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Abstract 
 
Morlet wavelets are frequently used for time-frequency analysis of non-stationary time series data,             

such as neuroelectrical signals recorded from the brain. The crucial parameter of Morlet wavelets is               

the width of the Gaussian that tapers the sine wave. This width parameter controls the trade-off                

between temporal precision and frequency precision. It is typically defined as the “number of cycles,”               

but this parameter is opaque, and often leads to uncertainty and suboptimal analysis choices, as well                

as being difficult to interpret and evaluate. The purpose of this paper is to present alternative                

formulations of Morlet wavelets in time and in frequency that allow parameterizing the wavelets              

directly in terms of the desired temporal and spectral smoothing (as full-width at half-maximum).              

This formulation provides clarity on an important data analysis parameter, and should facilitate             

proper analyses, reporting, and interpretation of results. MATLAB code is provided. 
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Motivation for time-frequency analysis 
 
Many biological and physical systems exhibit rhythmic processes. Rhythmic temporal structure           
embedded in time series data can be extracted and quantified using the Fourier transform or other                
spectral analysis methods.  
 
However, the Fourier transform has a “soft assumption” of signal stationarity, which means that the               
spectral and other features of the signal remain constant over time. To be sure, the Fourier transform                 
is a perfect representation of the time series, regardless of its temporal dynamics. However, the               
power spectrum resulting from the Fourier transform is easily visually interpretable only for             
stationary signals; non-stationarities are encoded in the phase spectrum, which is typically            
impossible to interpret visually. 
 
Signal non-stationarities are the primary motivation for time-frequency analyses, in which the power             
spectrum is computed over short windows of time. The primary assumption here is that the signal is                 
roughly stationary over some shorter (sliding) time window. For neural time series data, this              
assumption is typically a few hundreds of milliseconds. An example of a “static” and “dynamic”               
spectral representation of a non-stationary signal is presented in Figure 1. 
 
 

 
Figure 1 . In the presence of signal non-stationarities (panel A), the “static” power spectrum from the                
Fourier transform can be difficult to interpret (panel B). In these cases, a time-frequency analysis               
(panel C) is often insightful. 
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Overview of methods for time-frequency analysis 
 
There are several time-frequency analysis methods, most of which produce qualitatively or            
quantitatively similar results  (Bruns 2004; Cohen 2014) . The three most commonly used are the              
short-time fast Fourier transform, complex wavelet convolution, and filter-Hilbert. These three           
methods have in common that they involve isolating a narrow temporal window of data and then                
extracting its frequency spectrum. 
 
A key parameter in time-frequency analysis is the one that governs the trade-off between temporal               
precision and spectral precision; it is not possible to have simultaneously arbitrarily good precision in               
both time and in frequency. Furthermore, the resulting smoothness is often advantageous for             
averaging data across stimulus repetitions and individuals; thus, arbitrarily good precision can be             
detrimental in applied data analysis of biological systems. 
 
The key argument of this paper  is that this crucial parameter is created and reported in a way that                   
obscures both the signal-processing and the theoretical assumptions that are imposed on the data,              
and that shape the results.  The key upshot of this paper  is two alternative methods for creating and                  
reporting Morlet wavelets in a way that makes this key parameter transparent and easily              
interpretable. 
 
Advantages and assumptions of Morlet wavelets for time-frequency analysis 
 
A Morlet wavelet is defined as a sine wave tapered by a Gaussian (Figure 2, top row). For                  
time-frequency analysis, a complex Morlet wavelet is used, in which the Gaussian tapers a complex               
sine wave. The complex Morlet wavelet is then convolved with the time series signal, and the result                 
of convolution is a complex-valued signal from which instantaneous power and phase can be              
extracted at each time point. Wavelet convolution can be conceptualized as a “template-matching”             
procedure, in which each time point in the signal is compared against a template (the               
Gaussian-windowed sine wave), and the result of the convolution is a time series of “similarities”               
between the signal and the wavelet. 
 
The tapering Gaussian has one parameter that defines its width (also called its shape or deviation). A                 
wider Gaussian leads to decreased temporal precision but increased spectral precision, and            
vice-versa for a narrower Gaussian. This parameter is typically defined as the “number of cycles,” but                
the purpose of this paper is to argue that it would be better to define the Gaussian width as the                    
full-width at half-maximum (FWHM), which is the distance in time between 50% gain before the peak                
to 50% gain after the peak. 
 
