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Abstract

When listening to music, humans can easily identify and move to the beat. Numerous
experimental studies have identified brain regions that may be involved with beat
perception and representation. Several theoretical and algorithmic approaches have
been proposed to account for this ability. Related to, but different from the issue of how
we perceive a beat, is the question of how we learn to generate and hold a beat. In this
paper, we introduce a neuronal framework for a beat generator that is capable of
learning isochronous rhythms over a range of frequencies that are relevant to music and
speech. Our approach combines ideas from error-correction and entrainment models to
investigate the dynamics of how a biophysically-based neuronal network model
synchronizes its period and phase to match that of an external stimulus. The model
makes novel use of on-going faster gamma rhythms to form a set of discrete clocks that
provide estimates, but not exact information, of how well the beat generator spike times
match those of a stimulus sequence. The beat generator is endowed with plasticity
allowing it to quickly learn and thereby adjust its spike times to achieve synchronization.
Our model makes generalizable predictions about the existence of asymmetries in the
synchronziation process, as well as specific predictions about resynchronization times
after changes in stimulus tempo or phase. Analysis of the model demonstrates that
accurate rhythmic time keeping can be achieved over a range of frequencies relevant to
music, in a manner that is robust to changes in parameters and to the presence of noise.

Author summary

Music is integral to human experience and is appreciated across a wide range of cultures. 1

Although many features distinguish different musical traditions, rhythm is central to 2

nearly all. Most humans can detect and move along to the beat through finger or foot 3

tapping, hand clapping or other bodily movements. But many people have a hard time 4

“keeping a beat”, or say they have “no sense of rhythm”. There appears to be a 5

disconnect between our ability to perceive a beat versus our ability to generate a beat, 6

as a drummer would do as part of a musical group. Generating a beat requires learning 7

how to keep track of the specific time intervals between beats and then executing the 8

motor movement needed to produce the sound associated with a beat. In this paper, we 9

begin to explore neural mechanisms that may be responsible for our ability to generate 10

and keep a beat. We develop a computational model that includes different neurons and 11
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shows how they cooperate to learn a beat and keep it, even after the stimulus is 12

removed, across a range of frequencies relevant to music. Our dynamical systems model 13

leads to predictions for how the brain may react when learning a beat. Our findings and 14

techniques should be widely applicable to those interested in understanding how the 15

brain processes time, particularly in the context of music. 16

Introduction 17

Humans have the ability to estimate and keep track of time over a variety of timescales 18

in host of different contexts ranging from sub-seconds to tens of seconds or more [1, 2]. 19

On the millisecond to second time scale, for example, numerous studies have shown that 20

humans can accurately discriminate shorter intervals from longer intervals [3, 4]. On a 21

longer timescale, we utilize a form of time estimation that can span hours, days or 22

years [5]. Many such examples involve the brain making a calculation over a single 23

event, so-called “interval timing” [6, 7]. Humans can also track timing that involves 24

multiple or repeated events. For example, we instinctively move to the beat of a piece of 25

music through a form of sensorimotor synchronization, so-called beat-based 26

timing [8–11]. Doing so involves identifying an underlying beat within a piece of music 27

and coordinating the frequency and timing of one’s movements to match this beat. 28

Understanding how humans perceive a beat has been an active area of research for 29

quite some time. Beat perception refers to our ability to extract a periodic time 30

structure from a piece of music. It is a psychological process in which beats can be 31

perceived at specific frequencies, even when the musical stimulus does not specifically 32

contain that frequency [12]. In a recent study by Nozaradan et. al [13], brain activity 33

was found to entrain to the beat frequency of a musical rhythm. Additionally, 34

participants with strong neural entrainment exhibited the best performance when asked 35

to tap to the rhythm [13]. Various parts of the brain have been identified as being 36

active during beat perception. Grahn and Brett reported that basal ganglia and the 37

supplementary motor area showed increased activity for beat-based tasks, and as such, 38

postulated that these areas mediate beat perception [14]. Interestingly, fMRI studies of 39

participants asked to lie still with no movement while listening to music revealed that 40

the putamen, supplementary motor area, and premotor cortex are active [15]. Thus 41

although no external movement may be occurring, various motor areas are nevertheless 42

active when the brain is representing a passage of time. From the theoretical 43

perspective, error-correction [16–22], entrainment [12,23,24], and Bayesian [25–27] 44

models have been proposed to account for the ability to perceive a beat. 45

Many beat perception studies have involved finger tapping while listening to a piece 46

of music or a metronome [13,28–32]. However, humans can also mentally conjure a beat 47

in the absence of motor movement and external stimuli. These observations, in part, 48

lead us to ask what neural mechanisms might be responsible for detecting, learning and 49

generating a beat. We define beat generation as the brain’s ability to construct a 50

clock-like mechanism that can produce repeatable, essentially constant, time intervals 51

that demarcate a beat. In this formalism, the brain may be monitoring the firing times 52

of neurons involved in beat generation to match event times of an external source. 53

Beyond such reactive synchronization, we suggest that beat generation can occur as a 54

strictly internally created and self-driven phenomenon in the absence of external stimuli. 55

We introduce a neuromechanistic framework that can be used to construct neuronal 56

network models that are capable of learning and retaining isochronous rhythms. In its 57

simplest form, the network consists of a single, biophysically-based, beat generator 58

neuron (BG), a periodic brief stimulus and a time-interval computation mechanism 59

based on counting cycles of a gamma oscillation. The BG does not directly receive 60

input from the external stimulus and is thus not being entrained by it. Instead, the BG 61
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learns (within a few cycles) the frequency of the stimulus thereby allowing the BG to 62

continue oscillating at the this frequency, even in the absence of the stimulus. Our 63

approach combines ideas from entrainment based, information processing based and 64

interval timing based models. In part, it extends the heuristic two-process 65

model [18–21] to a neural setting. The two-process model is a type of error-correction 66

model [22, 29] where iterative judgements and corrections to the period and phase of an 67

internally generated event are made in order to synchronize the event with zero lag to 68

an external periodic signal. As originally posed by Mates [20,21], the internally 69

generated event was a timed motor action such as a finger tap in relation to a 70

metronome. In our case, the event does not involve a motor movement, but instead is 71

the firing of a spike of the BG in relation to a tone onset from a periodic stimulus. 72

A central feature of our model is the concept of a gamma counter. Gamma rhythms 73

(30-90 Hz) are ubiquitous throughout the human nervous system [33,34]. Here we 74

utilize roughly 40 Hz gamma oscillations to form two discrete-time clocks that count the 75

number of gamma cycles between specific events. This idea is similar in spirit to 76

pacemaker-accumulator models [6, 7, 35]. In our case, one clock counts gamma cycles 77

between successive onsets of a stimulus, sometimes called the interonset interval in 78

behavioral studies. Another neuronal clock counts gamma cycles between successive 79

spikes of the BG, the interbeat interval. A comparison is made between these two 80

counts and this information is sent to the BG. The BG possesses plasticity and uses 81

the difference in count to adjust an intrinsic parameter so that it learns the interonset 82

interval of the stimulus. The gamma counters also provide information to the BG about 83

its firing phase relative to stimulus onset times, thereby allowing for the possibility of 84

synchronization with zero-phase difference of the BG spikes with the stimulus. We note 85

that the neuronal clocks that count cycles need not operate exclusively in the range of 86

40 Hz. The comparison mechanism that we describe will work for any sufficiently fast 87

frequency oscillator. 88

In this paper, we will show how the BG model learns and holds an isochronous beat 89

over a wide range of frequencies that includes the band of 1 Hz to 6 Hz which is relevant 90

for beat generation and perception. Using mathematical analysis and a continuous time 91

clock, we explain first how the BG learns to period match. We then show how this 92

extends to both period and phase for the discrete time clock counters. As will be seen, 93

the discrete time clocks give rise to a natural variability of spike times of the BG even 94

when it is holding a beat. This will be quantified using a concept that we introduce 95

called gamma cycle accuracy. Using this measure of accuracy, we show that mean firing 96

time of the BG exhibits negative mean asynchrony, in which the BG spike time, on 97

average, precedes the stimulus onset. We will demonstrate how the BG transitions to 98

learn new frequencies, how it reacts to phase shifts in the stimulus sequence or deviants 99

in onset times and behaves in the presence of noise. The model predicts that 100

resynchronization to an increase in stimulus tempo occurs more quickly than to a 101

decrease. Additionally, the model predicts the existence of asymmetries related to the 102

resynchronization process due to phase shifts and deviants. 103

Materials and methods 104

The main components of our model consist of a periodic stimulus with an associated 105

neuron S whose spikes mark each stimulus onset, a neuronal model for the beat 106

generator, BG, and a gamma count comparator, GCC, which acts as a type of neural 107

integrator as well as error detector. These components are linked together as shown in 108

Fig. 1A. The output from the spiking neuron S and of the BG are sent to the GCC. 109

There a comparison is made which is then sent via a period learning rule, LRT , and a 110

phase learning rule, LRφ, to adjust Ibias which subsequently changes the instantaneous 111
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frequency of the BG. The term Ibias is taken here to represent the drive to the BG that 112

governs its frequency. It could be considered as a parameter internal to the BG, or can 113

be more generally associated with summed synaptic input that drives the BG. In either 114

case, it is a term that regulates the BG’s excitability. 115

A

B

S BGIbias

LR LRT φ

φ
1

φ
2

Stimulus Period and phase

matcher

Gamma count comparator:

φ

IOIS

cycles

Model schematic

Explanation of the    counts

Fig 1. Model Schematic A. The basic components of the model include a periodic
stimulus, a neuron S whose firing demarcates the interonset interval, a beat generator
neuron BG and a gamma-count comparator, GCC. Output from the GCC is sent via
the period and phase learning rules LRT and LRφ to adjust Ibias, which controls the
frequency of the BG. B. The black vertical lines indicate periodic spike times of the S
neuron which mark the stimulus onset. In this schematic, the interonset interval IOIS is
subdivided into 18 gamma cycles (γS = 18) as indicated. The red vertical lines indicate
BG firing times with the gamma counts γBG as indicated. As the BG spikes align to
the stimulus, both γBG and the phase φ = CCBG/γS change, until γBG = γS and φ = 0.

