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Sarah A. Teichmann1,2,*

1Cellular Genetics, Wellcome Sanger Institute, Wellcome

Genome Campus, Hinxton, Cambridge CB10 1SA, UK

2Cavendish Laboratory, JJ Thomson Ave, Cambridge CB3 0EH,

UK

*to whom correspondence should be addressed

†contributed equally

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2018. ; https://doi.org/10.1101/397042doi: bioRxiv preprint 

https://doi.org/10.1101/397042
http://creativecommons.org/licenses/by-nc/4.0/


Abstract

Increasing numbers of large scale single cell RNA-Seq projects are leading to

a data explosion, which can only be fully exploited through data integration.

Therefore, efficient computational tools for combining diverse datasets are cru-

cial for biology in the single cell genomics era. A number of methods have

been developed to assist data integration by removing technical batch effects,

but most are computationally intensive. To overcome the challenge of enor-

mous datasets, we have developed BBKNN, an extremely fast graph-based

data integration method. We illustrate the power of BBKNN for dimensionality-

reduced visualisation and clustering in multiple biological scenarios, including

a massive integrative study over several murine atlases. BBKNN success-

fully connects cell populations across experimentally heterogeneous mouse

scRNA-Seq datasets, which reveals global markers of cell type and organ-

specificity and provides the foundation for inferring the underlying transcription

factor network. BBKNN is available at https://github.com/Teichlab/bbknn.
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1 Introduction

The past few decades have seen a constant increase in the amount of data that

can be harvested from single transcriptomics experiments1,2, culminating in the

development of single cell RNA-Seq3. The single cell ‘resolution revolution’ in

transcriptomics has enabled the analysis of different cell populations within a

sample, instead of measuring an average across a heterogeneous input as for

traditional bulk transcriptomics4. While various technological advances such

as the introduction of Unique Molecular Identifiers (UMIs) have continued to

improve gene expression quantification5, increase in throughput via innovations

such as droplet microfluidics6 and combinatorial indexing7 have meant that the

sizes of experiments and datasets have increased from e.g. 85 cells in 20118,

to atlases featuring over 100,000 cells9. These developments combined with

continuously dropping sequencing costs and the fact that scRNA-Seq methods

themselves are becoming cheaper to execute10, have led to the initiation of

large-scale projects like the Human Cell Atlas11, emphasizing the urgent need

for efficient computational approaches.

Given the variety of experimental methods generating vast amounts of data,

efficient methods for aligning diverse data are invaluable for integrative analy-

sis. A number of innovative batch correction approaches for scRNA-Seq have

been proposed recently. This includes mnnCorrect12, which corrects expres-

sion against a reference batch based on the profiles of mutual nearest neigh-

bours. Another example is Seurat’s CCA13, which merges cell types by per-

forming CCA dimensionality reduction and aligning the resulting coordinate dis-

tributions across batches. Despite their merits, these methods often struggle

with the exponential increase in sizes of data sets. The most efficient avail-

able approach is Scanorama14, which builds upon the ideas of mnnCorrect by

identifying pairs of mutual nearest neighbours between the datasets, and using
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them to calculate a joint expression panorama. This method comes with its

own form of computational limitations, requiring heavy RAM use for merging

hundreds of thousands of cells.

Here, we present BBKNN (batch balanced k nearest neighbours) as a sim-

ple, fast and lightweight batch alignment method that integrates seamlessly

into SCANPY15, a scalable Python scRNA-Seq analysis package. The out-

put is immediately useable in downstream analyses, such as clustering16 and

pseudotime inference17 along with UMAP18 and force-directed graphs19 for vi-

sualisation. Moving batch correction to the neighbour graph inference step

allows for the creation of an extremely efficient algorithm with minimal compu-

tational requirements. Our comparative benchmarks show that BBKNN is one

to two orders of magnitude faster than existing methods.

We demonstrate BBKNN’s utility in successfully merging data from two vari-

ants of the 10X Chromium20 droplet-based scRNA-Seq protocol and in integrat-

ing data from four pancreatic datasets stemming from different experimental

setups21–25. Finally, we show how BBKNN aligns hundreds of thousands of

cells from eight independent large-scale mouse scRNA-Seq data sets4,9,26–31.