There are several advantages of Morlet wavelets for time-frequency analysis. One is that the Morlet               
wavelet is Gaussian-shaped in the frequency domain (Figure 2, bottom row). The absence of sharp               
edges minimizes ripple effects that can be misinterpreted as oscillations (this is a potential danger               
associated with plateau-shaped filters). Second, the results of Morlet wavelet convolution retain the             
temporal resolution of the original signal. Third, wavelet convolution is more computationally            
efficient and requires less code compared to other methods, because it involves the smallest number               
of computations, most of which are implemented using the fast Fourier transform. 
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Figure 2 . Three Morlet wavelets in the time domain (upper row) and in the frequency domain (lower                 
row) with two frequencies and different time-frequency trade-off parameters. The argument of this             
paper is that reporting this parameter in terms of full-width at half-maximum (FWHM) in the time                
and/or frequency domains is more informative than number of cycles. 
 
 
 
There are two key assumptions of Morlet wavelet-based time-frequency analysis. The first is that the               
signal is roughly sinusoidal. Some researchers have noted that brain oscillations are probably not              
shaped like pure sine waves  (Cole and Voytek 2017; Jones 2016) . On the other hand, the                
overwhelming success and ubiquity of time-frequency analysis methods indicates that minor           
violations of this assumption are not deleterious for practical data analysis, hypothesis-testing, data             
mining, and feature discovery. The sinusoidal assumption is therefore considered valid, and            
additional detailed waveform analyses can be insightful in specific instances. 
 
The second assumption of Morlet wavelet analysis concerns stationarity of the signal. Interpreting             
the results of Morlet wavelet convolution relies on the assumption that the signal is stationary within                
the time window that the wavelet has non-zero energy. Generally, this can be taken as the FWHM of                  
the Gaussian that is used to create the Morlet wavelet. Any signal non-stationarities that are smaller                
than this FWHM will produce results that are difficult to interpret (similar to the “static” power                
spectrum in Figure 1). 
 
Appropriate selection of the width of the wavelet is a combination of signal processing              
considerations, and theoretical/speculative considerations of the system from which the signal was            
measured. This parameter is therefore important for time frequency data analysis, and yet is often               
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selected and reported in a way that obscures the assumption underlying the data analysis. The key                
goal of this paper is to present two different methods of formulating and describing Morlet wavelets                
in a way that makes this assumption transparent and easily interpretable. 
 
Typical definition of Morlet wavelets 
 
A complex Morlet wavelet  w can be defined as the product of a complex sine wave and a Gaussian                   
window: 
 

(1) 
 

where  i is the imaginary operator (  ),  f is frequency in Hz, and  t is time in seconds. To avoid                    
introducing a phase shift,  t should be centered at  t=0 , for example, by defining  t from -2 to +2                   
seconds.   is the width of the Gaussian, which is defined as 
 

(2) 
 
The parameter that defines the time-frequency precision trade-off is  n , which is often referred to as                
the “number of cycles.” For neurophysiology data such as EEG, MEG, and LFP, typical values of  n                 
range from 2 to 15 over frequencies between 2 Hz and 80 Hz. Other applications may require a                  
different number of cycles. 
 
There is nothing “wrong” with equations 1 and 2. However, the relationship between the number of                
cycles and the temporal-spectral smoothing is unclear, partly because most people do not think              
about time in terms of “number of cycles,” and partly because the effect of  n on the temporal                  
smoothing depends on the frequency of the wavelet (see Figure 2). Many researchers and students               
struggle with how to specify and interpret this parameter, which leads to confusion and possibly               
suboptimal data analyses. 
 
A better definition of the Morlet wavelet 
 
A definition of the complex Morlet wavelet that provides more clarity is 
 

(3) 
 
The new parameter here is  h , which is the FWHM in seconds.  
 