The beat generator and stimulus 116

The BG in our model can be described using biophysical, conductance based equations 117

and is required to have only two specific properties. The first is that it possesses a 118

sharp (voltage) threshold. A spike of the BG occurs when the voltage increases through 119

this threshold. The second requirement is that the BG has a slow process that governs 120

the time between its spikes. A simple model that possesses these basic properties is the 121

leaky integrate and fire (LIF ) model which we first use to describe our analytic findings. 122
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Our simulation studies utilize a biophysical model motivated by models of delta waves 123

in sleep, as we require a similar frequency range for the BG. To that end, we chose 124

voltage-gated currents similar to those from an idealized model for sleep spindle 125

rhythms of thalamo-cortical relays cells, namely for the slow wave of relay cells in burst 126

mode [36]. The slow wave can be generated by the interplay of a T -type calcium current, 127

and Ih current and a leak current. Here, the BG has a persistent sodium INaP , T -type 128

calcium ICaT , sag Ih and leak IL currents. In the text, we refer to this as the INaP 129

model; for a full description and the equations see Appendix. The analytic results also 130

hold for the INaP model, but as the analysis is more complicated, showing so is outside 131

the scope of this paper. For either the LIF or INaP models, parameters are chosen that 132

allow for a wide range of intrinsic frequencies of the BG from 1 to 6 Hz as Ibias is varied. 133

This range of frequencies is appropriate for speech and music. The time between 134

successive spikes of the BG is called the interbeat interval and is denoted by IBIBG. 135

The voltage in the LIF model evolves according to 136

v′ =
Ibias − v

τ
(1)

where v is a dimensionless variable representing voltage, Ibias is the drive to the neuron 137

and τ is the membrane time constant. The LIF model has a spike and reset condition 138

which makes it discontinuous. When the voltage reaches one at t = ts, it is 139

instantaneously reset to the value 0; if v(t−s ) = 1, then v(t+s ) = 0. When Ibias > 1 140

oscillations exist. In this case, the LIF model is rhythmic with period given by 141

T = τ loge

(
Ibias

Ibias − 1

)
. (2)

The period of BG given by equation (2) can be adjusted to any positive value by 142

appropriately adjusting Ibias. 143

For both the LIF and INaP models, the specific nature of the stimulus is not 144

modeled, only the onset is of interest here. The range of interest, 1 to 6 Hz, corresponds 145

to an interstimulus interval ranging from 2 s down to 166 ms. There is no theoretical 146

problem to extend the model outside of this range. We utilize a neuron S to faithfully 147

transform the stimulus sequence into spikes. The interonset interval, IOIS , is then 148

defined as the time between successive S spikes. The model for S is not important 149

provided that it is set to be an excitable neuron that fires quickly in response to input; 150

see the Appendix for equations. 151

The gamma oscillation counters and learning rules 152

The gamma count comparator, GCC, in our model utilizes two generic oscillators with 153

frequency sufficiently larger than that of both the stimulus and the BG. Here it is 154

taken to lie in the gamma range at roughly 40 Hz (Fig. 1B) . We choose the oscillators 155

to be identical, though this is not a requirement of the model. To avoid integer values, 156

both have a frequency of 36.06 Hz (period 27.73 ms); see the Appendix for details. We 157

let γBG be a variable that counts the number of gamma cycles between consecutive BG 158

spikes and γS be a variable that counts the number of gamma cycles between 159

consecutive spikes of S. At each spike of BG or S, the appropriate counter is reset to 160

zero. We stress that γBG and γS are integers, but, in general, the periods that they are 161

estimating are not integer multiples of a gamma cycle (27.73 ms). Hence, although the 162

stimulus period may be constant the gamma counts may vary from cycle to cycle. The 163

difference γBG − γS provides an estimate of how different or aligned the frequencies of 164

BG and S are. For example, if S oscillates at 5 Hz and the BG is initially oscillating at 165

3 Hz, then the GCC would count roughly 8 cycles between S spikes and 13 cycles 166
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between BG spikes. In this case, the GCC determines that the BG is oscillating too 167

slowly and sends a speed up signal to the BG. Alternatively if the BG were initially 168

oscillating at 6 Hz, then the GCC counts roughly 6 cycles and sends a slow down signal. 169

In general, speeding up or slowing down of the BG is achieved by changing Ibias. At 170

each spike of the BG, the period learning rule adjusts Ibias by a fraction of the 171

difference between the gamma oscillator count of cycles between S and BG. This 172

learning rule (LRT ) assigns at each BG spike 173

LRT : Ibias → Ibias + δT (γBG − γS), (3)

where the parameter δT is independent of period. This simple rule is enough to align 174

the frequencies of S and BG, the details of which will be explored through the 175

derivation and analysis of a one-dimensional map. However, this frequency matching 176

rule does not provide the beat generator with any information about its firing phase 177

relative to stimulus onset. 178

To align the phase of the BG to the stimulus onset, we formulate a second learning 179

rule. We define the current count of the BG, CCBG, as the number of gamma cycles 180

from the last BG spike to the current S spike; see Fig. 1B. Then at each S spike define 181

φ = CCBG/γS to be the phase of BG firing. We use the phase to determine if the BG 182

fires “before” or “after” S at each cycle. In a rhythmically active network, the concept 183

of whether BG fired before S is somewhat ambiguous. We define the BG to be “before” 184

the stimulus if it fires in the second half of the stimulus period φ ∈ (0, 0.5). In this case 185

we say that the BG is too fast and needs to slow down. Conversely, if φ ∈ (0.5, 1), the 186

BG is said to fire “after” S and needs to be sped up. At each S spike, we update Ibias 187

with the second part of the learning rule (LRφ) 188

LRφ : Ibias → Ibias + δφq(φ)φ|1− φ| (4)

where δφ is independent of period and phase and q(φ) = sgn(φ− 0.5), with q(0.5) < 0. 189

Thus if φ = 0 (or 1), there is no change to Ibias. But if the BG fires before S 190

(φ ∈ (0, 0.5)), then q(φ) < 0 and Ibias is decreased to slow down the BG. The opposite 191

occurs if the BG fires after S. The absolute value keeps the last term positive as φ can 192

become larger than 1. For example, during transitions from high to low frequency, 193

CCBG can exceed γS . The quadratic nature of LRφ is chosen so that the maximum 194

change occurs for phases near 0.5. With this two-part learning rule, the BG learns both 195

the period and phase of S. Both parts of the rule are implemented concurrently so that 196

the process of period and phase alignment occurs simultaneously. The two rules LRT 197

and LRφ target the value Ibias. Changes to Ibias, in turn, affect the frequency of the 198

BG which then affects the period and phase of oscillations. This coupling of S and BG 199

via the GCC is both nonlinear and non-periodic. This contrasts with coupling between 200

stimulus and oscillator in entrainment models and information processing models where 201

either the phase or period is directly targeted for change. Further, in such models either 202

the coupling is periodic or the update rules are linear or vice versa [37]. Our model 203

updates are neither periodic or linear. The neural plausibility for using counters and 204

learning rules will be addressed in the Discussion. 205

Synchronizing to the beat, stationary behavior and natural 206

variability of spike times 207

Perfect phase alignment requires φ = 0. In order to bring the BG into exact, zero-phase 208

lag alignment with the onset, we would replace the gamma frequency oscillator with a 209

continuous time clock that exactly determines time intervals by taking the limit as the 210

counter oscillator period goes to zero. However, finger tapping experiments on both 211

musicians and non-musicians demonstrate that humans display a degree of variability in 212
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their tap times relative to an isochronous stimulus [13]. To model this, instead of 213

seeking perfect alignment, the BG learns to fire a spike within a suitably short window 214

of time of the stimulus onset, an interval equivalent to plus or minus one gamma cycle 215

accuracy in time from stimulus onset. For the earlier described choice of parameters, 216

this amounts to ±27.73 ms from stimulus onset. Regarding alignment, we define two 217

important and related concepts: synchronization to the beat and holding a beat. 218

Synchronization to the beat refers to the process by which the BG brings its spike times 219

within one gamma cycle accuracy of a specific stimulus frequency. Holding a beat refers 220

to the ability of the BG to maintain synchronized firing at a specific frequency over a 221

specified stretch of time. We will say that BG has synchronized to the stimulus if three 222

consecutive BG spikes each fall within one gamma cycle accuracy in time of a stimulus 223

onset. The BG is said to be holding a beat for as long as it continues to remain 224

synchronized with the stimulus onset. 225

In the presence of an isochronous stimulus, the BG displays what we shall call 226

stationary behavior. This refers to the pattern of spike times of the BG in response to a 227

fixed frequency stimulus. Despite there being no source of noise in our model, the 228

discrete nature of the gamma count comparator allows the BG’s spike times during 229

stationary behavior to naturally display variability. Thus, during stationary behavior, 230

while the BG’s spike times typically land within one gamma cycle accuracy of stimulus 231

onset they can also fall outside this window. The variability of the BG’s spikes arises 232

because the gamma counters and learning rules adjust Ibias in discrete steps whenever 233