From this alignment, we identify intuitive developmental trajectories for mouse

lineages, which we use as the framework to infer a transcription factor regula-

tory network for almost two thousand mouse transcription factors.

2 Results

2.1 Batch Balancing the Neighbourhood Graph

A common step in scRNA-Seq analysis is the identification of a neighbourhood

graph, which is subsequently used for a number of downstream computational

analyses, including clustering16 and pseudotime inference17, and visualisation
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methods such as UMAP18 and force-directed graphs19. The current default

method for creating this graph within SCANPY is based on the approach pro-

posed in UMAP. The graph concept is illustrated in Figure 1a: for each cell,

its k nearest neighbours in principal component space are identified, and their

Euclidean distances are then converted into connectivities with an exponential

relationship. At this step, extra emphasis is placed on mutual neighbour cell

pairs, with their two respective connectivities being replaced by their sum di-

minished by their product. However, when there is a batch effect present in

the data, strong experimental variation can lead to cells being unable to form

cross-batch biological connections.

Given the fact that neighbourhood graph construction involves identifying

the nearest neighbours of each cell, and scRNA-Seq batch correction meth-

ods often make use of cross-batch neighbour information12,14, the procedure

lends itself well to a very simple alteration that enables batch alignment. The

BBKNN graph is constructed by defining the k nearest neighbours for each

cell within each of the user-defined batches. This abstracted neighbour collec-

tion is then processed into graph connectivities in the same manner as when

constructing a KNN graph, aligning the batches. In order to avoid aligning un-

related cells across batches when no equivalent cells exist in another batch,

we limit the total number of edges for each cell. This prioritises mutual neigh-

bour pairs and connections to similar cells across batches (Figure 1b). The

resulting graph structure is immediately useable in the same broad range of

downstream analysis options as the KNN graph. BBKNN also offers the option

to compute approximate nearest neighbours, with run time scaling linearly and

offering superior performance for datasets with hundreds of thousands of cells.

We illustrate this concept on simulated data as described in Supplementary

Methods. The simulation confirms that BBKNN connects cells from a known
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shared population across experimentally different batches. It also demon-

strates the use of the BBKNN trimming parameter to ensure that unrelated

cells remain distinct, as shown in Supplementary Figure 1. Below, we focus on

applying the algorithm to various biological datasets.

2.2 Merging PBMC Data from Droplet Protocol Variants

We first evaluate BBKNN in a biological context on two publicly available pe-

ripheral blood mononuclear cell (PBMC) samples, obtained using the 5′ and

3′ droplet protocols of 10X Chromium20. The 5′ version was developed in re-

sponse to community demand for accurate T and B cell receptor capture, al-

lowing explicit VDJ reconstruction. Given that these methods capture different

region of mRNA, we expect to see differences in gene expression quantification

between cells profiled with 5′ or 3′ protocols. This is exactly what we observe:

there is complete separation by experimental method when inferring a standard

KNN neighbourhood graph (Figure 2a). However, upon BBKNN merging, this

becomes supplanted by the various cell types integrating into unified clusters

representing data from both experimental protocols (Figure 2b and 2c).

Notably, a closer examination of the distribution of cells profiled by each pro-

tocol within the T and B cell clusters reveals genes expected to be technology-

specific. For instance, the TRBV, TRAV and IGHV genes are captured by the 5′

kit, while TRAC instead mainly appears in the cells from the 3′ kit (Figure 2d).

This is concordant with the fact that the detection efficiency of different regions

of T and B cell receptors is the main difference between the two methods.

As such, BBKNN performs excellent batch alignment for this data. BBKNN

succeeds in allowing inference of a cluster structure that correctly captures

the primary populations present in the data, while simultaneously retaining the

protocol-driven biological differences in the relevant cell types.
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2.3 Aligning Four Pancreatic Datasets from Diverse Tech-

nologies

Having demonstrated BBKNN’s ability to successfully merge cell populations

from different droplet protocols, the algorithm was applied to a more diverse

collection of publicly available pancreatic single cell data21–24. The experiments

came from four independent studies, and were performed using a combination

of both droplet32 and plate33,34 based methods. With around 15,000 cells in to-

tal between the four datasets, and a known shared biology captured in a set of

standardised annotations25, the data provides a perfect testing ground to eval-

uate BBKNN. We compare its performance to the established batch correction

methods mnnCorrect12, CCA13 and Scanorama14.

