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Highlights 

• Open-source end-to-end label-free proteomics workflow 

• Integrated database searching and machine learning 

• Customisable and extensible workflow including de novo sequencing 

• Optimised for multiplexed spectra, challenging proteomics datasets and 

peptidomics applications 

 

Summary 

 
Improvements in shotgun proteomics approaches are hampered by increases in 

multiplexed (chimeric) spectra, as improvements in peak capacity, sensitivity or dynamic 
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range all increase the number of co-eluting peptides. This results in diminishing returns 

using traditional search algorithms, as co-fragmented spectra are known to decrease 

identification rates. Here we describe MSCypher, a freely available software suite that 

enables an extensible workflow including a hybrid supervised machine learned strategy 

that dynamically adjusts to individual datasets. This results in improved identification 

rates and quantification of low-abundant peptides and proteins. In addition, the 

integration of peptide de novo sequencing and database searching enables an 

unbiased view of variants and high-intensity unassigned peptide spectral matches. 

 

Main 

Increased sensitivity of the latest generation mass spectrometers, in particular the UHR-

QTOFs, has improved the measurable intra-scan dynamic range in which accurate 

peptide masses can be detected. Current instruments are capable of detecting 

>230,000 individual peptide isotopic patterns in a single 90 minute run (Beck et al., 

2015), yet only a small fraction (10-20%) of these are identified (Chapman et al., 2014; 

Houel et al., 2010; Wang et al., 2011). Co-eluting peptide features are now able to be 

detected in over a 100,000-fold quantitative range, resulting in a drastic improvement in 

number of overall features detected. For a single MS run, a total of 235,389 isotope 

clusters can be detected using standard criteria (Cox and Mann, 2008) as shown in 

Figure 1a. A standard data-dependent approach clearly demonstrates the inherent 

under-sampling from complex biological mixtures, where only ~22% of the peptide 

features were targeted for fragmentation and ~10% of these were identified. From a 90 

minute LC/MS run of a standard tryptic digest containing human and E. coli proteomes 
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(600 ng),  chimeric spectra accounted for more than 88% of the acquired data (Figure 

1b) likely causing suppression of identification rates (Houel et al., 2010). While this has 

generally been thought detrimental to data-dependent acquisition (DDA) identification 

performance (Shishkova et al., 2016), this natural multiplexing provides an opportunity 

to increase identification rates. Attempts to utilize chimeric spectra was first described in 

2000 (Masselon et al., 2000) and more recent attempts have proven quite successful 

(Cox et al., 2011; Shteynberg et al., 2015; Wang et al., 2011; Zhang et al., 2014; Zhang 

et al., 2005). However, these approaches all utilize the same peptide search strategies 

that are based on rational probabilistic scoring functions that only take into account a 

small fraction of information available to describe a potential peptide spectral match 

(PSM). Recent increases in computational power and the corresponding access to high 

quality training data has facilitated the ubiquitous use of machine learning for increased 

depth of data mining and this concept was first pioneered in the proteomics field by Kåll 

et al. (Kall et al., 2007). Indeed, post-processing of search results using more 

information in combination with a semi-supervised machine learning approach 

(Granholm et al., 2014) can drastically improve peptide identification rates.  

We now propose to extend this idea to a learned matching classification strategy which 

classifies target PSM from decoy PSM, incorporating as many parameters as possible 

to describe matching (parameters listed in Table S1). MSCypher is a hybrid workflow 

(Figure 1c) that currently utilizes the feature detection from the MaxQuant workflow and 

consists of a combined pre-matching and sensitive search algorithm that interfaces with 

a supervised machine learning classification using the random forest algorithm 

(Breiman, 2001). In testing early implementations, we used Monte-Carlo cross 
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validation (MCCV) to calculate accuracy, true positive and false positive rates (TPR, 

FPR) and their confidence intervals (Figure S1). We observed that varying sizes of 

randomly chosen training/test sets, the classification model consistently generated 

accuracies in excess of 99.5%. When comparing scoring outputs of different search 

algorithms, the RF-generated classification score exhibited a wider separation between 

potentially correct identifications and decoy matches (Figure S2). The current 

implementation of the workflow incorporates existing approaches including feature 

detection, first-pass searching for m/z and retention time (RT) re-calibration, peak 

picking (Cox and Mann, 2008) and RT prediction (Moruz et al., 2012). 

 

 

 

Figure 1. (a) Histogram of frequency of the detected features binned by intensity during 
a single LC/MS run. Un-fragmented isotopic features (gray), fragmented features (red) 
and identified isotopic features (green) demonstrate the small fraction of the >230,000 
detected peptide features identified in current proteomics workflows. (b) Histogram 
representing frequency of co-fragmented peptide features within each isolation window. 
(c) MSCypher workflow. 
 

To compare the effect of highly chimeric spectra on matching algorithms, we simulated 

datasets to measure multiplexed identification rates, first proposed in 2000 (Masselon et 

al., 2000). From a consensus set of 80,000 peptide spectra identified by Mascot, 
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MSGF+, Comet and MSCypher, we iteratively selected 100 identified spectra at 

random. To simulate increasing chimericity, at each iteration, we appended from 1 to 10 

additional MS/MS spectra selected at random to the peak list. This was repeated 10,000 

times to generate a total of 1 million randomly generated chimeric spectrum entries per 

iteration. We then compared the ability of MSCypher with both the machine learning 

step switched on and off, to correctly re-call the consensus primary sequence (Figure 

2a). The highest fraction of correctly called spectra across all iterations was obtained by 

including machine learning (ML).  While the underlying probabilistic peak matching from 

MSCypher performed strongly as well, the increase in correct peptide calls when using 

ML represent spectra that have been re-ranked from lower scoring matches. This ability 

of the classification approach to re-rank potential matches represents a unique ability 

among peptide-based search algorithms as this represents evidence that has not been 

published to-date using post-scoring machine learning algorithms.  

 

To demonstrate the improvements that can be gained from ML, we analysed a tryptic 

digest of human HeLa cell lysate that was seeded with E. coli peptides. Here we 

observed four separate peptide features identified from a single isolation and 

fragmentation event (Figure 2b inset). The spectra present as a typical MS/MS 

spectrum and four peptides were identified below a 1% FDR using the MSCypher 

workflow (Figure 2b).  
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Figure 2. Comparison of search engines using simulated chimeric spectra. 