γS 6= γBG or φ 6= 0. What this means is that during stationary behavior, the BG does 234

not converge to a limit cycle oscillation (periodic orbit). The variables that govern the 235

dynamics of the BG do not periodically return to the same values, but instead can vary 236

by small amounts from cycle-to-cycle. In practice, these small differences affect the 237

exact spike times of the BG, creating the variability. Furthermore, as the gamma 238

counts are not exact representations of the period, they may be equal even when IOIS 239

and IBIBG are unequal. This amounts to additional variability in the BG’s spike times 240

relative to the spike times of S. 241

We will determine the time that it takes for the BG to resynchronize its spikes to 242

stimulus onset after a change to the stimulus. Resynchronization is declared similarly to 243

synchronization in that the BG is required to fire three consecutive spikes each of which 244

must lie within one gamma cycle accuracy of a stimulus onset. The resynchronization 245

time is then taken as the time of the first synchronized spike. We consider three 246

different situations. First, we study the resynchronization process when there is change 247

in tempo from an initial stimulus frequency to a new one. Next, we shall consider 248

resynchronization when the stimulus is phase shifted forward or back, but the frequency 249

remains the same. Finally, we introduce a single deviant in the stimulus onset sequence 250

and determine the resynchronization time. In all three cases, we begin with the BG 251

displaying stationary behavior at a specific frequency. Because of the variability present 252

in stationary behavior the resynchronization times will depend on the initial conditions 253

at the moment that the change to the stimulus profile is enacted. We will compute 254

mean resynchronization times and standard deviations over 50 realizations, each of 255

which differs by a small change in the initial condition of the BG at the time that the 256

stimulus profile is changed. 257

Results 258

We by provide a short outline of the results that follow. We start with a demonstration 259

of how the BG learns to synchronize to an isochronous stimulus sequence. We then 260

describe how the BG learns a period by first utilizing a continuous time version of the 261

gamma counters to derive a one-dimensional map. The discrete gamma counters are 262
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then used to describe period and phase matching. Next, we present the basic behaviors 263

of the BG describing its response under both stationary (isochronous stimuli) and 264

transient (tempo changes, phase shifts and deviants) conditions. The section concludes 265

with a brief description of the effects of parameter changes and noise. 266

Ibias determines the BG’s frequency 267

An oscillatory neuronal model spikes with a period that is quantifiable by its frequency 268

versus Ibias relation (f-I). These are obtained from the reciprocal of (2) for the LIF 269

model and computed numerically for the INaP models (Fig. 2A). The blue (red) curve 270

depicts the f-I curve for the LIF (INaP ) model. In the LIF model, the interspike 271

interval is governed by the difference between Ibias and the spiking threshold, as well as 272

the parameter τ . In the INaP model, the interspike interval is determined by an 273

interplay of the various non-linear currents (Fig. 2B). In particular, the ICaT and IL 274

currents provide basic excitability to the model, the INaP current allows for spikes once 275

a voltage threshold is crossed and the Ih current provides a slow depolarization of the 276

membrane allowing the neuron’s voltage to gradually reach spiking threshold. Thus the 277

primary determinant of the interspike interval is the time constant of the Ih current. An 278

important point regarding the f-I relations is that they are both strictly increasing. 279

Hence, there is exactly one value of Ibias that yields a specific frequency. The learning 280

rules we use make discrete changes to Ibias. Thus, there is little chance of adjusting Ibias 281

to the exactly correct value. Instead, the learning rules adjust Ibias so that it stays 282

within a small window of the correct one. The frequency relations increase steeply from 283

frequency equal to zero. Therefore, at low frequencies, larger changes in frequency can 284

result from small changes in Ibias. The same is also true for the INaP model at 285

frequencies in the 3 to 8 Hz range. It is important to note that any implementation of a 286

BG model with a monotone increasing f-I relation will produce the qualitative results 287

described below. However, the quantitative details will certainly depend on the slope 288

and non-linearities of these relations that are produced by different ionic currents and 289

parameters. 290

The BG learns to oscillate at a frequency by adjusting its bias current through the 291

set of plasticity rules LRT and LRφ (Fig. 3). The BG is initially set to oscillate at 2 Hz 292

with Ibias = 9.06 Hz. At t = 0 ms, we adjust the stimulus frequency to 4.65 Hz and 293

activate the period learning rule LRT (Fig. 3A). Notice how the cycle period of the BG 294

increases on a cycle-by-cycle basis until it matches the stimulus period. This results 295

from the value of Ibias iteratively increasing over the transition, based on the difference 296

γBG − γS . The first change to Ibias does not occur until t = 500 ms, which is the time 297

the BG naturally would fire when oscillating at 2 Hz, since LRT updates (purple curve 298

in the bottom panel of Fig. 3A) are only made at spikes of the BG. At around t = 2.25 299

s, the value of Ibias falls within one gamma cycle accuracy as depicted by the blue band 300

but continues to adjust. Note that Ibias does not settle down to a constant value. 301

Instead it changes by ±δT whenever |γBG − γS | = 1. Additionally, since LRT contains 302

no phase information, the spikes of the BG are not synchronized in phase with those of 303

S. At t = 4.2 s (20 cycles of the stimulus), the stimulus is completely removed, and the 304

BG continues to oscillate at roughly 4.65 Hz. This shows that the BG has learned the 305

new frequency and does not require periodic input to make it spike. There are still 306

adjustments to Ibias because the BG continues to compare γBG with the last stored 307

value of γS . This example demonstrates how the BG oscillates at a learned frequency 308

rather than through entrainment to external input. 309

When both learning rules operate together, the BG learns both the correct period 310

and phase. Starting with the same initial conditions as in Fig. 3A, now at t = 0 ms 311

both LRφ and LRT are turned on (Fig. 3B). Note the very rapid synchronization of the 312

BG’s spikes with the stimulus onset times. The middle panel shows how Ibias grows 313
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Fig 2. Biophysical models A. Frequency vs. Ibias curves for LIF (blue) and INaP
(red) models. Observe the different scales for the upper and lower horizontal axes.
Dashed lines show the corresponding Ibias values for two different frequencies. Both
curves are increasing, starting from zero frequency, which yields qualitatively similar
behavior from either model. While the LIF relation is almost linear for frequencies
larger than 1 Hz, the INaP relation is more power-like, with a steeper gradient from 3
to 8 Hz, this yields differences in the quantitative behavior of the models. B. Schematic
of INaP neuron with the different ionic currents that contribute to its excitability and
spiking behavior.

much more quickly when both rules are applied. The first update is due to the phase 314

learning rule at the third stimulus spike, at t = 433.5 ms, which is earlier than in the 315

previous example. This causes enough of an increase in Ibias for the BG to immediately 316

fire, which causes an update due the period learning rule. The lower panel shows how 317

the two rules LRT and LRφ contribute to the change in Ibias. Note that the learning is 318

not sequential with period learning preceding phase learning or vice versa. Rather, 319

period and phase learning occurs concurrently. Below we shall describe in more detail 320

each of these learning rules and their role in synchronizing the BG with the stimulus. 321

LRT : The learning rule for period matching 322

The dynamics of how the period learning rule LRT matches the interbeat interval of the 323

BG, IBIBG, with the interonset interval of S, IOIS , can be explained in terms of an 324

event-based map. Each spike of the BG is treated as an event and we define a map that 325

updates the bias current Ibias on a cycle-by-cycle basis. To derive the map, we first use 326

exact time differences, in effect, equivalent to a continuous time-keeping mechanism. 327

This will allow the map to possess a parameter-dependent asymptotically stable fixed 328

point. For simplicity of presentation, we use the LIF model to derive the specifics of 329

the map. We will then discuss how those findings inform simulations of the INaP model 330

for the discrete gamma count case. 331

Assume that the stimulus sequence occurs with a fixed period T ∗ corresponding to a 332

specified IOIS , and that the BG is initially oscillating with an interbeat interval of T0. 333

This IBIBG corresponds to a specific value I0 of Ibias given by solving (2). Ibias is then 334

updated to I1 by comparing T0 to T ∗. In turn, this produces a new cycle period T1 and 335
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Fig 3. Effect of learning rules A. Period Matching with LRT . The voltage time
course (top) of the BG is shown under three different conditions; i) Endogenously
oscillating at 2 Hz with no stimulus and no learning rule from t = −1.5 to 0 s; ii)
Learning the 4.65 Hz isochronous period in the presence of the stimulus from t = 0 to
4.2 s; iii) Performing synchronization continuation once the stimulus is removed at
t = 4.2 s. Ibias changes on a cycle-by-cycle basis (middle panel). Around t = 2.25 s,
Ibias enters the shaded blue regime (14.54, 16.03) that represents the one gamma cycle
accuracy range from the 15.27 value that produces exactly 4.65 Hz. After t = 2.75 s ,
Ibias lies very close to the correct value. Updates to Ibias rely solely on LRT , the period
learning rule (lower panel). B. Period and phase matching with both LRT and LRφ.
Time courses are the counterparts of those in Panel A. Now the convergence to the
correct frequency and phase occurs very quickly by about t = 1.2 s. Note the early large
change in Ibias due to LRφ. In both panels after t = 4 s, there are still changes to Ibias
as there are minor adjustments to Ibias though the frequency of the BG stays within
the equivalent of one gamma cycle accuracy of 4.65 Hz (IBIBG = 215± 27 ms). Note
that once the stimulus is switched off, only LRT continues to update Ibias. Here, and in
Figs. 5–8, we used the INaP model and set δT = 0.2, δφ = 2.5.