Equation 3 is not fundamentally different from equations 1-2. It is simply a way of rewriting the                 
formula to make the temporal smoothing parameter easier to define, understand, and report. Rather              
than specifying a number of cycles (which might feel arbitrary and mysterious), one can specify a                
FWHM in seconds (assuming that  t is defined in seconds), which is a more natural unit to think about                   
in terms of desired temporal smoothing, and in terms of the assumption of the duration of                
stationarity in the system under investigation. 
 
The  h parameter in equation 3 is analytical; its actual implemented value depends on the data                
sampling rate. For this reason, it is recommended to compute and examine the empirical FWHM that                
is implemented in software. When the sampling rate is considerably higher than the frequency of               
interest, the specified and empirical widths should match closely. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 21, 2018. ; https://doi.org/10.1101/397182doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=w%20%3D%20e%5E%7B2i%5Cpi%20ft%7De%5E%7B%5Cfrac%7B-t%5E2%7D%7B2%5Csigma%5E2%7D%7D%0
https://www.codecogs.com/eqnedit.php?latex=i%3D%5Csqrt%7B-1%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma%0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma%20%3D%20%5Cfrac%7Bn%7D%7B2%5Cpi%20f%7D%0
https://www.codecogs.com/eqnedit.php?latex=w%20%3D%20e%5E%7B2i%5Cpi%20ft%7De%5E%7B%5Cfrac%7B-4ln(2)t%5E2%7D%7Bh%5E2%7D%7D%0
https://doi.org/10.1101/397182
http://creativecommons.org/licenses/by-nc-nd/4.0/


MX Cohen Morlet wavelet definition 6 of 14 

 
The empirical FWHM can be obtained by subtracting the time point where the post-peak Gaussian is                
closest to 50% gain (if the Gaussian is normalized to a peak amplitude of 1, then this is the value                    
closest to .5) from the time point where the pre-peak Gaussian is closest to 50% gain. (This algorithm                  
is presented in the MATLAB code at the end of this document.) Figure 3 shows the relationship                 
between the empirical FWHM derived from equations 1-2 vs. equation 3. 
 

 
Figure 3 . The empirical FWHM of the Gaussian (y-axis) used to define complex Morlet wavelets over a                 
range of frequencies (x-axis), defined using equations 1-2 vs. equation 3. 
 
 
Recommendation for minimum wavelet FWHM 
 
As mentioned earlier, there are two considerations for selecting the width of a wavelet for               
time-frequency analysis: signal processing and system quasi-stationary. The minimum width of a            
wavelet should be derived only from signal processing considerations. 
 
It is recommended to set the FWHM no lower than one cycle at the frequency of the sine wave used                    
to create the wavelet. For example, a 10 Hz wavelet should not have less than a 100 millisecond                  
FWHM. This leads to the simple formula to compute the minimum FWHM of  1/f , where  f is the                  
frequency of the sine wave that creates the wavelet. This corresponds to ~2⅔ cycles (the  n                
parameter in equation 2). 
 
Note that a FWHM corresponding to one cycle actually means that more than one cycle will                
contribute to the wavelet, because there is still non-zero energy beyond the 50% gain boundaries               
used to define FWHM. 
 
Also note that this is a recommendation for the  minimum wavelet length. It is often sensible to have                  
wavelets longer than the minimum, depending on a desired amount of temporal or spectral              
smoothing. One should also keep in mind that wavelets with narrower Gaussians (smaller FWHM)              
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have wider spectral energy windows  (Cohen 2014) , so creating wavelets using the minimum bound is               
not necessarily optimal. 
 
Alternative: defining the wavelet in the frequency domain 
 
The discussion above concerns defining the wavelet in the time domain. This is a natural approach in                 
many situations, but in other situations it might be more natural to start from a desired amount of                  
spectral smoothing. Thus, one can specify the desired spectral smoothing, which means defining the              
wavelet in the frequency domain instead of in the time domain. The formula is slightly different.  
 

(4) 

(5) 

(6) 
 
where  z is a vector of frequencies in Hz from 0 to the sampling rate in the number of steps as the                      
desired length of the spectrum (e.g., the length of the time series signal, or the length of the result of                    
convolution),  f  is the peak frequency of the wavelet, and  h  is the FWHM in Hz. 
 