(a) Comparison of common search algorithms using a Monte Carlo simulation of 
increasing chimeric spectral complexity (b) Example of observed chimeric spectra 
obtained from co-fragmentation of four peptide features, one being the picked precursor 
ion (red), second (yellow), third (green) and fourth (blue). Matching y and b-ions are 
colored according to precursor. Inset shows the 2D LCMS region of interest, where the 
black line represents the isolation window and the colored bars the detected isotopes of 
the co-fragmented precursors.  
 

As high-quality feature detection is a fundamental requirement of accurate database 

searching, the current implementation of MSCypher requires first processing raw data 

using the MaxQuant program. Thus, the widely-used Andromeda search engine (Cox et 

al., 2011) is a natural search algorithm with which to compare and benchmark our 

software. MSCypher consistently yielded higher PSMs at 1% filtered false discovered 

rate (FDR) for all replicate runs, including both instrument picked precursors and 

secondarily identified spectra from co-fragmented precursors (Figure 3a). Interestingly, 

comparing the precursor density distribution of identified peptides from each algorithm 

with respect to the peptide intensity (Figure 3b), reveals that the additional 

identifications are not correlated to precursor intensity, but appear to be completely new 

matches that MaxQuant did not identify. This is reflected in the increased total peptide 
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sequence count (Figure 3c) and resulted in increased sequence coverage of the 

majority of inferred proteins (Figure 3d). 

 

 

 

Figure 3. (a) Total count of PSMs per LC-MSMS run for both instrument picked 
(targeted) and co-fragmented precursors. (b) Top: frequency plot of MSCypher 
identified PSMs by log10 intensity. Middle: density plot of identified (blue) PSMs 
identified only by MSCypher, (red) PSMs identified only by MaxQuant and (pink/purple) 
PSMs identified by both workflows versus log10 intensity. Bottom: frequency plot of 
MaxQuant identified PSMs by log10 intensity. (c) Comparison of total peptide sequence 
count. (d) Protein sequence coverage by rank (highest to lowest coverage) where the 
red line represents proteins identified by MaxQuant and the blue line by MSCypher.  
 

The count of unique peptides by file was improved by 30% over the MaxQuant search 

(Figure. S3a) and the level of missing values is lower than that observed by MaxQuant 

(Figure S3b).  

To validate the accuracy of the 1% FDR we used two alternative means of checking for 

false positive identifications. Firstly, as the number of potential matches an isotopic 

cluster can obtain is not limited, the number of identifications assigned to a single 

feature (Figure 4a) represents an orthogonal measure of likely false positive 
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assignments. Here, we show that less than 1% of the isotopic clusters detected have 

more than one identification assigned. Secondly, we performed a simple quantitative 

experiment that measured a quantitative FDR after seeding of E. coli tryptic peptides 

into HeLa tryptic peptides at two different concentrations (a ratio of 1:1 and 3:1 in 

triplicate Figure 4b). Figure 4c shows a histogram of the log2 fold change that 

represents the three-fold increase in E. coli where <5% of the identified and quantified 

peptides fall beyond two standard deviations from the mean.  

 

 

 

Figure 4. (a) Frequency of number of identifications assigned to a peptide feature. (b) 
Mean peptide intensity of triplicate runs for quantitative comparison of E. coli and 
human peptides, mixed at ratios 3:1 and 1:1. Only peptide features consistently 
identified in at least two replicates per group are shown. (c) Histogram showing the log2 
ratio colored for species (blue = Homo sapiens, green = E. coli). Only peptide features 
consistently identified in at least two replicates per group are shown. 
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Future improvements in mass spectrometry technology that enhance dynamic range 

and sensitivity must consider the increased number of chimeric spectra that will be 

generated from complex samples. Thus, better strategies to maximize this natural 

multiplexing are needed to provide increased numbers of identifications of observable 

peptide features.  Here we have introduced software that automatically fine tunes the 

spectra-peptide matching process using supervised machine learning and utilizes as 

much information as is available to describe a peptide spectral match, creating a larger 

separation power between true and false positive matches. Our approach is less 

sensitive to noise resulting from co-fragmentation of co-eluting peptides and yields both 

high sensitivity and specificity. We also include automated: retention time dependent 

intensity normalization to counter electrospray variation; label free quantitation (LFQ) 

pairwise comparison; and experimental evaluation and quality control plots (example 

reports for a published dataset (Choi et al., 2017) as Supplementary HTMLs). 

Overall, our workflow enhances the number of identifiable PSMs, peptide identifications, 

protein sequence coverage and is widely applicable to any form of proteomics and high-

resolution mass spectrometer. In addition, this software provides detailed peptide- and 

fragment ion match statistics as a text output and will be crucial in order to further 

optimize fragment ion matching for different fragmentation techniques and acquisition 

strategies including data independent acquisition (DIA). MSCypher is freely available, 

an extensible workflow with detailed output that encourages further exploration of 

proteomics datasets via alternative machine and deep learning strategies 

(https://www.wehi.edu.au/people/andrew-webb/2372/resources-mscypher). 
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CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be direct to and will 

be fulfilled by the Lead Contact, Andrew Webb (webb@wehi.edu.au).  

 

METHOD DETAILS 

Sample preparation for LC-MS/MS analysis 

HeLa-ABRF spike-ins 

Two sample sets containing lyophilised HeLa cell lysates (25 μg) spiked with four proteins at three 

different concentrations (20 fmol to 500 fmol) were provided by the ABRF 2016 PRG study. 

