t-468 

values for that timepoint). Then, for each permutation, it was established when its value reached 469 

above the criterion value and for how many samples it remained above criterion. A set of 470 

subsequent timepoints above criterion is defined as a cluster. Then, for each cluster the t-values 471 

were summed, and this value was assigned to that entire cluster. For each permutation only the 472 

largest (i.e., highest summed cluster value) was stored as a single value. This resulted in a 473 

distribution of maximally 1000 cluster values (some permutations may not result in any 474 

significant cluster and have a summed t-value of 0). Then, using the same procedure, the size 475 

of all potential clusters was established for the real data (correct assignment of labels), and it 476 

was established whether the size of each cluster was larger than 95% of the permutation-based 477 

cluster values. p < 0.001 indicates that the observed cluster was larger than all permutation 478 

based clusters. 479 

Stimulus classification. Linear Discriminant Analysis (LDA) models were trained to predict the 480 

stimulus from the neural population responses evoked by the stimuli. Per participant a single 481 

model was trained on all endpoint data, which was then used to predict labels for the ambiguous 482 
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items. To predict stimulus class for the endpoint stimuli (steps 1 and 6) a leave-one-out cross 483 

validation procedure was used to prevent overfitting. Model features (predictors) consisted of 484 

the selected timepoint*electrode combinations per participant. 485 

For the analyses (Figures 2; Figure S3; Figure S4) training data consisted of high-y data 486 

averaged across a 500ms time window starting 70ms after target vowel onset (the target vowel 487 

was the first point of acoustic divergence between targets). 488 

In the analyses, all task-related electrodes for a given participant (and region-of-interest, 489 

see Figure S4) were selected. Trial numbers per participant are listed in Table S1. The analysis 490 

displayed in Figure 2 and Figures S3 and S4 hence relied on a large number of predictors 491 

(electrodes * timepoints). While a large amount of predictors could result in overfitting, these 492 

parameters led to the highest proportion of correct classification for the endpoints (76% correct, 493 

see Figure S1b). High endpoint classification performance is important to establish the presence 494 

of normalization, but does not affect the extent of observed normalization, because the 495 

normalization effect is orthogonal. Importantly, in all analyses classification scores were only 496 

obtained from held-out data, preventing the fitting of idiosyncratic models. In addition, averaging 497 

across time (hence decreasing the number of predictors) led to qualitatively similar (and 498 

significant) effects for the important comparisons reported in this paper. Classification analyses 499 

resulted in a predicted class for each trial. These data were used as input for a generalized 500 

logistic linear mixed effects model. 501 

Generalized Linear Mixed effects regression of classification data (glmer). For the 502 

analyses that assessed the effects of target stimulus F1 and context F1 on proportion of “sofo” 503 

responses (both behavioral and neural-classifier-based), the models had Target F1 (contrast 504 

coded, with the levels -2.5; -1.5; -0.5; 0.5; 1.5; 2.5) and Context F1 (levels -1; 1) entered as 505 

fixed effects, and uncorrelated by-patient slopes and intercepts for these factors as random 506 

effects.  507 
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For the analysis of the behavioral data, we observed more sofo responses towards the 508 

sofo end of the stimulus continuum (BTarget F1 = 1.89, z = 3.62, p < 0.001). Moreover, we 509 

observed an effect of context as items along the continuum were more often perceived as sofo 510 

(the vowel category corresponding to higher F1 values) after a low F1 voice (Speaker A) than 511 

after a high F1 voice (Speaker B) (BContext F1 = -1.71, z = -3.15, p = 0.002).  512 

For the analyses of neural representations the dependent variable consisted of the 513 

classes predicted by LDA stimulus classification described above. For the overall analysis 514 

including temporal lobe electrodes, the model revealed significant classification of the 515 

continuum (BTarget F1 = 0.50, z = 13.18, p < 0.001), suggesting reliable neural differences 516 

between the endpoints. Furthermore, an effect was also found for the factor Context on the 517 

proportion of “sofo” classifications (BContext F1 = -0.28, z = -4.67, p < 0.001), reflecting the 518 

normalization effect of most interest. For the analysis focusing on the dorsal and frontal 519 

electrodes a significant effect of Step was observed, that is, significant classification of the 520 

continuum (BTarget F1 =0.20, z = 6.04, p< 0.001), but no significant influence of context (BContext F1 521 

= 0.02, z = 0.31 p = 0.76) see S4C for further detail. 522 

Multidimensional scaling. The neural dissimilarity between all 12 pairs of target items was 523 

measured by computing leave-one-out LDA classification scores between each target pair. 524 

Here, a high classification score reflects different neural representations, a low score reflects 525 

similarity. The resulting 12*12 dissimilarity matrices were averaged across participants (Figure 526 

S5a). The across-participant average of the classification-based distance matrices was 527 

projected in Multidimensional Scaling space. The first (i.e., main) dimension reflected stimulus 528 

step (see Figure S5b), indicating that this is indeed the most dominant property of the selected 529 

electrode population. Importantly, this dimension also reflected normalization 530 
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Supporting information: 697 

