
He et al.

RESEARCH

A new insight into underlying disease mechanism
through semi-parametric latent differential
network model
Yong He1, Jiadong Ji1*, Lei Xie2,3, Xinsheng Zhang4 and Fuzhong Xue5

Abstract

Background: In genomic studies, to investigate how the structure of a genetic network differs between two
experiment conditions is a very interesting but challenging problem, especially in high-dimensional setting.
Existing literatures mostly focus on differential network modelling for continuous data. However, in real
application, we may encounter discrete data or mixed data, which urges us to propose a unified differential
network modelling for various data types.

Results: We propose a unified latent Gaussian copula differential network model which provides deeper
understanding of the unknown mechanism than that among the observed variables. Adaptive rank-based
estimation approaches are proposed with the assumption that the true differential network is sparse. The
adaptive estimation approaches do not require precision matrices to be sparse, and thus can allow the
individual networks to contain hub nodes. Theoretical analysis shows that the proposed methods achieve the
same parametric convergence rate for both the difference of the precision matrices estimation and differential
structure recovery, which means that the extra modeling flexibility comes at almost no cost of statistical
efficiency. Besides theoretical analysis, thorough numerical simulations are conducted to compare the empirical
performance of the proposed methods with some other state-of-the-art methods. The result shows that the
proposed methods work quite well for various data types . The proposed method is then applied on gene
expression data associated with lung cancer to illustrate its empirical usefulness.

Conclusions: The proposed latent variable differential network models allows for various data-types and thus
are more flexible, which also provide deeper understanding of the unknown mechanism than that among the
observed variables. Theoretical analysis, numerical simulation and real application all demonstrate the great
advantages of the latent differential network modelling and thus are highly recommended.

Keywords: Adaptive estimation; Gaussian copula; Differential graphical model; Latent variable; Rank-based
approach

Background
In genomic studies, graphical model has been an im-
portant tool to capture dependence among different
genes. Particularly, Gaussian graphical model has been
widely applied to infer the relationship between genes
at the transcriptional level [1–4]. Under the Gaussian
assumption, estimating the structure of the graphical
model is equivalent to recover the support of preci-
sion matrix which is defined to be the inverse of the
covariance matrix. However, in some cases, compared
to focusing on a particular network, it is of greater
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interest to investigate how the network of connected
gene pairs change from one experimental condition to
another, which provides deeper insights on an under-
lying biological process such as identification of path-
ways that correspond to such a change. For instance,
medical experiment usually involves two groups: the
patient group and the control group. The analysis of
group difference in biological networks or pathways
may offer us a new insight into the underlying dis-
ease mechanism, which have extensive biomedical and
clinical applications, such as identifying effective tar-
gets for drug development in a cost-effective and timely
manner. Indeed, differential networking modelling has
recently emerged as an important tool to analyze a
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set of changes in graph structure between two condi-
tions [see, for example 5–17]. In the context of genomic
analysis, it is reasonable to assume that two genes are
defined to be connected in the differential network if
the magnitude of their conditional dependency rela-
tionship changes between two conditions. The preci-
sion matrix which is defined as the inverse of covari-
ance matrix can capture the conditional dependency
relationship. Thus the differential network is typically
modelled as the difference of two precision matrices
and this type of modelling has been widely used [7–
9, 14, 15]. Figure 1 (a),(b),(c) illustrate the definition
of differential network. Each node represents a gene.
For two groups depicted in (a) and (b), there is an
edge between genes (i, j) if and only if (i, j)-th ele-
ment of Ω is nonzero. For each edge, there exists a
weight which is the magnitude of (i, j)-th element of
Ω. Gene pair (i, j) is defined to be connected in the
differential network in (c) if the magnitudes of (i, j)-th
elements of two precision matrices change between two
groups.

One straightforward approach to estimate the differ-
ence of two precision matrices is to separately estimate
the precision matrices and then subtract the estimates.
In the high dimensional setting where the dimension
p is much larger than the sample size n, which is of-
ten the case for genomic study, many estimation ap-
proaches for the precision matrix have been proposed
and proved to enjoy nice theoretical properties and
computation advantage under the key assumption of
sparsity. And this topic has been an active area of re-
search in recent years [18–22].

Another type of approach to estimate the difference
of two precision matrices is to jointly estimate the
precision matrices. Guo et al. [23] penalized the joint
loglikelihood with a hierarchical penalty that targets
the removal of common zeros in the inverse covariance
matrices across categories. Danaher et al. [24] pro-
posed the joint graphical Lasso, which is based upon
maximizing a penalized log-likelihood with generalized
fused Lasso or group Lasso penalty. Motivated by the
constrained `1 minimization approach to precision ma-
trix estimation of [22], Zhao et al. [7] proposed an es-
timation approach to directly estimate the difference
of the precision matrices.