Sample 1 contained 100 fmol, Sample 2 contained no spiked in proteins, Sample 3 contained 20 

fmol and Sample 4 contained 500 fmol. The spiked in peptides including ABRF-1 (beta-

galactosidase from E.coli), ABRF-2 (Lysozyme C, G.gallus), ABRF-3 (glucoamylase, A.niger) and 

ABRF-4 (Protein G, Streptococcus spp.). The protocol is largely based on the original sera-mag 

Speed bead (SP3) paper (Hughes et al., 2014), but with some differences. For all our experiments 

we used a 1:1 combination mix of the two types of commercially available carboxylate beads 

(Sera-Mag Speed beads, CAT# 90-981-121, 09-981-123, Thermo Fisher Scientific). Beads were 

prepared freshly each time by rinsing with water three times prior to use and stored at 4°C at a 

stock concentration of 20 μg/μl. DynaMag magnetic racks were used throughout the experiments 

(DynaMag-2, 12321D, Life Technologies). Spiked HeLa cell lysates were reduced with 500 mM 

Dithiothreitol (DTT, 50 mM final conc.) for 1 hr at 37 degrees °C. Samples were then alkylated 

with 500 mM Iodoacetamide (IAM) (100 mM final conc.) for 30 mins in the dark at room 

temperature (RT). Samples were quenched with 500 mM DTT (200 mM final conc.). Lysates were 

acidified with formic acid (pH <3) and a 2 μl of the concentrated bead stock (20 μg/μl) was added 

to samples. Acetonitrile (ACN) was then added to reach a final concentration of 50% (v/v). 

Mixtures were left to incubate upright at RT for 8 mins. Beads were then washed twice with 250 
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μl 70% ethanol and once with 250 μl acetonitrile. A further 100 μl acetonitrile was used to transfer 

the protein/bead suspension into a PCR plate for subsequent enzymatic digestion. Acetonitrile 

was completely evaporated from the PCR plate using a SpeedVac AES 1010 (Savant) prior to 

the addition of 10 μl digestion buffer (50 mM NH4HCO3) containing 1 μg Trypsin-gold (Promega, 

V5280). The plate was briefly sonicated in a water bath to disperse the beads, and the plate 

transferred to a PCR machine for overnight (~16 hr) incubation at 37 °C. Following digestion, the 

PCR plate was lyophilised to dryness and the SP3 beads were then subjected to HILIC-based 

peptide fractionation. The beads were reconstituted in 100 μl 97% ACN, 5 mM Ammonium 

Formate (pH 12) and peptides were sequentially eluted off the beads using the magnetic rack. 

Six further fractions were collected (93% ACN, 89% ACN, 82% ACN, 75% ACN, 2% DMSO and 

100 % ACN). Fractions were transferred to MS vials, lyophilised to dryness and reconstituted in 

5 μl 0.1% formic acid/ 2% ACN.  

 

HeLa-E.coli standard peptide mixture 

A separate mixture of standard tryptic digests was created by mixing Pierce HeLa protein digest 

standard (#88328, Thermo Scientific) with MassPREP E.coli digestion standard (#186003196, 

Waters) at two different ratios (1:1 and 1:3).  

 
LC-MS/MS analysis 

HILIC fractions (5 μl) and standard peptide mixtures (HeLa/E.coli) were separated by reverse-

phase chromatography 1.9 μm C18 fused silica column (I.D. 75 μm, O.D. 360 μm x 25 cm length) 

packed into an emitter tip (IonOpticks, Australia), using a nano-flow HPLC (M-class, Waters). The 

HPLC was coupled to an Impact II UHR-QqTOF mass spectrometer (Bruker, Bremen, Germany) 

using a CaptiveSpray source and nanoBooster at 0.20 Bar using acetonitrile. Peptides were 

loaded directly onto the column at a constant flow rate of 400 nL/min with buffer A (99.9% Milli-Q 

water, 0.1% formic acid) and eluted with a 90 min linear gradient from 2 to 34% buffer B (99.9% 
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acetonitrile, 0.1% formic acid). Mass spectra were acquired in a data-dependent manner including 

an automatic switch between MS and MS/MS scans using a 1.5 second duty cycle and 4 Hz MS1 

spectra rate followed by MS/MS scans at 8-20 Hz dependent on precursor intensity for the 

remainder of the cycle. MS spectra were acquired between a mass range of 200–2000 m/z. 

Peptide fragmentation was performed using collision-induced dissociation (CID). The HeLa/E.coli 

standard peptide mixtures were run in triplicate.  

 

Data analysis workflow 

The data analysis workflow consists of three steps: (1) Feature detection using MaxQuant, (2) 

Andromeda peak list file conversion to Mascot generic format, and (3) Integrated database 

searching and machine learning using MSCypher. The first step involves LC-MS feature 

detection, extraction, mass recalibration and identification of peptides through MaxQuant (Cox 

and Mann, 2008) and its built-in search engine, Andromeda (Cox et al., 2011). MaxQuant version 

1.5.8.3 was used for all data analysis and the configuration files are provided as supplemental 

material. The second step involves converting the Andromeda peak lists (APL) and associated 

information for all features to Mascot generic format (MGF) using the APLtoMGFConverter 

(https://www.wehi.edu.au/people/andrew-webb/1298/apl-mgf-converter). The associated feature 

information (feature intensity, retention time apex as well as identified peptide sequence at 1% 

FDR are written to the MGF “TITLE=” line (see Figure S1) and used as the basis for “consensus” 

between search algorithms for retention time prediction and machine learning. 

An example MGF “TITLE=” line appears as follows: 

TITLE=RawFile: Hela_Ecoli_1_1_20151124_1_01_3762 Index: 32937 Precursor: 0 _multi_ 
Charge: 2 FeatureIntensity: 2324000 Feature#: 2239887 RtApex: 2194.32 FeaturePif: 0.7024014 
MS2Pif: 0.5880033 Ndp: 93 Ns: 25 Nip: 5 Seq: YLLGTSLAR Score: 51.346 #MS2: 1 
 

Converted MGF files are analysed using the MSCypher workflow. This includes several 

command-line programs which are instantiated via a configuration file (MSCypher_config.ini). 
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MSCypher runs on Linux and Microsoft Windows 64bit operating systems utilising multiple 

cores/threads, as specified in the configuration file. External programs such as MSConvert, Elude 

and Percolator have wrappers in order to take advantage of the number of cores/threads (i.e. if 

there are 4 raw mass spectrometry files then all 4 will be simultaneously processed by these 

external programs if the number of “threads” is set to 4). 