Figure 3a demonstrates a UMAP visualisation of the data without any at-

tempt to remove the batch effect. A very clear separation can be seen based

on the experiment of origin: while cells cluster together based on cell type

within batches, corresponding cells across batches are widely scattered. The

major cell types in the pancreatic islets are four endocrine cell populations: al-

pha, beta, gamma and delta. Additional smaller populations include stellate

cells, mast cells and macrophages. An interesting point is that the gamma and

delta pancreatic cells are already merged within the datasets at this stage.

After applying BBKNN (Figure 3b), all cell types are merged into the correct

clusters, reflecting the information provided in the annotations. Examining the

distribution of the experiment of origin reveals the batches to be far better mixed

than in Figure 3a, although the stark experimental differences lead to a less

homogeneous mixing than in the case of the PBMC droplets. The gamma

and delta populations remain mixed, reflecting the fact that they were already

intertwined to a good degree in the visualisation with no batch correction.

In comparison, the mnnCorrect method does not manage to merge cell
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clusters across experiments as successfully (Figure 3c), and a greater techno-

logical effect is conserved in the output. CCA merges the batches exceedingly

well in Figure 3d, also reconstructing the underlying cell type structure to a

similar standard as BBKNN while managing to separate the gamma and delta

populations. Scanorama manages to mix the batches nearly as well as CCA

(Figure 3e), and successfully reconnects the primary cell populations while

splitting the gamma and delta cells. However, the quiescent stellate population,

cohesively recaptured by all other methods, becomes fragmented. Additionally,

a macrophage and mast cell cluster that is distinct in all other visualisations be-

comes absorbed by the main UMAP manifold. For this particular application,

CCA produces the best aligned output, with BBKNN and Scanorama not far be-

hind, offering trade-offs between batch integration and maintaining the distinct

cell clusters. The level of batch integration by each of the methods is assessed

via Shannon entropy (Supplementary Figure 2), with BBKNN outperforming

mnnCorrect and obtaining results that are slightly less mixed than Scanorama

and CCA.

In terms of compute time, there are large differences between the meth-

ods, with BBKNN by far the fastest. The benchmarking Jupyter Notebooks

capturing this performance on a personal MacBook Pro with 16GB RAM and

a four-core i7 processor are available as part of the GitHub repository. CCA

took over 20 minutes to run for this data. The original R version of mnnCorrect

took approximately 15 minutes, while a third party Python reimplementation35

was closer to 20. Scanorama took two minutes, while BBKNN took three sec-

onds. Thus, BBKNN is at least 300 times faster in processing this data col-

lection than the established R methods and 40 times faster than Scanorama.

BBKNN remains one to two orders of magnitude faster than the other methods

when applied to multiple simulated datasets, with an additional benchmarking
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of BBKNN’s neighbour detection algorithms against Scanorama for larger col-

lections. BBKNN with approximate neighbour detection manages to perform an

order of magnitude faster than Scanorama. Both evaluations are described in

more detail in Supplementary Methods and shown on Supplementary Figure 3.

These differences will become more marked as datasets continue to increase

in size and heterogeneity, and users want to interact with datasets in a flexi-

ble and rapid manner. Therefore, we anticipate BBKNN’s fast and lightweight

graph alignment method to become a popular tool for both individual users and

in the context of databases and web servers.

2.4 Capturing a Developmental Trajectory Across Large-Scale

Mouse Single-Cell Atlases

With BBKNN’s utility illustrated on two different well-studied biological scenar-

ios, and its output falling in line with that of established batch correction meth-

ods, we set our sights on a larger dataset that would be computationally tax-

ing for existing methods. Recent times have seen a veritable flood of murine

scRNA-Seq atlases. We have collated eight of these, encompassing early em-

bryo development, fetal, neonatal, and adult stages of mouse development,

covering cells from at least 26 different mouse organs4,9,26–31. Some of the

data sets are large-scale, organism-wide collections (Mouse Cell Atlas, Tabula

Muris), while others focus on individual organs or cell types (embryo, thymus,

kidney, brain and hematopoietic stem cells). Integrating the data leads to a col-

lection of 267,690 cells, with a discernible split based on the dataset of origin.