The Gaussian in equation 4 creates the amplitude shape in the frequency domain; the time-domain               
wavelet can be obtained by the inverse Fourier transform of this envelope. The empirical FWHM in                
the time domain Morlet wavelet can be obtained by applying the FWHM estimation procedure to the                
magnitude of the complex time series. An example is shown in Figure 4. 
 

 
Figure 4 . An example of specifying the wavelet shape in the frequency domain (top panel) and                
computing its inverse Fourier transform to obtain a time-domain Morlet wavelet (bottom panel). The              
temporal FWHM is defined using the envelope. 
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Reporting 
 
It is sensible and useful to report the FWHM in both the time and the frequency domains. This will                   
facilitate interpretation of the results and replication of analysis methods. Here is a suggestion for               
describing the wavelets: 
 

We implemented time-frequency analysis by convolving the signal with a set of complex             
Morlet wavelets, defined as complex sine waves tapered by a Gaussian. The frequencies             
of the wavelets ranged from X Hz to X Hz in X steps. The full-width at half-maximum                 
(FWHM) ranged from XXX to XXX ms with increasing wavelet peak frequency. This             
resulted in a spectral FWHM range of XX Hz to XX Hz. 

 
 
Conclusion 
 
The goal of this paper is to provide an alternative way to conceptualize, define, and report Morlet                 
wavelets for time-frequency analysis. No new methods, formulas, or algorithms are presented here;             
instead, the idea is to encourage researchers and students to make a minor adjustment to their                
existing analysis pipeline in a way that makes the findings, analysis methods, assumptions, and              
results, easier to understand, communicate, and interpret. MATLAB code to reproduce the figures is              
presented as a supplement. 
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MATLAB code to reproduce figure 1 

 
%%% generate signal 
srate = 1000; 
time  = (0:3*srate)/srate; 
pnts  = length(time); 
 
f1 = [3 20]; 
f2 = [20 3]; 
 
transgaus = exp( -(time-mean(time)).^2 / .2 ); 
 
signal = sin(2*pi*time.*linspace(f1(1),mean(f1),pnts)) + ... 
         sin(2*pi*time.*linspace(f2(1),mean(f2),pnts)) + ... 
         sin(2*pi*time*20).*transgaus; 
 
 
%%% static power spectrum 
hz = linspace(0,srate/2,floor(pnts/2)+1); 
powr = (2*abs(fft(signal)/pnts)).^2; 
 
 
%%% time-frequency analysis 
nfrex = 40; 
frex = linspace(2,25,nfrex); 
fwhm = linspace(.8,.7,nfrex); 
 
% setup wavelet and convolution parameters 
wavet = -2:1/srate:2; 
halfw = floor(length(wavet)/2)+1; 
nConv = pnts + length(wavet) - 1; 
 
% initialize time-frequency matrix 
tf = zeros(length(frex),pnts); 
 
% spectrum of data 
dataX = fft(signal,nConv); 
 
% loop over frequencies 
for fi=1:length(frex) 
  
    % create wavelet 
    waveX = fft( exp(2*1i*pi*frex(fi)*wavet).*exp(-(4*log(2)*wavet).^2/fwhm(fi).^2),nConv ); 
    waveX = waveX./max(waveX); % normalize 
  
    % convolve 
    as = ifft( waveX.*dataX ); 
    % trim and reshape 
    as = as(halfw:end-halfw+1); 
  
    % power 
    tf(fi,:) = abs(as).^2; 
end 
 
 
%%% plotting 
 
figure(1), clf 
subplot(211) 
plot(time,signal,'k','linew',2) 
xlabel('Time (s)'), ylabel('Amplitude') 
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set(gca,'xlim',time([1 end])) 
title('Time domain') 
 
 
subplot(223) 
plot(hz,powr(1:length(hz)),'k','linew',2) 
set(gca,'xlim',[0 30]) 
xlabel('Frequency (Hz)'), ylabel('Power') 
title('Frequency domain') 
 
 
subplot(224) 
contourf(time,frex,tf,40,'linecolor','none') 
xlabel('Frequency (Hz)'), ylabel('Frequency (Hz)') 
title('Time-frequency domain') 
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MATLAB code to reproduce figure 2 
 
% simulation parameters 
freq1 = 7; % of the wavelet 
freq2 = 12; 
srate = 1000; 
time  = -2:1/srate:2; 
pnts  = length(time); 
 