 

MSCypher workflow 

In addition to the steps detailed below there are a number of additional workflow options which 

can be specified in the configuration file depending on user requirements: (1) The MSConvert tool 

(ProteoWizard (Chambers et al., 2012; Kessner et al., 2008)) can be used for automatic 

generation of spectrum peak lists (MGF) from instrument specific files as an alternative to using 

MaxQuant; (2) The FastaSeqGenerator program can be used for generating a customised FASTA 

sequence database based on user-specified taxonomic identifiers. This program uses the MSPnr 

sequence database as input which is available from https://www.wehi.edu.au/people/andrew-

webb/1295/andrew-webb-resources plus a list of taxonomic identifiers in a text file; and (3) An 

integrated process for de novo peptide sequencing using the PepNovo (Frank and Pevzner, 2005) 

program. If PepNovo is run then the sequencing results for all spectra are displayed alongside 

the database search results in the MSCypher output file. 

Workflow options, input files, search parameters (e.g. modifications, enzyme cleavage rules), as 

well as output options are all specified in the MSCypher_config.ini file. The configuration file is 

automatically backed-up and time-stamped in the output folder for a specific analysis. 

 

Database search 

The MGF is searched with the Digger search algorithm. This step functions to identify all the 

potential peptide spectral matches (PSMs), and outputs 60 attributes for each spectrum. In 

addition to this, it generates decoys for every target sequence which are then used to score and 
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rank potential matches. All candidate peptides (including user-selected potential modifications) 

that match a spectrum mass within a specified peptide tolerance (ppm, mmu or Da) are 

fragmented in silico and then matched and scored. Fragmentation is based on fragment ion types 

that are pre-defined and instrument-specific. The preliminary scoring stage was designed to 

accomplish both the elimination of low-scoring random matches and retention of correct 

assignments (if present), as well as the collection of ion-series matching spectral statistics for all 

target and decoy candidate peptides. The number of candidate peptides retained for each 

spectrum is currently 20 for both target and decoy. The preliminary score is based on an 

improvement of the “fast cross-correlation” calculation as implemented in Comet (Eng et al., 2015; 

Eng et al., 2013). In our method, the 15 most intense peaks per 110 Da bin are used in the 

matching process and the fragment ions that are generated are dependent on the amino acid 

composition of the peptide, fragment-ion type and precursor ion charge state. Currently 22 ion-

series types are supported (immonium, a, b, b-98, b-18, b-17, b2+, b2+-98, b2+-18, b2+-17, c, c2+, y, 

y-98, y-18, y-17, y2+, y2+-98, y2+-18, y2+-17, YB, YA, z, z+1, z2+ and z+12+). 

Ion-series matching statistics for all target and decoy candidate peptides are collected during the 

preliminary scoring stage and used in the final score calculations. The number of candidate 

peptides matching a spectrum is recorded, with target and decoy matches recorded separately. 

For each candidate peptide, a set of theoretical fragment ions (which are dependent on both the 

amino acid composition and charge state of the precursor ion) are calculated and compared to 

the spectrum peak list. A “match” is recorded if the mass of the fragment ion matches (within the 

user-defined mass error) with peaks from a range within the 110 Da window. This range is defined 

as running from the least intense (Level 15) to the most intense (Level 1). For each “match” the 

following two pieces of information are retained: The matching peak’s intensity and intensity 

ranking (i.e. level 1-15), and the mass deviation of the “match” (i.e. mass difference between 

fragment ion and peak m/z) along with its fragment ion type (i.e. immonium or ‘y’ ion etc.). Multiple 
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fragment ion matches to a peak are fractionally weighted according to their mass deviation. For 

example, if 3 different fragment ion types are all equidistant from, and match to, the same peak 

then they are awarded 1/3 of a “match”. Similarly, the “match intensity” is 1/3 of the peak intensity. 

The total number of matches to a particular ion type (stratified by level) is obtained by rounding-

down the sum of the whole and fractional matches. 

Additional information, in the form of matching statistics, is collected for all decoy candidate 

peptides. For scoring purposes, this constitutes the null model. When one considers the matrix of 

all candidate decoy peptides for each spectrum, each cell then contains a distribution of the 

number of peptides that match to fragment ions from a particular ion-series of a specified level. 

In order to combine information across ion-series (irrespective of type), the four highest “number 

of fragment ion matches” are recorded on a per-level basis. 

As there are 20 peptides, at most, retained for each spectrum (based on preliminary scoring), the 

empirical decoy fragment ion statistics collected during this first scoring stage are used to re-score 

these peptides. The final scoring step involves the following processing steps for each spectrum: 

1) The number (N) of candidate decoy peptides matching the spectrum is determined; 2) The 

maximum number of fragment ion matches for each spectrum (M) is determined and stratified 

both by ion-series combinations (i, 1≤ i ≤ 4) and level (l, 1≤ l ≤ 15); and 3) The relative frequency 

of matching at least k out of M fragment ion matches is calculated and stratified by ion-series 

combination (i) and level (l). The ratio is log-transformed and converted to a tail score (S) (Eq. 1). 

𝐒i,l,k = − 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎
𝟏
𝐍
)𝒏i,l,j

𝐌

𝐣-𝐤

																																													Equation	1 

A linear least-squares regression of the tail scores for a particular cell (of a 4 x 15 matrix) allows 

for the calculation of both slope and intercept. A fitted line is extrapolated for target peptides that 

have a higher number of fragment ion matches when compared with all decoy candidate peptides 
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for a given spectrum. All target and decoy candidate peptides that survive the preliminary scoring 

stage are then scored using the 4 x 15 matrix of slopes and intercepts. For each peptide, all ion-

series are tested beginning with individual ion-series, and then subsequently testing combinations 

(up to a maximum of 4) for all ion-series. The score for a particular ion-series and level is therefore 

based on the number of fragment ion matches and is determined directly from the slope and 

intercept (“cell Score - cS” (see Eqn. 2)). The Peptide Score (Ps) is the maximum score after 

normalization, stratified by ion-series combinations and level. The normalisation (Int_MAf) is 

essentially a penalty for large mass errors on matching peaks and non-matching of high intensity 

peaks, and is used to break ties between peptides that have an identical number of fragment ion 

matches at a specific level. Int_MAf values are ≥ 1.0, because the total intensity of peaks at a 

particular level is divided by the mass error-weighted intensity of the matching peaks for that level. 