Applying BBKNN to the data led to the datasets being well connected with

each other, creating density radially spreading from the center in UMAP space.

Both the uncorrected and processed versions of the complete atlas are pre-

sented in Supplementary Figure 4. However, due to the independent studies
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being of different scopes, some cell types (notably hematopoietic stem cells)

were dominant in the structure due to sheer number differences. To overcome

this, the dataset was down-sampled to guarantee more even cell population

sizes, reducing the cell total to 114,600. This reduced-scale collection show-

cases a better balance between the constituent populations (Figure 4).

Cell populations were annotated by performing graph-based clustering16

and assessing canonical marker gene expression (Figure 4b and 4d). When

examined along with the distribution of the atlas source (Figure 4a) and a sim-

plified hierarchy of the reported organ of origin (Figure 4c), BBKNN appears

to recapture a very intuitive development trajectory starting near the center of

the UMAP manifold and working outwards. The root of the process are Nanog-

expressing cells from developing embryos and embryonic stem cells, which

lead to Hox-gene expressing fetal cells and hematopoietic stem cells. The

hematopoietic lineage then branches into developed T cell, B cell, myeloid,

megakaryocyte and erythrocyte populations. This developmental trajectory

gains further support through the presence of early differentiating T and B cells,

characterised by Rag1 and Igll1 expression at the junction with the stem cells

(Supplementary Figure 5), underscoring the biological relevance of the relative

positioning of the populations in the combined structure.

The opposite path captures the development of epithelial, mesenchymal,

endothelial, muscular and neuronal cells. Most of these populations form tight,

distinct clusters, with good blending of cells stemming from different organs. A

notable exception was the distribution of epithelial cells, which revealed them-

selves to be highly divergent and organ specific. Numerous clusters of epithe-

lial cells from the liver, lung, kidney and bladder are detached from the main

body and are seen at different locations on the outskirts of the manifold, re-

flecting the specialised functionality of these tissue-specific subpopulations. A
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three-dimensional visualisation of the UMAP manifold can be seen as part of

a dedicated exploratory Jupyter Notebook in the BBKNN GitHub repository,

showcasing an even clearer radial trajectory from the centrally located stem

cells.

2.5 Constructing a Comprehensive Mouse Transcription Fac-

tor Network

Given the biological cohesiveness of the BBKNN-corrected UMAP manifold of

the murine atlases, which captured an intuitive developmental trajectory, we

use it as a starting point to decipher the underlying transcriptional regulation.

Network inference is a challenging task for single cell data due to sparsity.

A proposed solution to this problem is expression imputation36,37, which we

performed by creating ‘pseudo-cells’ as averages of the expression profiles

of nearest neighbour cells in UMAP space. This pseudo-cell set was subse-

quently thinned according to the original UMAP coordinates of the averaged

cells, resulting in a collection retaining the dynamic range of biological varia-

tion while offering denser expression matrices and reducing the total number

of pseudo-cells by over tenfold.

We next selected a curated set of about 1700 murine transcription factors38

and analysed the correlation of gene expression patterns across the pseudo-

cells. This provides a transcription factor UMAP manifold capturing a highly

structured network with multiple modules (Figure 5). As this transcription factor

network stems from single-cell resolution mouse gene expression atlases fully

covering developmental and spatial diversity, this is one of the most compre-

hensive regulatory networks constructed to date.

A more detailed investigation into the exact functionality captured by the

network was carried out by annotating each transcription factor node with infor-
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mation based on cell type and organ specificity. This was done by correlating

each gene’s expression with the underlying distribution of the cell type and or-

gan of origin for the constituents of each pseudo-cell. When examining the cell

type annotation spread across the network (Figure 5a), there are clear modules

highlighting transcription factors for each lineage. All members of the pluripo-

tency core network (Nanog, Pou5f1, Sall4, Esrrb, Lin28a)39 form a cohesive

cluster, and the cell type annotation accurately describes them as embryo-

specific. This embryonic/fetal/neonatal branch of the network is connected to

the center of the manifold, which serves as the branching point for modules

specific to differentiated cell types. Known lineage marker genes are well cap-

tured in this representation (e.g. Gata2 and Sox17 for endothelial cells, Hoxa9

and Meis1 for hematopoietic stem cells, Pax5 and Bach2 for B cells, Tcf7 and

Lef1 for T cells, Twist2 and Prrx2 for mesenchymal cells).