so on. In general, the continuous time version of LRT updates Ibias at each firing of the 336

BG as follows: 337

In+1 = In + δT (Tn − T ∗) (5)

= In + δT

(
τ loge

(
In

In − 1

)
− T ∗

)
,

where the second line is obtained by substituting equation (2) evaluated at In for Tn. 338

Error-correction models also take the form of an iteration scheme, but typically target 339

the next cycle period for adjustment. In contrast, the adjustment in our model is made 340

to the biophysical parameter Ibias which then has a subsequent effect on the cycle 341

period. 342

Equation (5) defines a one-dimensional map which can be expressed as In+1 = f(In), 343

where f(I) denotes the right-hand side. A fixed point of the map satisfies I∗ = f(I∗) 344

whose stability can be determined by checking the condition |f ′(I∗)| < 1. A fixed point 345
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of the map corresponds to a case where the IBIBG of the BG is equal to the IOIS of S. 346

Stability of the fixed point implies that the learning rule is convergent. Note that for 347

any T ∗, there is a unique fixed point of the map which satisfies 348

I∗ = 1/(1− exp(−T ∗/τ)). This means that any stimulus period can in practice be 349

learned by the BG, provided that the fixed point is stable. A simple calculation shows 350

that |f ′(I∗)| < 1 provided 0 < δT < 2I∗(I∗ − 1)/τ . For fixed δT , as the stimulus 351

frequency gets smaller, I∗ converges to 1, and as a result the term 2I∗(I∗ − 1)/τ goes to 352

zero. This expression provides the insight that convergence for lower stimulus 353

frequencies requires taking smaller increments in the learning rule. This finding carries 354

over to any f-I relation that is steeply sloped at low frequencies. 355

Parameter dependence and the ensuing dynamics of the map are readily illustrated 356

graphically (Fig. 4). The one-dimensional map has a vertical asymptote at I = 1, a 357

local minima at I = (1 +
√

1 + 4δT τ)/2 and a slant asymptote of I − δT /T ∗. The graph 358

intersects the diagonal at exactly one point, and the slope of the intersection determines 359

the stability as calculated above. For increasing stimulus frequency, with δT and τ fixed, 360

the map’s graph shifts upward (Fig 4A) and the fixed point moves to larger values of 361

Ibias. Note, for low stimulus frequency (here, 1 Hz) the fixed point is unstable. The 362

update parameter δT does not change the value of the fixed point I∗, but affects the 363

stability (Fig. 4B). As δT increases, the slope at the intersection decreases through 0 , 364

then through -1, at which point stability is lost. If the stimulus frequency changes (eg, 2 365

Hz to 5 Hz), Ibias changes dynamically as the BG learns the new rhythm. The learning 366

trajectory corresponds to the cobweb diagram on the map (Fig. 4C, black dashed lines 367

and arrows). Each adjustment of Ibias occurs at a spike of BG and allows it to speed up 368

for the next cycle. In this example, it takes only a few cycles for the BG to learn the 369

new rhythm. The transition from 5 to 2 Hz (Fig. 4C, red dashed lines and arrows) 370

demonstrates the asymmetry in convergence for similar sized changes of opposite 371

directions. Here the convergence for the decrease in frequency occurs over fewer cycles 372

because the value of δT chosen yields a fixed point at 2 Hz with near zero slope. The 373

smaller in magnitude the slope, the less the number of cycles needed to converge. This 374

result suggests that certain preferred frequencies can exist for specific choices of 375

parameters. 376

In contrast to the idealized continuous-time learning rule, the gamma count-based 377

case does not lead to updates that converge to zero. An interesting illustration is seen 378

after an IOIS has been learned and the stimulus is turned off. Small updating persists 379

(e.g., Fig. 3A, bottom panel). Just after the turn-off, the IBIBG is less than the last 380

stored IOIS (γBG < γS). So the BG is too fast, and at the next BG spike the period 381

rule LRT activates and decreases Ibias by δT producing a new, longer IBIBG. Not 382

immediately, but after a while (just after t = 5s) a difference in gamma counts again 383

arises. This time LRT increases Ibias, shortening IBIBG and so on. These changes are 384

all due to LRT as the phase learning rule LRφ can never be invoked since the stimulus 385

is no longer present. 386

LRφ: The learning rule for phase matching and synchronization 387

with the stimulus onset 388

The phase learning rule LRφ considers the current BG gamma count, CCBG, at each 389

firing of S. As a result, the BG has information about its phase at each stimulus onset. 390

We use a learning rule function φ|1− φ| that has maximal effect at φ = 0.5 and no effect 391

at φ = 0 and 1. This is similar to a logistic function that attracts dynamics towards 392

φ = 1; see also [38] for a similar mathematical rule used in a different biological context. 393

In our case φ = 0 is equivalent φ = 1, so our learning rule LRφ utilizes a sign changing 394

function q(φ) = sgn(φ− 0.5), q(0.5) = −1 to stabilize φ = 0 as well. This will allow 395
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Fig 4. One-dimensional map for period matching illustrated using the LIF
model A. Plots of the map for different frequency stimulus are shown. Each curve
crosses the diagonal at exactly one point, corresponding to a fixed point of the map.
The slope at this intersection determines stability. As frequency increases, the fixed
point moves up and gains stability. B. For the case of 2 Hz, as δT increases, stability is
lost. Similar results hold for any stimulus frequency. C. A cobweb diagram of the
convergence of a trajectory is shown. Initially, the black trajectory starts at a value
corresponding to a 2 Hz oscillation. Then Ibias is shifted to a value corresponding to a 5
Hz oscillation. The trajectory cobwebs over a number of cycles until it converges to the
new stimulus frequency. The opposite transition from 5 Hz to 2 Hz is shown in red
and occurs over less cycles.

convergence via either phase increase or decrease towards synchrony. At each S 396

spike-time, the BG is sped up (if φ ∈ (0.5, 1)) or slowed down (if φ ∈ (0, 0.5)) by 397

adjusting Ibias until the phase reaches a neighborhood of 0 or 1. This, in conjunction 398

with LRT which equalizes the IOIS and IBIBG, brings about synchronization. Note 399

that when the BG fires within one gamma cycle accuracy of S, φ = 0 or 1. In that case, 400

there is no update to Ibias. Thus as with LRT , because of the discreteness of the 401

learning rule updates, the value of Ibias is brought into close proximity of the value of 402

Ibias that produces a specified rhythm but need not become exact. The rapid 403

synchronization results shown earlier in Fig. 3 hold for a large range of stimulus 404

frequencies. Under certain conditions, it is possible to derive a two dimensional map 405

that tracks how Ibias and φ change on a cycle-by-cycle basis. Though it is outside the 406

scope of this paper, an analysis of the map shows that stable period and phase 407

matching can be achieved for each IOIS , if δT and δφ are not too large. In practice 408

these two parameters should be chosen so that the changes due to LRT , δT (γBG − γS), 409

and LRφ, δφφ|1− φ|, are of the same order of magnitude. 410

If the IBIBG is at least one gamma cycle longer than the IOIS , then φ > 1. We 411

could have restricted the phase to be less than one by periodically extended LRφ 412

beyond the unit interval, but this would allow for stable fixed points at φ = 2, 3, 4,etc.. 413

Instead, the learning rule utilizes an absolute value around the term 1− φ to keep it 414

positive. This introduces an asymmetry in the resets of Ibias. For example if φ = 0.1 415

then φ(1− φ) = 0.09 but if φ = 1.1, then φ|1− φ| = 0.11. Thus when the BG fires after 416

the S spike after a long IBIBG (e.g. φ = 1.1) then Ibias is increased more than it is 417

decreased if it fires before the S spike (e.g. φ = 0.1). As a result, the learning rule 418

favors the BG firing before the stimulus onset, as if in anticipation. This is more 419

pronounced at lower frequencies where the slope of the f-I curve is much steeper than 420

linear. This issue is explored in more detail in the following sections. 421

The phase learning rule LRφ adjusts Ibias as opposed to directly affecting the phase 422

of the BG, for example, via a perturbation and reset due to the phase response curve 423

(PRC). Using a PRC to adjust phase would lead to a situation of entrainment rather 424
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than learning. Indeed, with a PRC, bringing the value of Ibias to within one gamma 425

cycle accuracy to achieve a specific frequency is rarely reached. Thus if the stimulus 426

were to be removed, a BG with a PRC-based phase rule would fail to continue spiking 427

at the correct target frequency, i.e. it would fail in a synchronization-continuation task. 428

Stationary behavior and the dynamics of holding a beat 429
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Fig 5. Characteristics of stationary behavior: The BG alternates between
drifting and corrective behavior while maintaining a beat within one gamma cycle
accuracy for a 2 Hz stimulus. A. The upper time course of Ibias shows intervals of rapid
change interspersed with intervals of no change. In both cases, Ibias is centered near
Ibias = 9.06 (dashed line) representing the value that produces exactly 2 Hz oscillations.
The lower time course shows the timing error differences, S spike time subtracted from
BG spike times. Intervals of rapid change intermingle with intervals of slower constant
change, corresponding to the intervals of rapid changes and no change, respectively, in
the upper panel. Timing errors never exceed a time interval of one gamma cycle, ±27.73
ms shown by the dashed grey lines. B. Drifting behavior in a 6 s interval shows no
updates due to the learning rules during this time. The BG spikes systematically
advance relative to stimulus onset times, consistent with the negative slope seen in pink
in panel A (lower). C. Corrective behavior in a different 6 s interval shows how the
learning rules LRT and LRφ help maintain the 2 Hz oscillation. These rules are invoked
whenever the counts γBG or CCBG do not match with γS .