For the separately estimating methods, Liu et al. [25]
proposed the nonparanormal family to relax the Gaus-
sian assumption. While the nonparanormal family is
much larger than the standard parametric Gaussian
family, the independence relations among the variables
are still encoded in the precision matrix. In addition,
Liu et al. [26] proposed a semiparametric approach
called nonparanormal skeptic to estimate high di-
mensional undirected graphical models efficiently and

robustly and proved that the nonparanormal skeptic
achieves the optimal parametric rates of convergency
in terms of precision matrix estimation and graph re-
covery. Xue and Zou [27] proposed a similar regularized
rank-based estimation idea for estimating nonparanor-
mal graphical models and analyzed adaptive versions
of rank-based Dantzig selector and clime estimators.
He et al. [28] proposed a multiple testing procedure
to estimate high-dimensional nonparanormal graphi-
cal model and proved that the proposed procedure can
control the false discovery rate (FDR) asymptotically.

The disadvantage of Gaussian or nonparanormal
graphical models lies in that they are only tailored for
modeling continuous data. However, in genomic stud-
ies, we may encounter discrete data (e.g. CNV data
and SNP data), continuous data (e.g. gene expres-
sion and methylation data) or data of hybrid types
with both discrete and continuous variables. Besides,
in some circumstances, even if the data are continu-
ous, we still need to transform the data into discrete
data to remove the heterogeneity (e.g. batch effect,
outliers and population stratification). For instance,
in the analysis of gene expression data collected from
different platforms, to remove the unwanted variation
among different experiments known as the batch ef-
fects, numerical expression data are often transformed
into 0/1 binary data, where lower expression values are
encoded as 0 and higher expression values are encoded
as 1. In this setting, it is reasonable to assume that
the discrete variable is obtained by discretizing a la-
tent variable. Fan et al. [29] proposed a general model
named the latent Gaussian copula graphical model, as-
suming that the observed discrete data are generated
by discretizing a latent continuous variable at some
unknown cutoff.

In this paper, we consider estimating differential net-
work for various types of biological data in a joint
way. We propose a unified semi-parametric latent vari-
able differential network model. The latent differential
network model is illustrated in Figure 1 (e)-(f). For
biological data, there exist continuous data, discrete
data or data of hybrid types with both continuous
and discrete data. It is assumed that these data are
collected by transforming latent continuous variables
which are unobservable. We are interested in the dif-
ferential network of the latent variables, which provide
deeper understanding of the unknown mechanism than
that among the observed variables. To the best of our
knowledge, our work provides the first method for dif-
ferential network estimation for binary or mixed data
with theoretical guarantees under the high dimensional
scaling. The advantages of the proposed methods lie in
the following aspects: (I) Our method provides a way
to infer the differential network structure among la-
tent variables, which provides deeper understanding
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of the unknown mechanism than that among the ob-
served variables. (II) Theoretical analysis shows that
the proposed methods achieve the same parametric
rates of convergence for both difference matrix esti-
mation and differential graph recovery, as if the latent
variables were observed. (III) The proposed methods
are much more robust to outliers due to the rank-based
correlation matrix estimator. (IV) The proposed ap-
proaches do not require precision matrices to be sparse,
and thus can allow the individual networks to contain
hub nodes. Simulation result shows that the proposed
method performs much better and more robustly than
several state-of-the-art methods. The proposed meth-
ods are applied on a gene expression data set associ-
ated with lung cancer. A target gene WIF1 stands out
by the proposed method, which indeed is verified as a
frequent target for epigenetic silencing in various hu-
man cancers [30]. The real data example illustrates the
great usefulness of the current work.

Methods
In this part, we propose novel definitions of latent dif-
ferential network model for various types of data. In
essence, we define the differential network as the dif-
ference of two precision matrices of the latent vari-
ables, which greatly generalizes the applicability in ar-
eas such as bioinformatics, medical research and so on.

Gaussian copula differential graphical model
We first review the definition of the Gaussian copula
distribution. Let f = {f1, . . . , fp} be a set of strictly
increasing univariate functions. A p dimensional ran-
dom variable X = (X1, . . . , Xp)

> is said to follow the
Gaussian copula distribution if and only if f(X) :=
(f1(X1), . . . , fp(Xp))

> := Z ∼ Np(µ,Σ) and is noted
as X ∼ NPN(µ,Σ, f), where µ = (µ1, . . . , µp),Σ =
[Σjk] are respectively the mean vector and the correla-
tion matrix of the Gaussian variate Z. The conditional
independence structure ofX is encoded by the sparsity
pattern of Ω = Σ−1. Specifically, it can be shown that
Xi is conditionally independent of Xj given all other
variables if and only if ωij = 0, where ωij is the (i, j)-
th element of Ω. Therefore, the differential network of
the Gaussian copula variables can be defined to be the
difference between the two precision matrices, just the
same as for the parametric Gaussian case.

Assume Xi = (Xi1, . . . , Xip)
> for i = 1, . . . , nX

are independent observations of the expression lev-
els of p genes from one group denoted by X and
Yi = (Yi1, . . . , Yip)

> for i = 1, . . . , nY from the other
denoted by Y , X ∼ NPN(µX ,ΣX , fX) and Y ∼
NPN(µY ,ΣY , fY ). The differential network is defined
to be the difference between the two precision matri-
ces, denoted by ∆0 = ΩY −ΩX , where ΩY and ΩX

are the inverse matrices of ΣY and ΣX separately.