The heterogeneous, organ-specific behaviour of epithelial cells in the orig-

inal manifold is mirrored in the regulatory network, with at least three distinct

modules, each marked by specific transcription factors. The modules reveal

themselves as very localised and specialised when examining the organ anno-

tation (Figure 5b). The transcription factors with high organ specificity in the

network are known master regulators of organ development (e.g. Cdx1 and

Isx for intestine, Pdx1 for pancreas, Rhox6 for placenta, Nkx6-3 for stomach,

Pax8 for kidney and Pax7 for muscle). Interestingly, transcription factors spe-

cific to neonatal tissue were enriched in imprinted genes (Plagl1, Zim1, Zic1)40,

which is consistent with the notion that imprinted genes are crucial for regulat-

ing growth and development41. In contrast, the mesenchymal/endothelial mod-

ule does not exhibit much organ specificity, reflecting the transcription factors’

general role in regulating these cell types across many organs. It would be

interesting to investigate tissue specific nuances of these genes captured by
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the network.

The identification of established key regulators suggests that this analytical

framework could serve as a useful data-mining tool for future integrative stud-

ies. We have created a dedicated exploratory Jupyter Notebook, featuring data

from both the integrated cell space of Figure 4 and transcription factor network

of Figure 5, and included it as part of the BBKNN GitHub repository.

3 Discussion

BBKNN is a very fast and lightweight batch alignment tool that can be used

immediately with SCANPY15, a scalable Python single cell RNA-Seq package

capable of handling over a million cells. The underlying idea is a simple alter-

ation to the process of neighbourhood graph creation, replacing the standard

KNN procedure with a batch balanced variant that identifies the closest neigh-

bour for each cell within each of the experimental groups provided on input.

This novel batch alignment concept is very quick to execute, making use of

an efficient C implementation for neighbour identification42,43 and an approx-

imate nearest neighbour alternative that scales better into huge datasets44.

The resulting graph can be directly used as the input for downstream analyses

such as clustering16 and diffusion pseudotime17, with compatible dimension-

ality reduction visualisation approaches including UMAP18 and force-directed

graphs19.

We demonstrate BBKNN’s utility by applying it to a number of biological sce-

narios, and in each it was able to reconstruct the underlying shared cell popula-

tions. Examples are the four very disparate experimental setups of pancreatic

data, and two biologically distinct protocols for PBMCs. Finally, we use BBKNN

to propose an intuitive development trajectory in a landscape of hundreds of

thousands of cells from murine atlases. The method was benchmarked against
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the established batch correction methods mnnCorrect12, CCA13 and Scanorama14

on the pancreatic data, yielding results of comparable quality, with run times

one to two orders of magnitude faster on a personal computer.

A neighbourhood graph has a variety of downstream applications, and the

choice of this format for batch alignment allows for easy deployment of a very

fast and successful algorithm. At present, not all tools are equipped to work

with neighbourhood graphs as input, with a notable example being SCANPY’s

implementation of t-SNE45. However, our algorithm is perfectly compatible with

UMAP, which is quickly gaining traction. Seurat13 has UMAP support, and the

current development version of Monocle46 features trajectory inference within

a UMAP-reduced space.

We demonstrate that BBKNN is able to integrate large and disparate data

sets into a single structure by applying it to multiple large mouse single cell

atlases, providing the biologic community with a valuable resource to gain in-

sights into diverse fields ranging from developmental biology to tissue adapta-

tion. The utility of the results is asserted by the murine cell atlas integration

serving as a baseline for the inference of the underlying regulatory network,

which captures the branching of embryonic transcription factors into various

cell type and organ specific modules.