To hold a beat, the BG must fire spikes within a time window of one gamma cycle 430

accuracy of stimulus onset. As discussed earlier, the discreteness of the gamma counters 431

and comparator causes the BG spike times to naturally display variability. Thus the 432

BG must at each firing compare its period and phase relative to stimulus onset times 433

and make necessary corrections. Holding a beat is an example of stationary behavior of 434

the BG in response to a constant frequency stimulus (Fig. 5). In this typical example, 435

here shown at 2 Hz, each spike of the BG is aligned to the closest spike of S and then a 436

timing error equal to the BG spike time minus S spike time is computed. The value of 437

Ibias hovers around the dashed black line Ibias = 9.06 which is the value that produces 438
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exactly a 2 Hz oscillation (Fig. 5A, upper). The spike times of the BG jitter around 439

those of S, and thus, the timing error is poised around zero (Fig. 5A, lower). While 440

holding a beat, these differences fall within a single gamma cycle time window (dashed 441

gray lines at ±27.73 ms). During some time windows (pink shaded region in Fig. 5B) no 442

updating of Ibias occurs (lower time course), but the timing differences progressively 443

decrease and become more negative. The BG spike times are drifting relative to onset 444

times because the IBIBG is slightly smaller than IOIS , but close enough that 445

γBG = γS . The drift represents the fact that during this interval, the BG is not 446

entrained to the stimulus. The slope of the timing error in this interval is shallower 447

when Ibias is closer to 9.06, as shown for example in the time window between t = 72 448

and 76 s. During some intervals (e.g. shaded blue region), the update rules are actively 449

trying to keep the period and phase of the BG aligned with S. Although the timing 450

errors are not large in this case, the counts γBG and CCBG differ from γS thus causing 451

LRT and LRφ to be invoked. During either drifting or corrective behavior, the BG 452

spike times occur closely in time with the stimulus onsets. 453
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Fig 6. Timing error distributions of beat times Histograms of timing errors (2
ms bins) based on simulations which ran for 1000 stimulus cycles during stationary
behavior at six different stimulus frequencies. Negative mean asynchrony was seen in all
cases (black vertical lines) and the standard deviation at the slowest frequency is largest.
Pink shading represents a region of one gamma cycle accuracy.

Although the dynamics of the BG are deterministic, they are sensitive in 454

quantitative detail to changes in initial conditions. This is because the learning rules 455

LRT and LRφ ignore timing differences less than one gamma cycle. To get a more 456
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general sense of the fluctuations in BG firing times, we ran a simulation for 1000 457

stimulus cycles and calculated error distribution plots (spike time of BG minus spike 458

time of S). This was performed at six different stimulus frequencies in steps of 1 Hz 459

(Fig. 6). There are several points to note. First, at all frequencies, the error distribution 460

shows negative mean asynchrony [39,40]. In other words, the actual time of the beat 461

generators firing, on average, preceded the time of the stimulus onset. Second, the 462

variance in the error distribution shows some frequency dependence, particularly with 463

the standard deviation increasing at slower frequencies. Both of these results arise in 464

our model because of the interplay of the BG neuron’s f-I curve and the asymmetry in 465

the phase learning rule LRφ. The negative mean asynchrony arises because changes to 466

Ibias that speed up the BG have greater effect than changes that slow it down. For the 467

parameters chosen, the largest values of negative mean asynchrony occur at 2 and 6 Hz, 468

corresponding to segments of the f-I relation of the INaP model that are more steeply 469

sloped. In short, equidistant changes of Ibias around a mean value result in differential 470

changes in instantaneous frequency. 471

Resynchronization time: Responses to frequency changes, phase 472

shifts and temporal deviants 473

As demonstrated in Fig. 3, the BG is able to quickly learn a new frequency. This 474

learning can be quantified as a resynchronization of the BG’s spike times with the new 475

stimulus onset times. As previously stated, we declare the BG to be resynchronized if 476

three consecutive spikes each fall within one gamma cycle accuracy of an S spike. We 477

computed the resynchronization times as a function of several parameters including 478

initial and final stimulus frequency (Fig. 7 shows one example). From a fixed initial 479

stimulus frequency, we changed the stimulus frequency to different values within the 480

range 1 to 6 Hz and computed resynchronization times. In one such case, the stimulus 481

frequency is decreased from 3 to 2 Hz (Fig. 7A). The change is applied at t = 0 s (gold 482

star) and the BG takes about four seconds (eight stimulus cycles) to synchronize to the 483

new frequency (depicted by the shaded region). During the transient, the learning rules 484

LRT and LRφ drive Ibias down in order to slow the BG down (lower panels of Fig. 7A). 485

Adjustments due to LRT occur whenever the BG spikes. For the first second after the 486

change in frequency, BG spikes at roughly its initial 3 Hz rate. The S neuron spikes at 487

t = 0.5 s, which resets γS . But the BG is not aware of this new larger value of γS until 488

it fires at around t = 0.66 s. At this point, γS > γBG and the period learning rule LRT 489

decreases Ibias. Adjustments due to LRφ occur whenever the stimulus neuron S spikes, 490

which now occur at the slower 2 Hz rate. These adjustments depend on the current 491

phase of the BG and are seen at times to increase Ibias, but at other times to decrease 492

it. Within two seconds, both rules have succeeded in bringing Ibias within one gamma 493

cycle accuracy of the 2 Hz target value (dashed black line inside blue band in middle 494

panel). Aligning the spike times then takes a few more seconds. In contrast, an increase 495

in stimulus frequency can lead to much shorter resynchronization times (Fig. 7B). In the 496

transition from a 3 to 4 Hz stimulus frequency, the BG only takes about one and a half 497

seconds (six stimulus cycles) to synchronize. The phase learning rule LRφ plays a more 498

prominent role as it is invoked more often due to the increase in stimulus frequency. 499

These examples illustrate two important properties of the resynchronization process. 500

First, the two learning rules act concurrently to adjust Ibias, but are asynchronous in 501

that LRT adjustments occur at different times than those of LRφ (see the lower panels 502

of either Fig. 7). Second, adjustments to Ibias are not periodically applied, they occur at 503

a BG or S spike, and only the S spikes occur periodically. 504

Resynchronization times increase with decreasing frequency, but are nearly constant 505

and mostly flat for increasing frequency (Fig. 7C). Decrements from initial to final 506
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Fig 7. Dynamics of learning a new IOIS: A. and B. Top time courses show
examples of the resynchronization process of the BG spikes with those of S. The change
in frequency is invoked at t = 0 (gold star) and the BG resynchronizes within a few
seconds (shaded region). Middle and bottom panels show the changes in Ibias due to
LRT and LRφ indicating that the two rules sometimes change Ibias in the same
direction, but often counteract the effect of the other. Ibias enters the region of one
gamma cycle accuracy (blue shaded band) within a handful of cycles. C. Mean and
standard deviation for resynchronization times, together with the mean numbers of
stimulus cycles needed to achieve the resynchronization are shown. A broader measure
of synchrony for the 1 Hz oscillation is also included. D. Mean timing error transition
curves for resynchronization to different terminal frequencies averaged over 50
realizations are depicted. For each time course, we aligned the last spike of the BG with
the last stimulus spike and then subtracted the vector of S spike times from the BG
spike time vector. Shaded bands represent the standard deviation. Grey lines centered
about zero depict timing errors within one gamma cycle accuracy. Resynchronization to
lower frequencies is longer than to higher ones.

frequency lead to slower convergence than equally-sized increments. This follows from 507

the slope of the f-I curve being steeper while increasing from 3 Hz than when decreasing. 508

For the slowest stimulus frequency (1 Hz) oscillation, we have included a broader 509

measure of synchrony, defined by BG spike times falling within 5% of the interonset 510

times, i.e. ± 50 ms around S spike times. This definition is consistent with the 511

stationary behavior shown in Fig. 6 where many of the BG spikes fall outside of one 512

gamma cycle accuracy. With this broader measure of resynchronization, the average 513
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number of cycles and standard deviation of the resynchronization to 1 Hz rhythm are 514

reduced. Although resynchronization times are longer for frequencies decrements, the 515

number of stimulus cycles for resynchronization do not show major differences for 516

increments and decrements (except for the 1 Hz case). 517

The resynchronization process occurs stereotypically depending on whether there is 518

an increase or decrease in frequency (Fig. 7D). We calculated the average cycle-by-cycle 519

time differences for 50 realizations of the resynchronization process from 3 Hz to the 520

target frequency with the standard deviation shown in the shaded region. Decreases 521

(increases) in frequency show initial time errors that are positive (negative). This is due 522

to our spike alignment process (see Fig. 7 caption). Each curve is non-monotonic and, 523

except for the 6 Hz curve, has an under- or over-shoot that transiently takes the curve 524

outside the band of one gamma cycle accuracy. The average resynchronization times in 525

Panel C are shown as the time at which the curve reenters the band. Consistent with 526

our prior results, the standard deviation bands are largest for the 1 Hz curve and 527

relatively similar for the other curves. 528

Resynchronization also occurs when a phase shift of the stimulus sequence occurs. 529