We propose a rank-based estimator of ΣX . It is
known that if Z ∼ NPN(µ,Σ, f), then we have Σjk =
sin(π2 τjk), where τjk is Kendall’s tau correlation be-
tween Zj and Zk. Thus we can estimate the unknown
correlation matrix ΣX by:

ŜXjk =

{
sin(π2 τ̂

X
jk) j 6= k

1 j = k
, (1)

where τ̂Xjk is the sample Kendall’s tau correlation be-

tween Xj and Xk. Similarly, we can estimate ΣY in the

same way and obtain the estimator ŜY . Motivated by
the direct estimation method of the difference of two
precision matrices proposed by [7], one can obtain the
estimator of ∆0 by solving

arg min |∆|1, subject to |ŜX∆ŜY−ŜX+ŜY |∞ ≤ λn,

which is equivalent to the optimization problem:

arg min |∆|1, subject to∣∣∣(ŜX ⊗ ŜY )Vec(∆)−Vec(ŜX − ŜY )
∣∣∣
∞
≤ λn,

(2)

where ⊗ denotes the Kronecker product, |∆|1 =∑
jk δjk is the element-wise `1 norm of the matrix ∆.

Here, for a matrix A = [Ajk], |A|∞ = maxjk |Ajk| and
for a vector a = (aj), |a|∞ = maxj |aj |.

As seen from Equation (2), the proposed approach
can directly estimate the difference matrix without
implicitly estimating the individual precision matri-
ces. Thus there is no need to assume the sparsity of
(ΣY )−1 and (ΣX)−1. We only need to assume that
∆0 is sparse. Besides, compared to the sample covari-
ance matrix, the rank-based estimators here can enjoy
modelling flexibility and estimation robustness, espe-
cially when outliers exist.

Latent Gaussian copula differential graphical model
for binary data
In the analysis of gene expression data, to remove
the batch effects, numerical expression data are often
transformed into 0/1 binary data, where lower expres-
sion values are encoded as 0 and higher expression
values are encoded as 1. To estimate the underlying
differential network for the binary data from two dif-
ferent groups, we assume that the observed discrete
data are generated by discretizing a latent continuous
variable at some unknown cutoff. To make the model
more flexible, we assume the latent continuous variable
is Gaussian copula distributed instead of Gaussian. Let
B = (B1, B2, . . . , Bp)

> ∈ {0, 1}p be a p-dimensional
0/1-random vector. The 0/1-random vectorB satisfies
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the latent Gaussian copula model (LGCM) for binary
data, if there exists a p dimensional random vector
X ∼ NPN(0,Σ, f) such that

Bj = I(Xj > Cj), for all j = 1, . . . , p,

where I(·) is the indicator function and the cutoff C =
(C1, . . . , Cp) is a vector of constants. Then we denote
B ∼ LGCM(Σ, f,C). We call Σ the latent correlation
matrix. The latent Gaussian copula model involves pa-
rameters (Σ, f,C). Merely based on the binary ran-
dom vector B, only fj(Cj), j = 1, . . . , p are identifi-
able. Denote Λ = (Λ1, . . . ,Λp), where Λj = fj(Cj).
For notational simplicity, we write LGCM(Σ,Λ) for
LGCM(Σ, f,C).

Assume B1
i = (B1

i1, . . . , B
1
ip)
> for i = 1, . . . , n1 are

independent observations of the binary expression lev-
els of p genes from one group denoted by B1 and
B2
i = (B2

i1, . . . , B
2
ip)
> for i = 1, . . . , n2 from the other

denoted by B2, where B1 ∼ LGCM(Σ1, Λ1) and
B2 ∼ LGCM(Σ2,Λ2). The differential network is de-
fined to be the difference between the two precision
matrices, denoted by ∆B

0 = (Σ2)−1 − (Σ1)−1. Moti-
vated by Equation (2), we should first derive estima-
tors for Σ1 and Σ2. For ease of presentation, we only
present the procedure to construct the estimator for
Σ1, estimator for Σ2 can be obtained similarly. De-
note the Kendall’s tau correlation between B1

j and B1
k

by τ1jk, it can be shown that τ1jk satisfies:

τ1jk = 2
{

Φ2(Λ1
j ,Λ

1
k,Σ

1
jk)− Φ(Λ1

j )Φ(Λ1
k)
}
,

where

Φ2(u, v, t) =

∫
x1<u

∫
x2<v

φ2(x1, x2; t)dx1dx2,

is the cumulative distribution function of the standard
bivariate normal distribution, φ2(x1, x2; t) is the prob-
ability density function of the standard bivariate nor-
mal distribution with correlation t. Denote by

F (t; Λ1
j ,Λ

1
k) = 2

{
Φ2(Λ1

j ,Λ
1
k, t)− Φ(Λ1

j )Φ(Λ1
k)
}
.

For any fixed Λ1
j and Λ1

k, it can be shown that

F (t; Λ1
j ,Λ

1
k) is a strictly monotonic increasing func-

tion on t ∈ (−1, 1) and thus is invertible. Given Λ1
j

and Λ1
k, one can estimate Σ1

jk by F−1(τ̂1jk; Λ1
j ,Λ

1
k).