𝐏𝐬 = −𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 ; 𝐦𝐢𝐧𝟏?𝐢?𝟒
𝟏?𝐥?𝟏𝟓

B𝟏𝟎
C𝐜𝐒i,l
𝟏𝟎	 	 ∙ 𝐈𝐍𝐓𝐌𝐀fIJ 																																	𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧	𝟐	 

Subsequent changes to the original Digger search algorithm and scoring function (Kapp, 2013) 

are summarised below: 

1) The fast cross-correlation (XCorr) score is calculated for all peptide-spectrum matches 

and serves as the preliminary score in retaining the top 20 target and decoy candidate 

peptides for each spectrum. 

2) For each target candidate peptide, a decoy peptide is generated by retaining the n- and 

c-terminus residue and reversing the internal residues. A percent similarity (based on 

‘b’ and ‘y’ ions) is then calculated between the target and decoy sequence taking into 

account all modifications. If the percent similarity between the target and decoy is 

greater than 20, then the internal residues are randomised rather than reversed. This 

concept, whilst similar to that implemented in Crux (McIlwain et al., 2014), represents 

an improvement over current implementations, since shorter peptides and peptides 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/397257doi: bioRxiv preprint 

https://doi.org/10.1101/397257
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

with multiple I/L or G amino acid residues negatively impact discriminating between 

target and decoy peptides. 

3) Complementary ‘b’ and ‘y’ ion calculations are performed for all peptides taking into 

account all modifications in order to calculate the ‘percent bond cleavage’ i.e. 

percentage of backbone bonds cleaved for a particular peptide based on the 

complementary n- and c-terminal fragment ions. This is an important feature for the 

machine learning classification step since the ideal “correct” hit would be represented 

by a ladder of sequence ions confirming n-1 amino acid residues. 

4) For each MS2 peak list the number of selected “most intense” peaks used for scoring 

purposes was previously 10 per 100 Da window. This has been increased to 15 peaks 

per 110 Da windows to enable the detection of lower abundant fragment ions derived 

from co-isolated precursor ions in MS1 (i.e. chimeric spectra). 

5) Options are provided in the configuration file that allows finer control over whether the 

intensity of peaks are used for penalising the Digger score for a particular PSM. For 

example, if two peptides match the same number of peaks, but the intensities of the 

matched peaks differ, then the Digger score would reflect this situation if the 

“IntensityPenalty” was “on”. For the current analysis, the “IntensityPenalty” was set to 

“off” since the machine learning step uses all 60 features in training and classification. 

 

Digger outputs a tab-delimited text file containing columns describing all the spectrum matching 

attributes (see Table S1) for all potential PSMs (includes rank 1-20 target/decoy matches), which 

is the master table that is used as input to all the subsequent processes. 

 

Retention time prediction 

Elude (Moruz et al., 2010) was used to predict the retention times of all potential PSMs utilizing a 

training set, which selects from a pool of consensus matches (filtered from Andromeda and Digger 
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concurring on a specific PSM) for each mass spectrometry run. The selection process is designed 

to include peptides across the retention time of all runs in order to capture all amino acid 

properties, including modified peptides (e.g. phosphorylation) that ultimately affect the elution 

times. All consensus modified peptides are included in the training model, whilst a selection 

process is enabled for all unmodified peptides. The highest intensity consensus unmodified 

peptide is selected per 3 secs windows across the whole MS run. If Andromeda is not used, then 

consensus is based on a combination of the Digger probability score (>45), XCorr (>2.5), deltaCn 

(>0.1) and peptide rank (i.e. peptide is rank 1 by Digger probability score and Xcorr). 

 

Machine learning 

The 60 attributes (features) that characterize a PSM (Supplementary Table S1) are extracted 

from the MSCypher text file. Importantly, attributes such as Digger score or delta scores (score 

difference rank 1-5) are not used in the machine learning step since these attributes could bias 

model training because of the dependent target-decoy competition during the database search. 

The top 5 ranked target and decoy matches for any given MS/MS spectrum are extracted and 

labelled as “known-set” of PSMs to be any match to the target database where there is consensus 

between search algorithms (total of 139331 PSMs) and any match to the decoy database (total 

of 8193480 PSMs). The main parameters of the Random Forest (RF) were set as follows: the 

number of trees was 5000, to reduce variation between models and increase separation between 

decoy and target matches, the sample size was set to the square root of the number of target 

database matches used in the training set, to assure the model is built using balanced classes; 

all the other parameters were left at default, with the exception of “nodesize”, for which 4 different 

values (5,10, 20 and 30) were tested, to investigate its effect on computational requirements for 

generating the model. 
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To assess the accuracy of the model for varying parameters and training set size, we picked a 

varying number of target PSMs (2, 5, 10, 30 thousand) at random from the “known-set” pool, and 

a varying number of decoy database matches as a factor of target PSMs (1x, 5x, 10x). Figure S2 

shows the results for model accuracy, false positive rate (FPR) and true positive rate (TPR), using 

the remainder of the “known-set” for validation, with different training set sizes and values for the 

node-size parameter, and by repeating each estimation ten times. Also, the figure shows the time 

required for generating the model. The accuracy of all the models was above 99.5%, however a 

0.2% variation from the lowest to the highest accuracy can account for a very large number of 

PSMs when analyzing large datasets. Thus, we used a training set of 180K PSMs with a target 

to decoy PSMs ratio of 1:5 as a standard training set and the “nodesize” parameter set to 5 for all 

the datasets for this work. This combination showed a balance between the highest accuracy and 

TPR with the lowest FPR and the time spent for generating the model by parallelizing the 

computation on four cores. 