Now consider the 2 Hz case for which the IOIS is 500 ms. A phase advance will occur if 530

we shorten one IOIS to be less than 500 ms and then return the remainder of sequence 531

to the original IOIS of 500 ms. A phase delay is the opposite, where a single IOIS is 532

elongated. We define the phase ψ of the shift to lie within (−0.5, 0.5) where negative 533

values represent advances and positive values represent delays. If the phase shift falls 534

within one gamma cycle of the normal onset time, the BG is likely to initially ignore it 535

since no change in the gamma counts will occur. But for larger valued phase shifts, 536

resynchronization will need to occur (Fig. 8). As an example, resynchronization for a 537

positive phase shift at ψ = 0.4 (Fig. 8A) is much quicker than the corresponding 538

negative phase shift ψ = −0.4 (Fig. 8B). The reason for this is how LRT changes Ibias in 539

either case. A negative phase shift causes the BG to increase its frequency in response 540

to the temporarily shorter IOIS , followed by a return to a lower frequency. A positive 541

phase shift causes the opposite, a transient decrease in the BG frequency followed by an 542

increase. As we have shown earlier, resynchronization times are shorter when the target 543

frequency is larger (Fig. 7). Hence, the model predicts that resynchronization times 544

should be shorter for positive phase shifts (Fig. 8C red). The mean timing errors 545

(standard deviation shaded) for different phase shifts (Fig. 8D) are stereotypical in much 546

the same way as the timing errors for tempo changes. In the current context, the timing 547

errors start out large and then systematically reduce until they fall within one gamma 548

cycle accuracy. The graph clearly shows that the resynchronization after positive phase 549

shifts is faster than after negative shifts, as negative phase shifts exhibit an overshoot. 550

Another case where we see resynchronization is the introduction of a temporal 551

deviant where a single S spike occurs at an unexpected early or late time. Unlike phase 552

shifts in which a single IOIS changes, a single deviant causes both the IOIS before and 553

the IOIS after the deviant to change. An early (late) deviant causes a shorter (longer) 554

interonset interval, followed by a longer (shorter) than normal one, followed by a return 555

to the standard IOIS . The model’s response is different for early versus late deviants. 556

For an early deviant, the phase learning rule LRφ is invoked at the time of the early 557

deviant. This is then followed by the period learning rule LRT at the next BG spike. 558

Both of these signal the BG to speed up. For a late deviant, however, the BG spikes 559

when it normally would have. At that time, it has no new information about its phase 560

or about the value of γS . Therefore there is no change to Ibias. When the late deviant 561

arrives, it now causes LRφ to send a slow down signal to BG. But any potential 562

changes due to LRT have to wait one full BG cycle to be invoked. Thus, the model 563

reacts quicker to an early deviant than to a late deviant. Thus we predict shorter 564

resynchronization times for earlier deviants (Fig. 8C blue). Additionally, because of the 565
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Fig 8. Response to phase shifts and deviants: The description of generic features
of each panel is the same as in Fig. 7. A. and B. Two specific examples show that
resynchronization to a positive phase shift is faster than to a negative one. Negative
phase shifts cause a transient increase to Ibias as shown in the middle panel; positive
phase shifts have the opposite effect. After the transient, the return to baseline is faster
for the positive phase shift because the BG interprets this as equivalent to
resynchronization to a higher frequency. C. Mean resynchronization times and
standard deviations for baseline 2 Hz oscillations are shown for phase shifts (red) and
deviants (blue). Notice the asymmetry for both situations, and that resynchronization
to a phase shift is generally faster than to a deviant. D. Characteristic behavior of
average timing differences (standard deviation shaded) for phase shifts give further
evidence for the asymmetry in resynchronization times. Note that the negative phase
shifts pass through the region of one gamma cycle accuracy (gray line) before returning
later in time to the region.

need to adjust to two different IOISs, we predict that resynchronization times due to 566

deviants will be longer than those for comparably sized phase shifts where only a single 567

IOIS is changed. 568

Effects of parameter changes and noise 569

The model results are robust to perturbations and can operate over a range of 570

parameters. To assess this we ran several simulations (not shown), where we varied 571

intrinsic parameters of the BG and the gamma counter speeds. For example, the 572
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maximal conductance for IL, INaP and ICaT was varied by up to 10 % and we 573

measured the subsequent performance across a range of periods. This did not affect the 574

ability of the BG to learn the correct period and phase, because the f-I relation 575

remained qualitatively unchanged. At a quantitative level though, the range of Ibias 576

values which yield gamma cycle accuracy will differ. These results indicate that the BG 577

does not require fine tuning of parameters to learn a rhythm. 578

Next we allowed the speed of the gamma counters for S and BG to be different. We 579

kept the gamma counter for IOIS at 36.06 Hz while we varied the gamma counter 580

frequency for the BG counter by up to 10%. In all cases, across a range of frequencies 581

there was little qualitative difference in the BG’s ability to learn the correct frequency. 582

This is not surprising as the discreteness of the gamma counts allows for similar values 583

of the counts despite there being differences in counting speed. Note that a faster 584

gamma counter for the BG tends to lead to earlier firing times relative to stimulus 585

onset times for the parameters we have chosen. In this case, LRT tends to increase Ibias 586

since γBG is larger than γS . On the other hand LRφ decreases the same quantity and it 587

is the parameter-dependent balance between the two rules that determines how much 588

earlier on average the BG fires. A slower BG gamma counter has the opposite effect. 589

To assess the effects of noise, we introduced stochasticity into the gamma counters 590

(see Appendix for details). This acts to jitter the gamma periods, but for modest noise 591

this will only cause the gamma count to discretely change by at most plus/minus 1. 592

Since the BG is monitoring its period and phase at each spike and stimulus event, it 593

quickly adjusts to counteract these potential changes. We see an increase in the 594

standard deviation of the timing error, across all frequencies, during stationary behavior. 595

While this widened the distributions (as seen in Fig. 6), approximately 90% of the 596

timing errors remain within one gamma cycle accuracy, apart from at 1 Hz where only 597

60% of the distribution lies within one gamma cycle accuracy (80% lie within 5% 598

accuracy). Finally, although not explicitly modeled here, one could introduce intrinsic 599

noise in the BG, for example a noisy spike threshold or ionic conductance. This small 600

amount of noise would not change the IBIBG by more that a single gamma cycle and, 601

as above, should not change the BG’s ability to synchronize to the external rhythm. 602

Discussion 603

We presented a modeling framework that begins to address how a neuronal system may 604

learn an isochronous rhythm across a range of frequencies relevant to speech and music. 605

We showed how a biophysical conductance-based model neuron, the beat generator 606

(BG), adjusts its spiking frequency and aligns its spike times to an external, 607

metronome-like stimulus. Our model employs two gamma frequency oscillators to 608

estimate the number of oscillatory cycles between certain salient events. We posit a 609

mechanism that compares the states of these independent counts to inform the BG to 610

either increase or decrease its instantaneous frequency and adjust its relative phase. 611

With this idealized paradigm, we showed that the BG quickly learns to hold a beat over 612

a range of frequencies that includes, but is not limited to, 1 to 6 Hz. Further, we 613

showed how the BG reacts within a few cycles to changes in tempo, phase shifts 614

(permanent realignment of the stimulus sequence) and the introduction of deviants 615

(temporary misalignment of a single stimulus event). Of particular note, the BG 616

displays an asymmetry in reacting to changes to the rhythm. It adapts more quickly 617

when the tempo is increased as opposed to decreased; correspondingly, it reacts faster to 618

phase delays than phase advances, but slower to late deviants than early deviants. 619

Importantly in our model formulation no direct input from the stimulus to the BG is 620

provided. This implies that the BG is learning the correct period and phase rather than 621

being entrained to them. Secondly, no explicit or exact time intervals are required to be 622
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calculated, implying that the BG does not need specific mechanisms to exactly track 623

time. Instead, in order to tune the BG, one needs only to know, in some rough sense, 624

whether the BG’s spikes are happening too fast or slow relative to stimulus frequency 625

and too early or late relative to the stimulus onset. Finally, because of the discrete 626

nature of the gamma counters the BG dynamics are robust to modest parameter 627

changes and noise. 628

Beat generation differs from beat perception 629

Beat perception as described in many previous studies [41, 42] refers to the ability of an 630

individual to discern and identify a basic periodic structure within a piece of music. 631

Beat perception involves listening to an external sound source as a precursor to trying 632

to discern and synchronize with the beat. Alternatively, we might ask how do we 633

(humans) learn and then later reproduce a beat in the absence of any external cues. 634