4 Methods

4.1 BBKNN

BBKNN was designed to slot into the spot occupied by neighbourhood graph

inference in the typical SCANPY workflow, making use of PCA coordinates

stored within the AnnData object. We replaced the standard KNN procedure

with a variant that identifies nearest neighbours in each of the provided batches,
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creating a batch balanced version of the neighbour candidates which are sub-

sequently processed into connectivities via the same function SCANPY’s neigh-

bourhood graph creation uses. The neighbour identification itself is performed

via cKDTree42 from scipy.spatial43 for the default Euclidean metric, with addi-

tional metrics supported by KDTree from sklearn.neighbors47 at reduced per-

formance. BBKNN also supports annoy44, with its approximate nearest neigh-

bour identification scaling better into large datasets. After the neighbour candi-

dates are transformed into connectivities, the graph can be optionally trimmed

to only feature a user-provided number of best connections for each cell to help

ensure the independence of unrelated cell populations.

4.2 Seurat-Inspired SCANPY Workflow

The three biological scenarios were evaluated using a common analysis core,

which shall be henceforth referred to as the Seurat-inspired SCANPY workflow.

The steps of the analysis are normalising the data to 10,000 counts per cell,

identifying highly variable genes, limiting the datasets to those genes only, log

transforming the data, scaling it to unit variance and zero mean followed by

PCA. At this stage, the established analysis identifies a regular KNN graph, but

we also apply BBKNN in parallel. Both resulting AnnData objects are subse-

quently dimensionality-reduced with UMAP and are subjected to graph-based

clustering.

4.3 Droplet PBMCs

The input data was downloaded from the 10X Genomics website. The exact

5′ dataset was ‘PBMCs of a healthy donor - 5′ gene expression’, under Cell

Ranger 2.1.0, under V(D)J + 5′ Gene Expression. The exact 3′ dataset was

‘8k PBMCs from a Healthy Donor’, under Cell Ranger 2.1.0, under Chromium
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Demonstration (v2 Chemistry). The core of the analysis was performed us-

ing the Seurat-inspired SCANPY workflow, with cell filtering on unique genes

(between 500 and 7000) and total UMIs (above 2000) performed prior to the

normalisation. Cells were annotated in the KNN object based on canonical

markers, and this annotation was carried over and visualised in the BBKNN

object.

4.4 Pancreatic Data

The data for the four different pancreatic experiments was downloaded in the

form of homogeneously prepared SingleCellExperiment R objects featuring

standardised annotations25. It was then processed with the Seurat-inspired

SCANPY workflow. The standard neighbourhood graph analysis was com-

pared to BBKNN, along with CCA and both the R and Python versions of

mnnCorrect, with each being applied independently at their desired points in

the analysis (as replacements to neighbourhood graph computation, PCA and

prior to data scaling respectively). Scanorama was performed on raw data fil-

tered to feature cells with a minimum of 600 unique genes, and its output was

inserted at the PCA step of the Seurat-inspired SCANPY workflow. Run time

benchmarking was performed on a personal MacBook Pro with 16GB RAM and

a four-core i7 processor, and is captured in the Jupyter Notebooks hosted in

the GitHub repository. Batch integration was assessed by performing Louvain

clustering starting at zero resolution and increasing the parameter by a fixed

step (0.005 for uncorrected, 0.01 for mnnCorrect/Scanorama, 0.05 for BBKNN

and CCA), computing Shannon entropy as a measure of mixing and reporting

it along with the cluster count. The clustering was terminated once over 15

clusters were identified for each correction method.
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4.5 Murine Atlases

Both the droplet and plate data from Tabula Muris was downloaded from figshare,

while all the other atlases were obtained from GEO. The dataset was then anal-

ysed with the Seurat-inspired SCANPY workflow (Supplementary Figure 4).

To avoid cell type over-representation biases, the dataset was downsampled

based on organ annotations provided within each atlas coupled with Louvain

clustering of the complete object with a regular KNN graph – if a given atlas

featured over 2,000 cells of a given organ, the cluster memberships of all of

those cells were extracted. If any cluster featured over 500 cells from that or-

gan in that atlas, those cells would be randomly sub-sampled to remove the

excess. Additionally, the provided organ annotations were manually classified

into a smaller set of more general labels for visualisation purposes, with both

the original and simplified versions being contained in the provided AnnData

objects. The Seurat-inspired SCANPY workflow was repeated after downsam-

pling, with the addition of the creation of a three-dimensional UMAP manifold

included in the exploratory Jupyter Notebook in the GitHub Repository.