However, the cutoff values are unknown in practice.
As E(B1

ij) = 1 − Φ(Λ1
j ), we can estimate Λ1

j by

Λ̂1
j = Φ−1(1 − B̄1

j ), where B̄1
j =

∑n
i=1B

1
ij/n. Thus

the Kendall’s tau rank-based correlation matrix esti-
mator R̂1 = [R̂

1

jk] for Σ1 is a p×p matrix with element

entry given by

R̂
1

jk =

{
F−1(τ̂1jk; Λ̂1

j , Λ̂
1
k) j 6= k,

1, j = k.
(3)

Similarly, the Kendall’s tau rank-based correlation ma-

trix estimator R̂2 = [R̂
2

jk] for Σ2 is a p×p matrix with
element entry given by

R̂
2

jk =

{
F−1(τ̂2jk; Λ̂2

j , Λ̂
2
k) j 6= k,

1, j = k.
(4)

Motivated by Equation (2), we can obtain an estimator
of ∆B

0 by solving the following optimization problem:

arg min |∆|1, subject to∣∣∣(R̂1 ⊗ R̂2)Vec(∆)−Vec(R̂1 − R̂2)
∣∣∣
∞
≤ λn.

(5)

For the binary data, we aim to infer the differential
network among latent variables, which provides deeper
understanding of the unknown mechanism than that
among the observed binary variables. Thus, our model
complements the existing work on high dimensional
differential network estimation, which mostly focused
on learning differential network among observed vari-
ables including, for example, the Ising model.

Latent Gaussian copula differential graphical model
for Mixed data
In the analysis of biological data, there also exists
the case where some biological data are discrete while
some others are continuous. For instance, multi-level
omics data integrative analysis involves gene mutation,
expression, methylation, metabolome and phenome
data. In this case, mixed data appear naturally. We
start with the definition of the latent Gaussian copula
model for mixed data. Assume that M = (M1,M2),
where M1 represents the p1-dimensional binary vari-
ables and M2 represents the p2-dimensional continu-
ous variables. The random vector M satisfies the la-
tent Gaussian copula model for mixed data, if there
exists a p1 dimensional random vector X1 such that
X = (X1,M2) ∼ NPN(0,Σ, f) and

Mj = I(Xj > Cj) for all j = 1, . . . , p1,

where C = (C1, . . . , Cp1) is a vector of constants.
Then we denote M ∼ LGCM(0,Σ, f,C), and call Σ
the latent correlation matrix. In the latent Gaussian
copula regression model, the binary components M1

are generated by a latent continuous random vector
X1 truncated at C, and combining with the contin-
uous components M2, X = (X1,M2) satisfies the
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Gaussian copula model. For the binary data M1, only
Λj = fj(Cj), j = 1, . . . , p1 are identifiable. For the con-
tinuous componentsM2, the marginal transformations
fj(·), j = p1 + 1, . . . , p are identifiable.

Assume M1
i = (M1

i1, . . . ,M
1
ip)
> for i = 1, . . . , n1

are independent observations of the expression lev-
els of p genes from one group denoted by M1 and
M2

i = (M2
i1, . . . ,M

2
ip)
> for i = 1, . . . , n2 from the

other denoted by M2, where M1 ∼ LGCM(Σ1,Λ1)
and M2 ∼ LGCM(Σ2,Λ2). The differential network
is defined to be the difference between the two preci-
sion matrices, denoted by ∆M

0 = (Σ2)−1 − (Σ1)−1.
Similar to the discussions in the last sections, we
first need to construct estimators for Σ1 and Σ2. For
ease of presentation, we only present the procedure
to construct the estimator for Σ1, estimator for Σ2

can be obtained similarly. For discrete components
M1
ij ,M

1
ik(1 ≤ j, k ≤ p1), as what we have discussed

in the last subsection with a slight change of notation,
we can estimate Σ1

jk by:

T̂
1

jk =

{
F−1(τ̂1jk; Λ̂1

j , Λ̂
1
k) 1 ≤ j 6= k ≤ p1,

1, 1 ≤ j = k ≤ p1.
(6)

For continuous components M1
ij ,M

1
ik, as what we have

discussed, we can estimate Σ1
jk by:

T̂
1

jk =

{
sin(π2 τ̂jk) p1 + 1 ≤ j 6= k ≤ p,

1, p1 + 1 ≤ j = k ≤ p. (7)

where τ̂jk is defined as follows:

τ̂1jk =
2

n1(n1 − 1)

∑
1≤i≤i′≤n1

sign(M1
ij−M1

i′j)·sign(M1
ik−M1

i′k).

We still need to consider the mixed case. Without
loss of generality, we assume that M1

ij is binary and

M1
ik is continuous. In this case, the Kendall’s tau cor-

relation can be expressed by

τ̂1jk =
2

n1(n1 − 1)

∑
1≤i≤i′≤n1

(M1
ij−M1

i′j)·sign(M1
ik−M1

i′k).

The population version of Kendall’s tau correlation
τ1jk = E(τ̂1jk) can be expressed by τ1jk = H(Σ1

jk; Λ1
j ),

where

H(t; Λ1
j ) = 4Φ2(Λ1

j , 0, t/
√

2)− 2Φ(Λ1
j ).