S1: 698 

 699 

Figure S1: Contexts and targets display similar spectral differences. a) First formant tracks 700 

for the voiced portions of the synthesized materials. In the annotation “?” indicates one of the 701 

target vowel steps. b) A similar spectral relation exists between the two endpoint targets /u/ vs. 702 

/o/ and the context sentences. /u/ and the low F1 speaker have more dominant low frequency 703 

components (i.e., below 400 Hz) in the spectrum than /o/ and the High F1 speaker. 704 

 705 

  706 
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S2:  707 

 708 

Figure S2: Context F1 influences cortical activity during target processing. a) Map of 709 

context and target encoding for all task-related electrodes of all subjects (temporal lobe only), 710 

both during the context window (left column) and during the target window (right column). The 711 

areas of the pie-charts are proportional to the total variance explained. Wedges show the 712 

relative variance explained by each factor (stimulus dimension) for each significant electrode. b) 713 
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Weighted average proportion of variance explained by main effects and interactions across all 714 

significant electrodes (across all 5 patients). During the context window, context properties 715 

explain the large majority of variance. During the target window, the context stimulus properties 716 

still explain a considerable portion of the variance. 717 

  718 
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S3: 719 

 720 

Figure S3: All participants display context effects in both their behavior and neural 721 

responses. a) Top row: Observed mean proportions of “sofo” responses across the steps of the 722 

continuum in both context conditions for all participants (thick lines). Model fits (thin lines) are 723 

used to estimate the 50% category boundary per condition per participant (used for panel c). 724 

Bottom: same as in top panel but for the neural classification data (thick lines reflect LDA-based 725 

predictions). b) overall percentage correct (leave-one-out) classification on the endpoints per 726 

participant (with bootstrapped 95% CI). c) By-participant indications of the estimated 50% 727 

category boundaries in the two context conditions based on behavior. d) same as c but for 50% 728 

category boundary estimates of the neurally-based classification (i.e., identical to Figure 2d, but 729 

reproduced for comparison to Fig. S3c).   730 
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S4: 731 

 732 

 733 

Figure S4: Normalization is observed only in temporal lobe regions a) Target vowel 734 

selective electrodes are congregated on the temporal lobe, although some are also found in 735 

frontal regions. b) when including temporal electrodes, LDA classification results (averaged 736 

across participants) reveal a strong context effect. c) no context effect is observed for LDA 737 

classification results based on electrodes from dorsal (i.e., all non-temporal) regions. 738 

 739 

 740 

  741 
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S5: 742 

 743 

Figure S5: Between stimulus neural distances reflect normalization a) Distance matrix 744 

based on between-stimulus leave-one-out LDA classification of a two-class classifier. High 745 

classification performance reflects large neural distances. The lower left corner (involving the 746 

between-context comparisons; marked with a white-dashed outline) demonstrates 747 

normalization: e.g., step 2 of Speaker A is most similar to step 4 of Speaker B, etc. Under 748 

veridical processing, smallest distances would follow the sub-diagonal (with the smallest 749 

distances for the comparisons of 1 vs. 1;  2 vs. 2; etc.) b) Multidimensional scaling (MDS) based 750 

on the distance matrix  (in a) reveals that target stimulus F1 is the main factor (D1) determining 751 

neural dissimilarity. Critically, this dimension is also influenced by context F1. That is, it reflects 752 

normalization.   753 

  754 
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S6 755 

 756 

  757 

Figure S6: Normalization across target F1 selective population types. Panels displays the 758 

same relation as Figure 2d, (the relation between target preference and context effect; i.e., 759 

normalization), but for two types of populations. Normalization is observed for electrodes that 760 

are most clearly selective for acoustic-phonetic features (instead of phonemes) since they 761 

display preferences for both target F1 and context F1 (left panel; black-and-white outline; target 762 

and context materials contain different phonemes). For completeness; normalization is also 763 

observed for those electrodes that display target F1 preferences only (right panel; black fill). See 764 

Figure 3 for reference.  765 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/397026doi: bioRxiv preprint 

https://doi.org/10.1101/397026
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

SUPPLEMENTARY TABLES 766 

 767 

S1: Trial counts 768 

Item  EC100 EC107 EC122 EC128 EC152 769 

High_1  24 9 28 23 33 770 

High_2  24 9 26 23 26 771 

High_3  24 12 31 24 31 772 

High_4  23 11 27 24 27 773 

High_5  24 11 29 19 29 774 

High_6  24 9 27 22 26 775 

Low_1  23 11 25 21 31 776 

Low_2  24 12 27 21 29 777 

Low_3  24 9 23 20 33 778 

Low_4  23 8 30 20 31 779 

Low_5  24 10 25 19 31 780 

Low_6  23 11 28 21 31 781 

 782 

 783 

S2: Electrode type counts (temporal lobe) 784 

Patient  Task-related Target F1(corrected) Context F1(corrected) 785 

_________________________________________________________________ 786 

EC100  21  10(4)   8(3) 787 

EC107  19  7(1)   4(2) 788 

EC122  6  3(2)   3(0) 789 

EC128  20  6(0)   10(2) 790 

EC152  32  11(2)   16(4) 791 
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