For the transcription factor network, the cells were replaced with pseudo-

cells created by averaging the expression of any selected cell’s 30 nearest

neighbours in the three-dimensional UMAP. The space was divided into unit

voxels. Each voxel featuring fewer than five pseudo-cells was emptied and re-

maining populated voxels were downsampled to
⌈
N
30

⌉
pseudo-cells, where N

is the number of cells originally present in the voxel. The voxels had the pro-

portion of each cell type and organ appearing among their cells calculated,

assigning the values to their resulting pseudo-cells. These proportions were

subsequently compared to gene expression with the Pearson correlation co-

efficient. The pseudo-cells were used to identify highly variable genes, the

gene pool was filtered to feature high confidence transcription factors from
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AnimalTFDB3, the expression matrix was transposed and a UMAP manifold

was proposed based on a cosine distance KNN graph of the genes. Edges

were drawn between the nodes of the network where UMAP connectivity ex-

ceeded 0.25, node colouring was based on the most correlated cell type/organ

annotation, and node size reflects the difference between its correlation coef-

ficient and the next highest correlation coefficient in that category, accounting

for specificity.
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Figure 1: Workflow for single-cell data integration by BBKNN. (a) Identify-
ing a cell’s neighbours by standard KNN as compared to the batch balanced
counterpart in BBKNN. (b) The neighbour distance collections are then con-
verted to exponentially related connectivities. BBKNN has an optional graph
trimming step to weed out any erroneous connections between independent
cell populations. The resulting connectivity graph can be used in downstream
analyses such as clustering or UMAP visualisation.
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Figure 2: Integrating PBMC populations obtained via the 5′ and 3′ ver-
sions of 10X Chromium’s droplet technology. (a) Without any batch cor-
rection, the cells clearly split based on the experimental protocol. (b) Apply-
ing BBKNN successfully merges the cell populations, and recaptures cohesive
subpopulation structures. (c) A selection of canonical markers identify the cell
populations. (d) Residual heterogeneity within T and B cell populations stems
from the differential capture efficiency of V and C gene segments of TCR and
BCR genes between protocols.

24

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2018. ; https://doi.org/10.1101/397042doi: bioRxiv preprint 

https://doi.org/10.1101/397042
http://creativecommons.org/licenses/by-nc/4.0/


BBKNN
(3 seconds)

Before
alignment

mnnCorrect
(15 minutes)

MultiCCA
(20 minutes)

Scanorama
(2 minutes)

Batch

Cell types

Batch

Cell types

a b

c d e

Figure 3: Applying BBKNN along with established batch correction meth-
ods to four experimentally diverse pancreatic datasets. (a) The data fea-
tures large technical differences. The standardised cell annotations reveal the
shared underlying biology. (b) BBKNN connects the cell populations in ac-
cordance with the annotation. (c) mnnCorrect retains residual technical differ-
ences in the data. (d) CCA mixes the batches well and correctly clusters the un-
derlying cell types. (e) Scanorama performs to a similar standard, but is mildly
challenged by some of the rare populations. When benchmarking the methods
on a personal computer, BBKNN completes within three seconds, while the two
methods implemented in R take upwards of 15 minutes and Scanorama takes
2 minutes.
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Figure 4: BBKNN-mediated integration of eight murine atlases with
roughly 300,000 cells. (a) The algorithm merges data from eight indepen-
dent atlases into a single cohesive entity. The cell populations have been
down-sampled for visualisation purposes. The complete data can be seen in
Supplementary Figure 4. (b, c) Embryonic cells are placed in the center of
the cell space, and branch off to hematopoietic stem cells at the top and Hox-
expressing fetal developing cells at the bottom. These progenitors give rise to
mature immune and non-immune populations respectively. (d) A selection of
canonical markers mirror the process and match the proposed annotation.
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Figure 5: A transcription factor regulatory network inferred from the in-
tegrated murine atlases. Genes are coloured based on the most common
(a) cell types and (b) organs expressing them, with the node size reflecting the
specificity.
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