Moreover, for fixed Λ1
j , H(t; Λ1

j ) is an invertible func-

tion of t. The parameter Λ1
j could be estimated by

Λ1
j = Φ−1(1 − M̄1

j ), where M̄1
j =

∑n
i=1M

1
ij/n. Thus

when M1
ij is binary and M1

ik is continuous, Σ1
jk can be

estimated by the Kendall’ tau rank-based estimator:

T̂
1

jk = H−1(τ̂1jk; Λ̂1
j ), 1 ≤ j ≤ p1 < k ≤ p, (8)

where H−1(τ,Λ1
j ) is the inverse function of H(t,Λ1

j )

for fixed Λ1
j . Thus the Kendall’s tau rank-based corre-

lation matrix estimator T̂1 = [T̂
1

jk] for Σ1 is a p×p ma-
trix with corresponding element entry given by Equa-
tion (6), (7), and (8) respectively. Similarly, we can

obtain estimator T̂2 for Σ2. Motivated by Equation
(2), we can obtain an estimator of ∆0 by solving the
following optimization problem:

arg min |∆|1, subject to∣∣∣(T̂1 ⊗ T̂2)Vec(∆)−Vec(T̂1 − T̂2)
∣∣∣
∞
≤ λn.

(9)

We show that the rank-based covariance matrix es-
timators achieve the same parametric rate of conver-
gence for both difference matrix estimation and dif-
ferential graph recovery in the Additional file 1. Thus
the extra modelling flexibility comes at almost no cost
of statistical efficiency. Besides, for the binary data
or data of hybrid types with both binary and contin-
uous variables, the differential network among latent
variables can be well estimated, which provides deeper
understanding of the unknown mechanism than that
among the observed variables.

Implementation
In this section we will present how to solve the opti-
mization problems in Equation (2), (5), and (9). For
ease of presentation, we only present the procedure to
obtain the solution to optimization problem in Equa-
tion (2) and solutions to optimization problems in
Equation (5) and Equation (9) can be obtained in the
similar way.

Recall that in Equation (2), the optimization prob-
lem is

arg min |∆|1, subject to∣∣∣(ŜX ⊗ ŜY )Vec(∆)−Vec(ŜX − ŜY )
∣∣∣
∞
≤ λn.

Let ∆ = [δjk]1≤j,k≤p and define θ to be the p(p +
1)/2 × 1 vector with θ = (δjk)1≤j≤k≤p. Estimating a
symmetric ∆ is thus equivalent to estimating θ, which
alleviates the computation burden especially when p is
large. Define the p2×p(p+1)/2 matrix Γ with columns
indexed by 1 ≤ j ≤ k ≤ p and with rows indexed by
l = 1, . . . , p and m = 1, . . . , p, so that each entry is
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labeled by Γlm,jk. For j ≤ k, let Γjk,jk = Γkj,jk = 1

and set all other entries of Γ equal to zero. With these

notations, one may consider the following optimization

problem:

θ̂ = arg min |θ|1 subject to{
|Γ>ŜΓθ − Γ>ŝ|O∞ ≤ λn,
|Γ>ŜΓθ − Γ>ŝ|D∞ ≤ λn/2,

(10)

where Ŝ = ŜX ⊗ ŜY , ŝ = Vec(ŜX − ŜY ) and for a

p(p + 1)/2 × 1 vector c, |c|O∞ denotes the sup-norm

of the entries of c corresponding to the off diagonal

elements of its matrix form, while |c|D∞ denotes the

sup-norm of the entries of c corresponding to the diag-

onal elements. The matrix form of θ̂ will be denoted by

∆̂ in the following sections. The optimization problem

in Equation (10) can be solved by the alternating di-

rection method of multipliers (ADMM), for a thorough

discussion, we refer to [31]. For the optimization prob-

lem in Equation (10), to apply the ADMM algorithm,

we rewrite it as:

θ̂ = arg minθ,z{|θ|1 + g(z)}

subject to Γ>ŜΓθ + z = Γ>ŝ,

where the function g(·) is defined by

g(z) =

{
∞ |zO∞| > λn or |zD∞| > λn/2.
0, otherwise.

The augmented Lagrangian can be written as

Lρ(θ, z,u) = u>
(
Γ>ŜΓθ + z − Γ>ŝ

)
+ |θ|1

+ρ
2

∣∣∣Γ>ŜΓθ + z − Γ>ŝ
∣∣∣2
2

+ g(z),

(11)

where u is the Lagrange multiplier and ρ is a posi-

tive penalty parameter which can be specified by users.

The ADMM algorithm is based on minimizing the aug-

mented Lagrangian in (11) over θ and z and then ap-

plying a dual variable update to the Lagrange multi-

plier u, which yields the updates

z(t+1) = arg min
z

∣∣∣u(t)/ρ+ Γ>ŝ− Γ>ŜΓθ(t) − z
∣∣∣2
2

+2g(z)/ρ

θ(t+1) = arg min
θ

∣∣∣u(t)

ρ + Γ>ŝ− Γ>ŜΓθ − z(t+1)
∣∣∣2
2

+2|θ|1/ρ
u(t+1) = u(t) + ρ

(
Γ>ŝ− Γ>ŜΓθ(t+1) − z(t+1)

)
for iterations t = 0, 1, 2 . . .. As for the tuning param-
eter λn in (10), it can be chosen by an approximate
Akaike information criterion (AIC). λn is chosen to
minimize

(nX + nY )L(λn) + 2k,

where k is the effective degrees of freedom that can
be approximated by |θ̂|0 and L(λn) represents the loss
function either L∞ or LF which are defined by

L∞(λn) = |ŜX∆̂(λn)ŜY − ŜX + ŜY |∞,

LF(λn) = ‖ŜX∆̂(λn)ŜY − ŜX + ŜY ‖F.