Such issues and questions lead us to consider what neuronal mechanisms might be 635

responsible for producing an internal representation of the beat. At its most basic level, 636

we refer to this as beat generation, and a neuronal system that does so we call a beat 637

generator. Different than beat perception, beat generation is envisioned to be able to 638

occur in the absence of an external cue. A BG is a neural realization of an internal 639

clock that can be used as a metronomic standard by other internally driven processes 640

that depend on time measurements. While demonstration of a beat involves a motor 641

action (tapping, clapping, vocalizing, head bobbing), the BG could include a general 642

representation of a motor rhythmicity but the specific motor expression (say, foot 643

tapping) may not be an integral part of the BG. 644

Learning a beat differs from entraining to a beat 645

Our formulation proposes that time measurement for beat perception and the beat 646

generator model are oscillator-based. In this view a beat can be learned and stored as a 647

neuronal oscillator (cell or circuit). The frequency range of interest, 1-6 Hz, is relatively 648

low compared to many other neuronal rhythms, but similar to those seen in sleep. We 649

rely on faster (gamma-like) oscillators to provide clocklike ticks and we assume two 650

counters and a comparator circuit can be used for adjusting the BG period and phase 651

to match with the stimulus. Conceptually, counting and comparing with a target period 652

are essential features of the algorithmic (or sometimes called, information processing 653

timekeeper) approach falling into the class of error-correction strategies; 654

see [16,17,20–22,43] for examples of two-process models. We provided a neuronal 655

implementation of the BG in the form of an oscillator with a tunable biophysical knob 656

and two learning rules; the BG is a continuous-time dynamical system, a realizable 657

neuronal oscillator. It does not require a separate reset mechanism. The 658

implementation also does not require a separate knob for phase correction; the two 659

learning rules both make adjustments/corrections to the same parameter, Ibias, and 660

they are ongoing whenever a stimulus is present. We propose this BG as the internal 661

clock — an oscillator that learns a beat and keeps it. 662

A different class of oscillator models for beat perception relies on large networks of 663

neuronal units [12,24,28]. The units’ intrinsic frequencies span the range of those that 664

are relevant in speech and music. In the neural entrainment models of Large and 665

collaborators, different units within the ensemble respond by phase-locking to the 666

periodic stimulus. Units with intrinsic frequencies near that of the metronome will 667

entrain 1:1 while those with higher intrinsic frequencies entrain with different patterns, 668

such as 2:1. Dominant responses are found at harmonics and sub-harmonics of the 669

external input. Amplitude, but not precise timing relative to stimulus features (say, 670

stimulus onset times), are described in these models. The framework is general although 671
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the identities of neuronal mechanisms (synaptic coupling or spike generation) are not 672

apparent as the description is based on small amplitude perturbation schemes around a 673

steady state and the coupling is assumed to be weak. The approach is nonlinear and 674

provides interpretations beyond those of linear models, e.g. it identifies a beat for 675

complex input patterns even if the beat/pulse is not explicitly a component of the 676

stimulus [12]. 677

Our model cannot be described as entrainment in the classical sense. Entrainment 678

occurs when an intrinsically oscillatory system is periodically forced by an external 679

stimulus to oscillate and, in the present context, to phase lock at the forcing frequency 680

(or some subharmonic) that may differ from its endogenous frequency. Our BG neuron 681

is not entrained by the stimulus but rather it learns the frequency of the stimulus. The 682

BG’s frequency is adapted indirectly through the control parameter in order to match 683

with the stimulus. The influence of the stimulus on the BG diminishes as learning 684

proceeds. In fact, in the continuous time version when the frequency and phase are 685

eventually learned, the BG no longer requires the stimulus; it will oscillate 686

autonomously at the learned frequency if the stimulus is removed or until the stimulus 687

properties change. In the discrete time version, even after the stimulus and BG periods 688

and phase agree (to within a gamma period accuracy) modest adjustments are ongoing 689

to maintain the rhythm. In contrast, for an entrainment model, the oscillator’s 690

parameters are fixed. The stimulus does not lead to a change in the oscillator’s intrinsic 691

properties. For a transient perturbation, the dynamics of resynchronization are 692

according to an entrainment unit’s phase response curve, which instantaneously changes 693

the current phase of the oscillator. In contrast, the BG’s response to transient inputs 694

impacts the parameter Ibias invoked by adjustments according to either or both of the 695

period and phase learning rules. Our model is further distinguished from entrainment 696

models in that the BG strives for zero phase difference but in an entrainment setting 697

there is typically a phase difference between the stimulus and the units. Finally, for an 698

entrainment model the coupling from stimulus to oscillator is periodic. In our model the 699

influence of a periodic stimulus is delivered both periodically (via LRφ) and 700

aperiodically (via LRT ). 701

Relation to interval timing and other models for beat 702

production 703

Many interval timing models involve accumulation (continuous time or counting of 704

pacemaker cycles) with adjustment of threshold or ramp speed [6,7] to match the desired 705

time interval. Applications to periodic beat phenomena, say the metronome case, would 706

include instantaneous resetting and some form of phase adjustment/correction [44,45]. 707

Algorithmic models may not specifically identify the accumulator as such, but instead 708

refer to counters or elapsed time. Our BG model shares some features with interval 709

models for beat production (as described in [9] and [46]), as the BG relies on counters 710

and accumulators. Additionally, as described earlier, it shares features with entrainment 711

models, as the BG is a nonlinear oscillator. In short, the BG is a hybrid. 712

Interval- and oscillator-based models are related. Even if not explicitly stated as 713

such, in an interval model, the accumulator and its reset are equivalent to highly 714

idealized models for neuronal integration, the so-called integrate-and-fire (IF ) class of 715

models [47]. For steady input, the state variable rises toward a target value (that is 716

above the event threshold), rising linearly for a non-leaky IF model and with a 717

decreasing slope for a leaky IF model (LIF ), and is reset once the state variable 718

exceeds the threshold. These IF/LIF models are dynamical system oscillators, and are 719

also nonlinear by way of the reset mechanism. However, the time constant/integration 720

rate required for beat applications is much longer/slower than in typical applications of 721
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IF models for neuronal computations where timescales of 10-30 ms are more common. 722

These models have entrainment and phase-locking properties [48,49] and they typically 723

show a phase difference from the stimulus. Extended in this way, periodic in time, such 724

an interval model can be recast as an entrainment model (see also, [37]). As noted by 725

Loehr et. al [37]), differences between such interval and continuous oscillator models do 726

appear in some circumstances. Adding a plasticity mechanism, say for the threshold or 727

input drive, then allows learning of a period. We described how one may analyze the 728

dynamics of such an LIF oscillator-like interval model in terms of a map (Fig 4). One 729

could additionally add a phase correction mechanism as in two-process models in order 730

to achieve zero-phase difference. This can be achieved in a LIF model, for example, by 731

adjusting the reset condition after reaching threshold or by utilizing phase response 732

curves. Our mechanism for phase correction differs from these approaches in that we 733

target the excitability parameter Ibias for adjustment. This has the advantage that the 734

BG learns the correct phase and period allowing it to continue to hold a beat after the 735

stimulus is removed, similar to other two-process interval models. 736

The effects of noise on time estimation/production have been studied with interval 737

models, cast as first passage time problems for accumulator models (drift-diffusion 738

models) [50–52]. In that context, the issue of scalar timing is of 739

significance [5, 51, 53, 54], however the time intervals of interest are typically longer than 740

what one would find in a musical context. Wing and Kristofferson [16,17] considered 741

effects of noise and contrasted sensory noise with motor sources of noise, concluding 742

that timekeeper noise was frequency dependent but motor noise was not. Whether or 743

not scalar timing holds for short rhythmic intervals is unsettled. A number of tempo 744

discrimination studies have failed to produce any evidence for frequency dependent 745

errors for periods below 1000 ms [55,56]. However, Collyer et. al [57] reports scalar 746

timing in the distribution of tap times when tapping to an isochronous rhythm. 747

A distinctive interval model was developed by Matell and Meck [58, 59] – the striatal 748

beat frequency (SBF) model. In this neuromechanistic description, the basic units are 749

neuronal oscillators with different fixed frequencies. All oscillators are reset at t = 0; 750

differences in frequencies of convergent units will eventually lead to collective 751

near-coincidence (so-called beating phenomenon of non-identical oscillators) at a time 752

that through learned choices (synapses onto coincidence detector units) can match the 753

desired interval. It may be extended to the periodic case and considered for beat 754

generation as discussed in [44,45] although the brain regions involved may be different 755

for explicit time estimation than for rhythmic prediction/reproduction [60,61]. 756

Holding a beat 757

As we have shown, after the BG has learned a beat and the stimulus is terminated, the 758

BG will continue to oscillate with fine adjustments of its period as needed, according to 759

LRT , to match that of the most recently stored IOIS of the stimulus (as in Fig 3). The 760

BG holds a beat and would thereby succeed at a synchronization-continuation task [62]. 761

The information processing timekeeper model of Mates [20,21] would also continue 762

oscillating at the last stored frequency. In contrast, for an entrainment model without a 763

plasticity mechanism, the oscillators are likely to return to their original intrinsic 764

frequencies after the stimulus is removed. However, Large et. al [12] have illustrated 765

using their two-layer model, that the network can hold a beat if the units within the 766

motor layer, have bistable properties, i.e. a unit may have a steady state (damped 767

resonator) coexistent with an oscillator state. These different approaches lead to 768

different ideas for how a neuronal system actually performs a 769

synchronization-continuation task, suggesting the need for further study. 770
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Limitations of this BG model 771

As with other formulations, our model, relies on fast pacemakers and counters for 772

estimating elapsed times. We suppose that ongoing brain rhythms could provide such 773

pacemaking with adequate reliability during learning and maintaining a beat. The 774

measurable strength of fast rhythms (e.g. beta and gamma) vary dynamically with the 775

beat in some brain areas [63], but are significant and steady in some other areas during 776

isochronous stimuli [64]. One open question is whether the suggested brain mechanisms 777

for counting and numerosity [65] can be applied to count the tens of cycles needed for 778

keeping a slow beat. Neurophysiological evidence for accumulation of counts and 779

resetting at beat events would be supportive but we are unaware of direct evidence. 780