% define number of cycles 
numcycles = [ 3 8 ]; 
 
% create the sine wave and two Gaussian windows 
sinwave1 = cos(2*pi*freq1*time); 
sinwave2 = cos(2*pi*freq2*time); 
gauswin1 = exp( -time.^2 / (2* (numcycles(1)/(2*pi*freq1))^2 ) ); 
gauswin2 = exp( -time.^2 / (2* (numcycles(2)/(2*pi*freq1))^2 ) ); 
gauswin3 = exp( -time.^2 / (2* (numcycles(2)/(2*pi*freq2))^2 ) ); 
 
 
% create the two wavelets 
morletwave1 = sinwave1 .* gauswin1; 
morletwave2 = sinwave1 .* gauswin2; 
morletwave3 = sinwave2 .* gauswin3; 
 
 
% compute the empirical temporal FWHM in seconds (later converted to ms) 
midp = dsearchn(time',0); 
fwhmT(1) = time(midp-1+dsearchn(morletwave1(midp:end)',.5)) - 
time(dsearchn(morletwave1(1:midp)',.5)); 
fwhmT(2) = time(midp-1+dsearchn(morletwave2(midp:end)',.5)) - 
time(dsearchn(morletwave2(1:midp)',.5)); 
fwhmT(3) = time(midp-1+dsearchn(morletwave3(midp:end)',.5)) - 
time(dsearchn(morletwave3(1:midp)',.5)); 
 
 
% normalized power spectra of the wavelets 
powspect1 = abs(fft(morletwave1)/pnts).^2; 
powspect1 = powspect1 ./ max(powspect1); 
 
powspect2 = abs(fft(morletwave2)/pnts).^2; 
powspect2 = powspect2 ./ max(powspect2); 
 
powspect3 = abs(fft(morletwave3)/pnts).^2; 
powspect3 = powspect3 ./ max(powspect3); 
 
 
hz = linspace(0,srate/2,floor(pnts/2)+1); 
 
idx1 = dsearchn(hz',freq1); 
idx2 = dsearchn(hz',freq2); 
fwhmF(1) = hz(idx1-1+dsearchn(powspect1(idx1:end)',.5)) - hz(dsearchn(powspect1(1:idx1)',.5)); 
fwhmF(2) = hz(idx1-1+dsearchn(powspect2(idx1:end)',.5)) - hz(dsearchn(powspect2(1:idx1)',.5)); 
fwhmF(3) = hz(idx2-1+dsearchn(powspect3(idx2:end)',.5)) - hz(dsearchn(powspect3(1:idx2)',.5)); 
 
 
 
%%% plotting 
figure(2), clf 
subplot(231) 
plot(time,morletwave1,'k') 
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xlabel('Time (s)'), axis square 
title([ num2str(numcycles(1)) ' cycles, FWHM: ' num2str(fwhmT(1)*1000) ' ms' ]) 
 
subplot(232) 
plot(time,morletwave2,'k') 
xlabel('Time (s)'), axis square 
title([ num2str(numcycles(2)) ' cycles, FWHM: ' num2str(fwhmT(2)*1000) ' ms' ]) 
 
subplot(233) 
plot(time,morletwave3,'k') 
xlabel('Time (s)'), axis square 
title([ num2str(numcycles(2)) ' cycles, FWHM: ' num2str(fwhmT(3)*1000) ' ms' ]) 
 
 
 
 
subplot(234) 
plot(hz,powspect1(1:length(hz)),'k','linew',2) 
set(gca,'xlim',[0 freq2*2]) 
xlabel('Frequency (Hz)'), axis square 
title([ num2str(numcycles(1)) ' cycles, FWHM: ' num2str(fwhmF(1)) ' Hz' ]) 
 
subplot(235) 
plot(hz,powspect2(1:length(hz)),'k','linew',2) 
set(gca,'xlim',[0 freq2*2]) 
xlabel('Frequency (Hz)'), axis square 
title([ num2str(numcycles(2)) ' cycles, FWHM: ' num2str(fwhmF(2)) ' Hz' ]) 
 
subplot(236) 
plot(hz,powspect3(1:length(hz)),'k','linew',2) 
set(gca,'xlim',[0 freq2*2]) 
xlabel('Frequency (Hz)'), axis square 
title([ num2str(numcycles(2)) ' cycles, FWHM: ' num2str(fwhmF(3)) ' Hz' ]) 
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MATLAB code to reproduce figure 3 
 