In this paper we focus on the loss functions with the
supremum and Frobenius norms for further theoretical
development. One may also use other matrix norms,
such as spectral norm:

Lsp(λn) = ‖ŜX∆̂(λn)ŜY − ŜX + ŜY ‖2.

Similarly, for the latent Gaussian copula model for
binary data, one can solve the following optimization
problem:

θ̂B = arg min |θ|1 subject to{
|Γ>R̂Γθ − Γ>r̂|O∞ ≤ λn,
|Γ>R̂Γθ − Γ>r̂|D∞ ≤ λn/2,

(12)

where R̂ = R̂1 ⊗ R̂2, r̂ = Vec(R̂1 − R̂2). The matrix

form of θ̂B will be denoted by ∆̂B in the following sec-
tions. For the latent Gaussian copula model for mixed
data, one can solve the following optimization prob-
lem:

θ̂M = arg min |θ|1 subject to{
|Γ>T̂Γθ − Γ>t̂|O∞ ≤ λn,
|Γ>T̂Γθ − Γ>t̂|D∞ ≤ λn/2,

(13)
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where T̂ = T̂1 ⊗ T̂2, t̂ = Vec(T̂1 − T̂2). The matrix

form of θ̂M will be denoted by ∆̂M in the following sec-
tions. Besides, corresponding Akaike information cri-
terion can be proposed to choose the tuning parameter
λn.

Simulation
Simulation for Gaussian copula differential
graphical model In this part, we conduct simu-
lation study for differential network estimation un-
der Gaussian copula model. We mainly focus on the
graphs that contain hub nodes. First we generate the
edge set EX for the group X. We partition p fea-
tures into 5 equally-sized and non-overlapping sets:
C1 ∪C2 · · · ∪C5 = {1, . . . , p}, |Ck| = p/5, Ci ∩Cj = ∅.
For the smallest i ∈ Ck, we set (i, j) ∈ Ck for all
{j 6= i : j ∈ Ck}. The non-zero entries of ΩX is then
determined by the edge set EX , where ΩX = (ΣX)−1.
Next, the value of each nonzero entry of ΩX was
generated from a uniform distribution with support
[−0.75,−0.25] ∪ [0.25, 0.75]. To ensure positive defi-
niteness of ΩX , let ΩX = ΩX + (0.2 + |λmin(ΩX)|)I.
At last the ΩX is rescaled such that ΣX is a corre-
lation matrix. Then we proceed to generate the dif-
ferential network ∆0. We randomly select two hub
nodes from the 5 equally-sized and non-overlapping
sets. The differential network ∆0 is generated such
that the connections of these two hub nodes change
sign between ΩX and ΩY . The correlation matrix ΣX

and ΣY are generated by (ΩX)−1 and (ΩY )−1 respec-
tively. Finally we generate nX i.i.d observations of ZX

from the N(0,ΣX) distribution and nY i.i.d observa-
tions of ZY from the N(0,ΣY ) distribution. Next we
sample nX i.i.d samples from the nonparanormal dis-
tribution NPN(0,ΣX , fX) and nY i.i.d samples from
the nonparanormal distribution NPN(0,ΣY , fY ). For
simplicity, we use the same univariate transformations
on each dimension: fX1 = fX2 = · · · = fXp = f and

fX = fY . To sample data from the nonparanormal
distribution, we also need g := f−1. We consider the
Gaussian CDF Transformation of g which is used in
[26].

In the simulation study, we let p = 50,80,100,120
and nX = nY = 100. The simulation result is based
on 100 replications. For each simulated data set, we
apply three estimation methods. That is , the direct
differential network estimator (DDN) in [7], the rank-
based differential network estimator (RDN) and the
direct differential network estimator based on the la-
tent variable Z and Pearson correlation (ZP-DDN). In
ZP-DDN, we assume that ZX and ZY are observed
and the Pearson correlation estimator of cov(ZX) and
cov(ZY ) are plugged into the direct estimation pro-
cedure. While ZP-DDN are often not available in real

applications, we use ZP-DDN as benchmarks for quan-
tifying the information loss of the remaining estima-
tors.

We evaluate the performance of the estimation meth-
ods from two aspects: support recovery and estima-
tion error. The support recovery results are evalu-
ated by true positive rate (tpr) and true negative
rate (tnr) along a range of tuning parameter λ. Sup-
pose the true difference matrix ∆0 has the support
S0 = {(j, k) : δ0jk 6= 0, and j 6= k} and its estimator

∆̂ has the support set Ŝ. tpr and tnr are defined as
follows:

tpr =
tp

|S0|
, tnr =

tn

p(p− 1)− |S0|
,

where tp and tn are the numbers of true positives and
true negatives respectively, which are defined as

tp = #{(i, j) : (i, j) ∈ S0 ∩ Ŝ},

tn = #{(i, j) : (i, j) ∈ Sc0 ∩ Ŝc}.