We consider here only the case of isochronous inputs. A natural next step is to 781

consider more complex, non-isochronous stimulus sequences. Additionally, we have 782

side-stepped questions of perception in order to focus solely on timing. Our BG model 783

does not recognize variations in pitch or sound level. For example, if stimulus events 784

were alternating in, say, sound level, (as in [64] ) our model, as is, would not capture the 785

effects. An extension of our model involving pairs of stimulus and beat generator clocks 786

for each sound level could conceivably address this shortcoming. 787

We have chosen a particular biophysical instantiation for the BG. The capabilities of 788

learning and holding a beat over a range of frequencies depends only on the monotonic 789

frequency dependence of the control (“learnable”) parameter and would not be 790

compromised by variation of biophysical parameters. Some features of the BG dynamics 791

(say, the degree and signatures of asymmetries in resynchronization for speeding up or 792

slowing down) can be expected to depend on the specifics of, say, the relationship 793

between Ibias and the intrinsic frequency, but we have not explored this in detail. 794

The learning rules LRT and LRφ utilized in our study are minimal. They both 795

target the excitability parameter Ibias with a simple goal to either speed up or slow 796

down the BG so that it synchronizes with the stimulus. Alternatively, the drive could 797

be provided as the summed synaptic input from a population of neurons afferent to the 798

BG. The synaptic weights onto the BG and/or internal to the afferent population could 799

be plastic and affected by our learning rules which in spirit are similar to spike time 800

dependent plasticity rules [66]. Our model assumes significant increments of drive at 801

each learning step, leading to fast learning. This may be relatable at a population scale 802

to balanced network models, where fast learning can be achieved with smaller step 803

changes due to the large number of synapses [67]. 804

We have not ascribed a location for the BG within a specific brain region. As a 805

result, we have not addressed issues of sensorimotor synchronization (SMS) where 806

sensory processing of a beat must be coordinated with the motor action that 807

demonstrates the beat (e.g. finger tapping). Several models for SMS in the context of 808

beat perception already exist, for example the two-layer error-correction model of 809

Vorberg and Wing [68] and the entrainment model of Large et. al [12] described earlier. 810

Van der Steen and Keller have developed the Adaptation and Anticipation Model 811

(ADAM) [22], a type of algorithmic error-correction SMS model, and they noted a need 812

for an extended ADAM that would incorporate dynamical systems principles. Our 813

model could certainly be a starting point for such an endeavor. Patel and Iversen [69] 814

proposed the Action Simulation for Auditory Prediction (ASAP) hypothesis. In their 815

conceptual model, the motor system primes the auditory system to be able to process 816

auditory input. In particular, ASAP proposes that the motor system is required for 817

beat perception. Generally, these studies raise questions about whether the causal roles 818

of sensory and motor systems can be disambiguated in the context of beat perception 819

and beat generation. Addressing such questions from a modeling perspective is a 820

natural next step. 821
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Predictions based on the BG model 822

Our model framework allows us to make several predictions, which are summarized here. 823

First, the BG model can hold a beat after the sound stimulus terminates. This ability is 824

consistent with synchronization-continuation to some degree. Even if finger-tapping 825

performance subsides, perhaps the brain’s BG might still be recallable, maybe more so 826

for a somewhat distinctive rhythm. Currently, our BG model retains its estimate of the 827

most recent stimulus period, γS . We have not yet included a slow decay of this memory 828

or a slow degradation of the BG rhythm. In its current form, our model does not 829

contain noise and it is plausible that the addition of noise could lead to this slow drift 830

after the stimulus is removed. Second, the time course of adjusting to a sudden change 831

to the beat occurs over seconds and has more or less monotonic phases of slowing down 832

or speeding up. If the new sound stimulus is stopped during this transition, we predict 833

from the model that the BG will still learn the new beat frequency. However, the phase 834

of the BG will differ depending on when during the transition the stimulus is removed. 835

This could be detected by electrophysiology or perhaps a finger-tapping demonstration. 836

Third, resynchronization should be faster after a phase shift of the rhythmic stimulus 837

than after a single timing-deviant sound event. Lastly, the model predicts an 838

asymmetry in the resynchronization time after phase shifts (advance versus delay), 839

deviants (early versus late) and tempo changes in the stimulus sequence. 840

Future directions 841

There are several questions that we plan to address in our future modeling and 842

behavioral studies. How sensitively do timing errors depend on variability of the gamma 843

counters and, say, on stimulus frequency? To what degree can the BG model track 844

modulations of the beat frequency? When considering an ensemble of beat generating 845

neurons, how does coupling between these neurons shape the dynamics of learning? 846

How could the model be enhanced to become predictive, to not just track modulation 847

but to predict dynamic trends? Going beyond isochronous timing only, we plan to 848

consider more complex rhythms. For example, suppose we consider the effect of shifting 849

identically the timing of alternate stimulus tones. Eventually, after a sequence of 850

modest shifts, the beat frequency would be halved although the number of stimulus 851

events would be maintained but with a different temporal pattern. How is the transition 852

of frequency halving executed dynamically? Perhaps there is a regime of shift values 853

where beat determination is ambiguous, a possible regime of bistability. A different 854

manipulation toward a complex stimulus could involve parametrically changing the 855

sound intensity or pitch of alternate tones. Such cases will bring us toward questions of 856

perception and auditory streaming together with beat perception. 857

Conclusion 858

The questions surrounding how we perceive and keep a beat are easy to pose but 859

developing models for beat perception and generation present challenges. Our model is 860

a first-pass attempt at formulating and analyzing a neuromechanistic model that can 861

learn a beat. Our approach stems from a neurobiological and dynamical systems 862

perspective to develop neuronal system-based models for beat learning and generation. 863

The essential features involve neuro-based elapsed timekeepers, time difference 864

comparators and a neural oscillator (cellular or circuit level) with some plasticity and 865

learning rules. Looking ahead one hopes for development of more general beat and 866

rhythm pattern generators (for complex rhythmic sounds, music pieces) that can be 867

stored in a silent mode and are both recallable and replayable. 868
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Supporting information 869

S1 Appendix. The model for the BG consists of a set of biophysical 870

conductance-based equations which we call the INaP model that incorporate a 871

low-threshold calcium current ICaT , a sag current, Ih, a persistent sodium current INaP 872

and a leak current, IL. The current balance equations are given by 873

C
dV

dt
= Ibias + Iint − gL[V − EL]− gCaTm∞(V )h[V − ECa]

− ghr[V − Eh]− gNaPa∞(v)[v − ENa] (6)

dh

dt
=

h∞(V )− h
τh(V )

(7)

dr

dt
=

r∞(V )− r
τr(V )

(8)

The term Ibias refers to a drive whose value determines whether the isolated BG can 874

oscillate and if so, at which frequency. We set Iint = −33µA/cm2 so that if 875

Ibias = 0µA/cm2 there are no oscillations. The parameters gCaT , gh, gNaP , gL and 876

ECa, Eh, ENa, EL refer to conductances and reversal potentials for the calcium, sag, 877

sodium and leak currents, respectively. The functions 878

x∞(V ) = 1/(1 + exp(−(V − vx)/kx)) for x = m, a, r, h are each sigmoidal functions 879

with half-activation voltages vx and accompanying slopes kx. The time constants are 880

τh(V ) = τL/(1 + exp((V − vh)/kh)) + τR(1 + exp(−(V − vh)/kh)) and 881

τr(V ) = τrmax/ cosh((V − vrτ )/(2krτ )). The T -current is considered to have 882

instantaneous activation, modeled by m∞(V ) and a slow inactivation, governed by the 883

h variable. The sag current simply has a slow activation variable r. The persistent 884

sodium current has just instantaneous activation given by a∞(V ). The parameter 885

values are as follows: C = 1, gCaT = 11, gh = 1, gNaP = 0.1, gL = 1.6, ECa = 50, 886

Eh = −30, ENa = 50, EL = −70, vm = −40, km = 6.5, va = −67, ka = 1, vr = −70, 887

kr = 12, vh = −60, kh = 6, vrτ = −75, krτ = 8, τL = 30, τR = 5, τrmax = 850 (where 888

capacitance is in units of µF/cm2, conductances are in mS/cm2, time constants are in 889

ms and all others parameter units are mV):. 890

The equations for the S neuron are 891

CS
dVS
dt

= ISbias + gstimIstim(t)− gLS [VS − EL]− gCaTSm∞(VS)hS [VS − ECa] (9)

dhS
dt

=
h∞(VS)− hS

τh(VS)
(10)

(11)

The term Istim(t) is the periodic current provided from the stimulus. During each cycle, 892

it is positive for 25 ms and 0 otherwise. It is taken to be large enough to ensure that S 893

fires within 5 ms of sound onset times. The m∞, h∞ and τh functions are as above, the 894

parameter values are the same unless otherwise stated: ISbias = −14, gstim = 6, 895

gSCaT = 10 (units as above). 896

The γ counters are constructed as follows. Solve x′ = −x/τx with x(0) = 2 until it 897

reaches 1 at t = tg and is reset to 2; x(t−g ) = 1 reset to x(t+g ) = 2. The counters keep 898

track of the number of resets. We chose τx = 40 ms which yields an inter-spike interval 899

of 27.73 ms (frequency of 36.06 Hz). Heterogeneity between the BG and S counters of 900

roughly 10% was introduced to the IOIS by varying τx. In the case of stochasticity, 901

Ornstein-Uhlenbeck noise was added to the x variable, with a timescale of 5 ms and 902

Gaussian white noise with mean 0 and standard deviation 0.005. All numerical 903

simulations were carried out in MATLAB. 904
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