After generating the model, it was used to predict targets on the complete dataset. The output of 

the RF is represented as a vote count, where each tree of the forest accounts for one vote by 

classifying a PSM as target or decoy match, we take the sum of the votes that classify a potential 

PSM as a decoy database match as the preliminary score of a PSM. Supplemental Figure 3 

shows the density distribution of scores for PSMs from both the target and decoy matches derived 

from the random forest algorithm. In this case, the scores range from 5000 to 0, where each vote 

accounts for the output of a tree in the forest where the tree classifies the PSM as a decoy DB 

match. The figure shows the wide separation between true target database matches (on the right 

side with low to 0 RF votes) and random decoy matches (on the left side with high to 5000 RF 

votes) that this classification approach is capable to generate, thus highly increasing the ability to 

recognise a potentially true spectrum match. 

From the number of RF votes that classify the PSM as a decoy match, we calculated a PSM-

score as follows 
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Taking the top-ranking spectrum match for each PSM, we group them by sequence length (6 to 

25) and group together all sequences with a length greater than 25.  We then applied a 1% FDR 

filter to each group independently, experiment wide.  

As a second FDR cut-off filter we calculate the score for a modified peptide feature (intended as 

the combination of an identified peptide’s sequence, modification and charge state) by calculating 

its maximum PSM score experiment wide and then filtering at 1% FDR. 

 

Machine learning using Percolator to calculate q-values and PEP scores for all peptides is 

included in the workflow and reported in the MSCypher output table if this option is enabled in the 

MSCypher configuration file. Turning this option on by default is useful as it provides additional 

evidence and confirmation of the reported significant PSMs. 

 

Protein inference 

Protein inference was performed using only unique significant scoring peptide features from the 

Random Forest output, by summing the peptide feature scores for all target and decoy inferred 

proteins. Proteins are classified into six hierarchical categories: distinct, differentiable, 

subsumable, superset, subset and equivalent in accordance with DBParser (Yang et al., 2004) 

guidelines and subsequent refinement (Huang et al., 2012). MSCypher only reports proteins from 

the distinct, differentiable and superset categories adhering strictly to the Occam’s razor principle 

to ensure that the minimum set of proteins are reported at 1% FDR that explain all unique 

significant scoring peptide features. Target and decoy protein lists including identified peptides 

and scores are output including a protein FDR table indicating the number of protein groups at 

different FDR percentages. 
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Label-free quantitation and statistical analysis 

A label-free quantitation workflow written in R automatically reads the protein inference tables, 

experiment design (experiment_design.txt) and a table that lists the pairwise comparisons to be 

performed (pairwise_comparisons.txt). This is a modified version of the workflow previously 

reported by our group (Delconte et al., 2016). In the script, a feature was defined as the 

combination of peptide sequence, charge and modification. For each pairwise comparison, 

features not found in at least half the number of replicates in at least one of the conditions were 

ignored.  

Intensity normalisation was performed by selecting a LC-MS/MS run with the highest number of 

identified features as a reference and removing non-linear variation of intensities with respect to 

retention time by performing a Loess regression (Cleveland, 1992) on matched 

features.  Features assigned to the same protein differ in the range of intensity due to their physio-

chemical properties and charge state, to further correct for these differences, each intensity value 

was multiplied by the ratio of the maximum of the median intensities of all features for a protein 

over the median intensity of the feature.  

Missing values where imputed using a random normal distribution of values with the mean set at 

mean of the measured distribution of intensity values minus 1.8 standard deviations (s.d), and a 

s.d. of 0.3 times the s.d. of the distribution of the measured intensities (Cox et al., 2014). The 

probability of differential expression between groups was calculated using the Wilcoxon Rank 

Sum test excluding any non-unique sequences, the output of the R function wilcox.test 

included P value, confidence interval and ratio estimate. Probability values were corrected for 

multiple testing using Benjamini–Hochberg method. Cut-off lines with the function y = −log10(0.05) 

+ c/(x − x0) were introduced to identify significantly enriched proteins (Keilhauer et al., 

2015). “c” was set to 0.2 while “x0“ was set to the standard deviation of the protein log2 ratio. The 

script outputs a results table (LFQ_Results.txt) with all the information on the pairwise 

comparisons at the feature level. A protein table (LFQ_Proteins.txt) with protein log2 ratios, 
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PValues, confidence intervals using both Wilcoxon rank sum test and Student’s t-test by pairwise 

comparisons, peptide counts and sum peptide intensities for the whole experiment by group and 

by LC-MS/MS run. A peptide table (LFQ_Peptides.txt) similar to the protein table, but with 

quantitative analysis at the peptide level. Lastly an HTML document is provided that contains 

quality control plots to evaluate the experiment (see “Supplemental_LFQ QC Report.html” file). 

Additionally, an interactive volcano plots HTML file is generated for protein quantitative analysis 

for each pairwise comparison (see “Supplemental_LFQ Results.html” file). 

 

Visualisation and support for external software tools 

Output files that are compatible with 3rd party software tools are supported as part of the workflow. 

A text file containing protein accession numbers and peptide sequences are written out 

(Protter_input.txt) which can be loaded into the Protter on-line tool (Omasits et al., 

2014)(http://wlab.ethz.ch/protter/start/). A “peptigram” csv file is output summarising peptide 

feature intensities across all mass spectrometry runs, conditions and bioreplicates for all inferred 

proteins. This file can be used as input to the on-line Peptigram program (Manguy et al., 2017) 

(http://bioware.ucd.ie/peptigram/) for visualisation. A Skyline (MacLean et al., 2010) file 

(Skyline_input.ssl) and  protein sequence FASTA file for all inferred protein hits for the analysis 

are written out, which can be loaded directly into Skyline in order to build libraries, visualise 

annotated spectra and enable verification and follow up for targeted experiments. Fully compatible 

MSstats (Choi et al., 2014) peptide and protein input files are written out which can be loaded and 

run automatically in R with minor manipulation. Finally, the program Cd-hit (Li and Godzik, 2006) 

is run as part of the workflow in order to cluster protein sequences at 90% and 60% based on the 

list of inferred proteins. These files could be used as input to a follow-up/cascaded search or error-

tolerant type database searches. 