% specify frequencies 
frex = linspace(3,60,50); 
fwhm = linspace(.4,.1,length(frex)); % in ms 
ncyc = linspace(3.2,16,length(frex)); 
 
 
% parameters for complex Morlet wavelets 
srate = 1024; 
wavtime  = -2:1/srate:2; 
midp = dsearchn(wavtime',0); 
 
 
% outputs 
empfwhm = zeros(length(frex),2); 
 
% loop over frequencies 
for fi=1:length(frex) 
  
    % create the Gaussian using the FWHM formula (equation 3) 
    gwin = exp( (-4*log(2)*wavtime.^2) ./ fwhm(fi)^2 ); 
  
    % measure the empirical fwhm 
    empfwhm(fi,1) = wavtime(midp-1+dsearchn(gwin(midp:end)',.5)) - 
wavtime(dsearchn(gwin(1:midp)',.5)); 
  
  
  
    % create the Gaussian using the n-cycles formula (equations 1-2) 
    s    = ncyc(fi) / (2*pi*frex(fi)); 
    gwin = exp( -wavtime.^2 ./ (2*s^2) ); 
  
    % empirical FWHM 
    empfwhm(fi,2) = wavtime(midp-1+dsearchn(gwin(midp:end)',.5)) - 
wavtime(dsearchn(gwin(1:midp)',.5)); 
end 
 
figure(3), clf 
 
plot(frex,empfwhm*1000,'o-','markersize',8,'markerfacecolor','w','linew',2) 
xlabel('Wavelet frequency (Hz)'), ylabel('FWHM (ms)') 
legend({'using FWHM';'Using n-cycles'}) 
set(gca,'xlim',[frex(1)-1 frex(end)+1]) 
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MATLAB code to reproduce figure 4 
 
% specify wavelet parameters 
peakf = 11; 
fwhm  = 5.2; 
 
% specify simulation details 
npnts = 8001; 
srate = 1000; 
 
 
% vector of frequencies 
hz = linspace(0,srate,npnts); 
 
% frequency-domain Gaussian 
s  = fwhm*(2*pi-1)/(4*pi); % normalized width 
x  = hz-peakf;             % shifted frequencies 
fx = exp(-.5*(x/s).^2);    % gaussian 
 
% empirical FWHM 
idx = dsearchn(hz',peakf); 
empfwhmF = hz(idx-1+dsearchn(fx(idx:end)',.5)) - hz(dsearchn(fx(1:idx)',.5)); 
 
 
 
% time-domain wavelet 
morletwavelet = fftshift( ifft(fx) ); 
time = (-floor(npnts/2):floor(npnts/2))/srate; 
 
% FWHM of wavelet in the time domain 
midp = dsearchn(time',0); 
mw_amp = abs(morletwavelet); 
mw_amp = mw_amp./max(mw_amp); 
empfwhmT = time(midp-1+dsearchn(mw_amp(midp:end)',.5)) - time(dsearchn(mw_amp(1:midp)',.5)); 
 
 
 
%%% plotting 
figure(5), clf 
subplot(211) 
plot(hz,fx,'k','linew',2) 
set(gca,'xlim',[0 peakf*3]) 
xlabel('Frequency (Hz)'), ylabel('Amplitude (gain)') 
title([ 'FWHM specified: ' num2str(fwhm) ', obtained: ' num2str(empfwhmF) ' Hz' ]) 
 
subplot(212), hold on 
plot(time,real(morletwavelet),'linew',2) 
plot(time,imag(morletwavelet),'--','linew',2) 
h = plot(time,abs(morletwavelet),'linew',2); 
set(h,'color',[1 1 1]*.8) 
set(gca,'xlim',[-1 1]) 
legend({'Real part';'Imag part';'Envelope'}) 
xlabel('Time (sec.)') 
title([ 'FWHM: ' num2str(empfwhmT*1000) 'ms' ]) 
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