To evaluate the support recovery performance, we use
the true discovery rate, which is defined as td =
tp/|Ŝ0|. As for the estimation error, we calculate the

element-wise L∞ norm and Frobenius norm of ∆̂−∆0.
Simulation for latent Gaussian copula differen-
tial graphical model In this part, we conduct simu-
lation study for differential network estimation under
Latent Gaussian copula model. We assume that the
cutoff vector C ∼ Unif [0, 1] and let Σ1 and Σ2 be
generated in the same way as ΣX and ΣY described
in the last subsection. We consider the following three
Scenarios:

• Scenario 1 Generate data B1 = (B1
1 , . . . , B

1
p)>,

where B1
j = I(Xj > Cj), j = 1, . . . , p and X ∼

NPN(0,Σ1, f1); Generate data B2 = (B2
1 , . . . , B

2
p)>,

where B2
j = I(Yj > Cj), j = 1, . . . , p and Y ∼

NPN(0,Σ2, f2). The transformation functions f1 and
f2 are Gaussian CDF transformation.

• Scenario 2 Generate dataM1 = (M1
1 , . . . ,M

1
p )>,

where M1
j = I(Xj > Cj), j = (p/2 + 1), . . . , p, X ∼

NPN(0,Σ1, f1) and M1
j = Xj , j = 1, . . . , p/2;

Generate data M2 = (M2
1 , . . . ,M

2
p )>, where M2

j =

I(Yj > Cj), j = p/2+1, . . . , p, and Y ∼ NPN(0,Σ2, f2)
and M2

j = Yj , j = 1, . . . , p/2. The transformation

functions f1 and f2 are Gaussian CDF transforma-
tion.

• Scenario 3 Generate data B1 = (B1
1 , . . . , B

1
p)>,

where B1
j = I(Z1

j > Cj), j = 1, . . . , p and Z1 ∼
N(0,Σ1), where 10 entries in each Z1 is randomly
sampled and replaced by -5 or 5;
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Generate data B2 = (B2
1 , . . . , B

2
p)>, where B2

j =

I(Z2
j > Cj), j = 1, . . . , p and Z2 ∼ N(0,Σ2), where 10

entries in each Z2 is randomly sampled and replaced
by -5 or 5.

In Scenario 1 and Scenario 3, we generate binary
data. Scenario 1 corresponds to the latent Gaussian
copula model and Scenario 3 corresponds to the setting
where the binary data can be misclassified due to the
outliers of the latent Gaussian variable. Scenario 3 is
designed to investigate the robustness of the proposed
approach. Scenario 2 corresponds to the mixed data
generated from the latent Gaussian copula model.

Application to gene expression data sets related to
lung cancer
In this section we consider the differential network
estimation for a gene expression data set related
to lung cancer. The data set is publicly available
from the Gene Expression Omnibus at accession num-
ber GDS2771 and was studied in [24]. It includes
22,283 microarray-derived gene expression measure-
ments from large airway epithelial cells sampled from
97 patients with lung cancer and 90 controls in the
data set. It is of interest to investigate how the struc-
ture of the gene co-expression network differs between
the group of patients with lung cancer and the con-
trol group. It may shed light on underlying lung can-
cer mechanisms. In this real example study, we lim-
ited our analysis to the 122 genes in the Wnt signal-
ing pathway. The Wnt signaling pathway has recently
emerged as a critical pathway in lung carcinogenesis
as already demonstrated in many cancers and partic-
ularly in colorectal cancer [32]. The Gene expression
levels were analyzed on a logarithmic scale. Each gene
feature was standardized to have mean zero and stan-
dard deviation 1 within the cancer samples and the
controls separately.

Results
Simulation results for Gaussian copula differential
graphical model
The receiver operating characteristic (ROC) curves
of the three estimation methods are depicted in Fig-
ure 2. It shows that the proposed method RDN com-
pares favourably with the benchmark method ZP-
DDN, which means that the information loss is negli-
gible. Besides, Figure 2 also shows that DDN performs
pretty bad in the non-Gaussian case.

Table 1 gives the true discovery rates with different
loss functions. The results also show the method RDN
compares favourably with the benchmark method ZP-
DDN. For all the methods, tuning using the LF gives
better true discovery rates than tuning using the L∞.

Table 1 depicts the elementwise L∞ norm estimation
accuracies of the thresholded estimators tuned using
the loss functions L∞ and LF . From Table 1, we
can see that the LF loss function gives slightly better
results than the L∞ loss function. For all the meth-
ods, the elementwise L∞ norm estimation accuracy
are comparable. We point out that it is possible for
RDN to simultaneously give better support recovery
but similar estimation than DDN. The reason is that
estimation error depends on the magnitudes of the es-
timated entries, while support recovery depends only
on whether the entries are nonzero. Besides, RDN has
comparable performance with the benchmark method
ZP-DDN in terms of both support recovery and esti-
mation accuracy, which indicates that the information
loss of the estimator RDN is negligible.