 

Comparison of multiple search algorithms 
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The Human/E.coli dataset was analysed using 4 different search algorithms 

(MaxQuant/Andromeda, MSCypher/Digger, MSGF+ and Comet) using identical input, search 

parameters and the Homo sapiens / Escherichia coli plus contaminants protein sequence 

database. Variable modifications specified were N-term protein acetylation, methionine oxidation 

and N-term pyro-glutamic acid and Cys+57 as a static modification. Precursor and product ion 

mass tolerances were 10 and 20 ppm respectively, except for Mascot where the product ion mass 

tolerance was set at 20 mmu. Default search parameters appropriate for the data were used for 

Comet and MSGF+ with the aim to minimise differences in the search space and maximise 

consensus between the different search algorithms. The search results for all 4 algorithms were 

then combined in order to compile a large set of consensus spectra for generating “chimeric” 

spectra using Monte Carlo simulations. 

 

Monte Carlo simulation of chimeric spectra 

There were 770000 consensus PSMs from the Human/Ecoli dataset. Using a Monte Carlo 

simulation, 110 Million PSMs were generated in total by randomly selecting 100 spectra from the 

consensus set and simulating this process 10000 times (simulations). This first set represented 

iteration 0 (i.e., original spectra). For iteration 1 this process was repeated, but an additional 

randomly selected peak list was seeded in i.e., all peak lists generated were of increasing 

complexity mimicking semi-real chimeric spectra. This process was repeated 10 times so that 

iteration 10 peak lists would be the most complex and mimic wide isolation windows not normally 

utilised in DDA shotgun proteomics experiments, but routine in DIA (e.g. variable SWATH 

windows). No attempt was made to seed in peak lists of differing complexity or intensity. The 110 

Million PSMs were batched into MGF files and named accordingly with the simulation and iteration 

recorded in the file name (e.g. monteMGF_s4000_i7.mgf). These 110000 input files were then 

searched against MSCypher/Digger, MSGF+ and Comet search algorithms. The results for the 3 
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search algorithms were then summarised based on the original consensus peptide sequence 

which is recorded in the MGF Title line for each spectrum. 

 

Software availability 

The MSCypher workflow binaries for Windows and Linux, detailed instructions, example datasets 

are freely available from https://www.wehi.edu.au/people/andrew-

webb/2372/resources-mscypher. Source code will be available from Github 

(https://github.com/MSCypher). 
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Supplementary Figure S1. APLToMGFConverter graphical interface showing file and 

parameter settings for converting MaxQuant/Andromeda peak lists (APL) to Mascot 

generic format (MGF) for MSCypher analysis. The original MS2 peaklist was used for co-

isolated and co-fragmented peptides (i.e. secondary peptides). 
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Supplementary Figure S2. Accuracy (top-left), false positive rate (top-right), true positive 

rate (bottom-right) and computing time (bottom-left) of multiple random forest models 

using varying training set size and nodesize parameters. Each combination was assessed 

ten times by taking a different random set of PSMs to assess model variance at varying 

training sets. 
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Supplementary Figure S3. Distribution density plot of the rank one potential matches from 

Target (red) and Decoy (blue) databases. 
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Column	name	 Description	
QueryNum	 Query	number	used	internally	per	input	file	(unique	to	an	input	file)	
Target	 Target	or	Decoy	indicating	whether	the	peptide	sequence	is	a	real	entry	from	

the	sequence	database,	reversed	or	semi-randomised	
Rank	 Ranking	of	the	peptide	spectral	match	based	on	the	Digger	score	(1-20)	
NumPrecMatches	 Number	of	candidate	peptides	(target	only)	that	match	the	spectrum	based	

on	searched	mass	and	tolerance	
PepIDConsensus	 Value	between	0-1000	that	reflects	consensus	and	scoring	properties	with	0	

indicating	a	poor	match	and	1000	a	perfect	match	
PepPIF	 Precursor	ion	fraction	(MS1)	derived	from	MaxQuant	output	
MS2PIF	 Precursor	ion	fraction	(MS2)	derived	from	MaxQuant	output	
NumScoringFragIonMatches	 Number	of	fragment	ion	matches	used	in	deriving	the	Digger	score	
NumScoringFragIonPeaks	 Number	of	spectral	peaks	used	for	the	matching	fragment	ions	in	deriving	

the	Digger	score	
PercentSimilarity	 %	Similarity	between	target	(real)	and	decoy	peptide	sequence	based	on	‘b’	

and	‘y’	ions	taking	into	account	modifications	
PepSeq	 Actual	peptide	sequence	identified	from	the	sequence	database	
deNovoSeq	 deNovo	sequence	derived	from	the	spectrum	using	the	PepNovo	program	
rnkScr	 PepNovo	rank	score	
pnvScr	 PepNovo	Pevsner	score	
EludePepSeq	
	

Modified	 peptide	 sequence	 using	 Unimod	 representation	 (e.g.	
M[unimod:35]MEFK)	

VMLScore	 Variable	Mod	Localisation	probability	score	(e.g.	GHFS(1.0)DGS(0.1)LK)	
Mods	 Actual	modification	mass	and	site	(e.g.	15.994915@1)	
NumMods	 Number	of	observed	variable	modifications	
NumPhosphos	 Number	of	phosphorylation	modifications	
PhosphoMods	 Same	as	“Mods”	but	specific	to	phosphorylation	only	modifications	
DiggerPepScore	 Digger	search	algorithm	probability	based	score	
DiggerPepHomologyScore	 Concept	of	a	homology	“gap”	score	(i.e.	gap	score	plus	13)	
PercolatorQValue	 Percolator’s	q-value	(i.e.	global	FDR)	
PercolatorPEP	 Percolator’s	PEP	score	(i.e.	posterior	error	probability)	
FeatureIntensityAUC	 Peptide	or	feature	MS1	intensity	based	on	area	under	curve	of	all	isotopes	
ObsRtMS2	
ObsRtApex	

Observed	MS2	retention	time	of	peptide	or	feature	in	minutes	
Observed	retention	time	Apex	of	peptide	or	feature	in	minutes	

PredRt	 Predicted	retention	time	(using	Elude)	of	peptide	or	feature	in	minutes	
MZ	 Observed	precursor	m/z	value	(from	MS1	scan	after	recalibration	if	any)	
Charge	 Charge	state	of	precursor	ion	
ExpMassDa	 Observed	neutral	mass	of	feature	(Mr)	in	Daltons	
PepMassDa	 Calculated	neutral	mass	of	peptide	(Mr)	in	Daltons	
DeltaMassDa	 Difference	in	calculated	and	observed	mass	of	peptide	in	Daltons	
DeltaMassPPM	 Difference	in	calculated	and	observed	mass	of	peptide	in	parts-per-million	
C13	 Values	between	0-2	–	e.g.	if	C13	is	0	then	the	monoisotopic	peak	has	been	

matched	
NumDataPoints	 Only	 valid	 if	 the	 data	 has	 been	processed	 by	MaxQuant	 feature	 detection	

(from	allPeptides	file)	
NumScans	 Only	 valid	 if	 the	 data	 has	 been	processed	 by	MaxQuant	 feature	 detection	

(from	allPeptides	file)	
NumIsotopePeaks	 Only	 valid	 if	 the	 data	 has	 been	processed	 by	MaxQuant	 feature	 detection	

(from	allPeptides	file)	
FileName	 Name	of	the	input	file	
MS2Scan	 Instrument	MS2	scan	number	for	peptide	spectral	match	
RMSErrorPPM	 Root	mean	square	error	taking	into	account	all	fragment	ion	matches	in	parts	

per	million	
RMSErrorNumMatches	 Number	of	fragment	ions	used	in	the	RMSErrorPPM	calculation	
TIC	 Total	Ion	Current	for	MS2	spectrum	
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CompBondCleavage	 Percentage	complementary	bond	cleavage	i.e.	100%	would	mean	that	every	
backbone	bond	 is	broken	into	complementary	b	and	y	matching	fragment	
ions	

DeltaScore	 Difference	in	score	between	rank	X	hit	and	rank	1	hit	
DeltaRt	 Difference	between	observed	and	predicted	retention	time	in	minutes	
ChimericStatus	 True	if	the	feature	is	targeted	by	the	instrument	(i.e.	precursor)	or	False	if	

the	peptide	was	co-isolated	in	the	isolation	window	(i.e.	secondary)	
FeatureNum	 Recorded	feature	number	used	internally	–	also	represents	the	line	number	

in	the	AllPeptides	text	file	from	MaxQuant	
MissedCleavages	 Number	of	missed	cleavages	if	an	enzymatic	search	
RPMS	 Relative	proton	mobility	scale	–	for	future	use	
SVMScore	 Support	vector	machine	score	–	alternative	to	Percolator	machine	learning	

called	Newbee	
SVMSig	 Support	vector	machine	score	is	significant	–	true	or	false	(Newbee)	
SVMResult	 Support	vector	machine	prediction	–	target	or	decoy	(Newbee)	
RFFeatureScore	 RandomForest	feature	score	
RFPSMScore	 RandomForest	peptide	spectral	match	score	
ModPepID	 Internal	index	for	tracking	peptides	based	on	their	modification	status	
Rawfilename	 Original	acquired	raw	mass	spec	filename	
RFRank	 RandomForest	ranking	of	peptide	spectral	match	
RFFeatureFDR	 RandomForest	false	discovery	rate	at	the	feature	level	
RFPsmFDR	 RandomForest	false	discovery	rate	at	the	peptide	spectral	match	level	
TargetVotes	 RandomForest	number	of	votes	awarded	(max	5000)	for	target	hit	
DecoyVotes	 RandomForest	number	of	votes	awarded	(max	5000)	for	decoy	hit	
RFPrediction	 RandomForest	prediction	i.e.	either	target	or	decoy	
MAErrorPPM	 Fragment	ion	mass	accuracy	mean	error	in	parts-per-million	
AltDeltaScore	 Digger	delta	score	
FragMZ	 List	of	matching	fragment	ion	mz	values	(semi-colon	separated)	
FragInt	 List	of	matching	fragment	ion	intensity	values	(semi-colon	separated)	
FragError	 List	 of	 matching	 fragment	 ion	 delta	 mass	 values	 in	 daltons	 (semi-colon	

separated)	
FragIonTypes	 List	of	matching	fragment	ion	types	(semi-colon	separated)	
FragPos	 List	 of	matching	 fragment	 ion	 positions	 in	 peptide	 sequence	 (semi-colon	

separated)	
FragCharge	 List	of	matching	fragment	ion	charge	values	(semi-colon	separated)	
Consecutive	ion	reward	 Cumulative	reward	for	matching	consecutive	fragment	ions	(22	columns)	
Summed	intensity	 Summed	intensity	of	matching	fragment	ions	for	22	ion-types	(22	columns)	
Number	of	matching	ions	 Count	of	matching	fragment	ions	for	22	ion-types	(22	columns)	
StartPos	 Start	 position	 of	 peptide	 in	 protein	 sequence	 (semi-colon	 separated	 for	

multiple	proteins)	
EndPos	 End	 position	 of	 peptide	 in	 protein	 sequence	 (semi-colon	 separated	 for	

multiple	proteins)	
PreRes	 3	 residues	 preceding	 the	 peptide	 for	 its	 associated	 protein	 (semi-colon	

separated	for	multiple	proteins)	
PostRes	 3	residues	after	the	peptide	for	its	associated	protein	(semi-colon	separated	

for	multiple	proteins)	
EnzymeSpecificity	 Complete,	semi	or	non-specific	(2,1	or	0)	
ProteinLength	 Length	of	protein	(semi-colon	separated	for	multiple	proteins)	
AccNums	 List	of	protein	accession	numbers	(semi-colon	separated)	
FastaEntryNum	 Actual	entry	number	in	FASTA	file	(zero-based	index)	
UniqueID	 Index	into	spectral	peaklist	file	(e.g.	MGF)	for	other	applications	e.g.	Skyline	
deltaCn	 Delta	cross-correlation	score	reflecting	peptide	ranking	for	MS2	peaklist	
XCorr	 Cross-correlation	 score	 between	 peptide	 and	 MS2	 peaklist	 (i.e.	 sequest	

xcorr)	
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Supplementary Table S1. MSCypher tab-delimited output file detailing all PSM match 

information used throughout the workflow by all processes. 
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