Simulation results for Latent Gaussian copula
differential graphical model
The ROC curves for Scenario 1 and Scenario 2 with
different dimensionality p (varying from 50 to 120) is
presented in Figure 3. Table 2 give the true discovery
rates with different loss functions and the elementwise
L∞ norm estimation accuracies of the thresholded es-
timators tuned using the loss functions L∞ and LF,
respectively. For method ZR-RDN, we assume that the
latent Gaussian copula variables are observed. In par-
ticular, the rank-based correlation matrix estimator of
the latent Gaussian copula variables are plugged into
the direct estimation procedure. With a slight abuse
of notation, the RDN method here refers to either the
rank-based method for binary data or for mixed data.
The ROC curves in Figure 3 show that the rank-based
methods RDN proposed for latent Gaussian copula
model (binary and mixed) perform pretty well even
when the dimensionality is larger than the sample size.

By the ROC curves in Figure 4, we can find that
RDN is more robust to the data misclassification than
the benchmark estimator ZP-DDN. The robustness of
RDN to outliers illustrates the advantage of the di-
chotomization method. In the absence of misclassifi-
cation, it is seen that the ROC curves of RDN and
ZR-RDN are similar, which indicates little informa-
tion loss for differential network recovery due to the
dichotomization procedure. Table 3 gives the true dis-
covery rates with different different loss functions for
Scenario 3 and presents the elementwise L∞ norm esti-
mation accuracies of the thresholded estimators tuned
using the loss functions L∞ and LF for Scenario 3.
From Table 3, we can see that the LF loss function
gives slightly better results than the L∞ loss function.
Besides, we can see that the elementwise L∞ norm es-
timation accuracy are comparable. This is also true for
Scenario 1 and Scenario 2.
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Theoretical results
The estimators ∆̂, ∆̂B and ∆̂M, after an additional
threshold step, are shown to be able to recover not
only the support of the true ∆0 but also the signs of
its nonzero entries as long as those entries are suffi-
ciently large. Besides, under mild conditions, the es-
timation errors bounds in terms of matrix Frobenius
norm and elementwise `∞ norm both achieve the para-
metric rate

√
log p/min(nX , nY ), see details in Addi-

tional file 1. It indicates that the extra modeling flex-
ibility and robustness come at almost no cost of sta-
tistical efficiency and it seems as if the latent vari-
able can be observed. Thus these new estimators can
be used as a safe replacement of Gaussian estimators
even when the data are truly Gaussian. Compared to
the separate and joint approaches to estimating differ-
ential networks [e.g. 22, 23] which require sparsity on
each Σ−1, the proposed direction estimation methods
for different types of data only require the sparsity of
the difference matrix ∆0. The detailed theorems and
proofs are in the Additional file 1 available online.

Results of application
In the real application part, we compare three estima-
tion methods. The first method is the Gaussian copula
RDN method, which we denote as C-RDN. The second
method is the latent Gaussian copula RDN method,
which we denote as B-RDN. In specific, we first apply
the adaptive dichotomization method implemented by
the ArrayBin package in R to remove the batch effect
in the gene expression data. The adaptive dichotomiza-
tion method transforms the numerical gene expression
data into 0/1 binary data. The genes with high expres-
sion level are encoded as 1 and the genes with lower
expression level are encoded as 0. Then we apply the
B-RDN to the 0/1 binary data. The third method is
the direct differential network estimation method pro-
posed by [7] with Gaussian assumption, which we de-
note as DDN.

We conduct Shapiro-Wilk test on the gene data set
and 63% of the genes reject the normality null hy-
pothesis. Therefore, the Gaussian assumption of DDN
method is violated in this real data example. Thus we
expect that C-RDN which relaxes the Gaussian as-
sumption may provide a more reliable result. The de-
ficiency of the C-RDN method lies in that it does not
take the batch effect of the genes expression data from
different platforms into consideration. For the B-RDN
method, it removes the batch effect.

Figure 5 depicts the differential network estimated
by the three methods. Table 4 gives the hub genes
selected out by different estimation methods. For
method C-RDN, the tuning parameter λ is selected
by the AIC criterion with the elementwise `1 norm

loss function. To ensure a fair comparison, the tun-
ing parameter λ for method B-RDN and DDN are
selected such that the number of edges in the esti-
mated differential graphs by all three methods are al-
most the same. The number of edges selected by the
three methods are 56, 59 and 52, respectively. From
Figure 5, we can see that B-RDN identifies an obvi-
ous hub gene WIF1 that is an extracellular antagonist
of WNT. WIF1 is a frequent target for epigenetic si-
lencing in various human cancers [30]. WIF1 promoter
is frequently methylated in non-small cell lung cancer
(NSCLC) cells to down-regulate its mRNA expression
[33]. Both C-RDN and B-RDN select out a common
hub gene APC. APC expression in lung cancer are as-
sociated with survival time and is also related to can-
cer metastasis [34]. Both C-RDN and DDN select out
a common hub gene, MAPK8, which plays a signifi-
cant role in the promotion of lung inflammation and
tumorigenesis subsequent to tobacco smoke exposure
[35]. The expression level of DVL2 was reported signif-
icantly higher in lung adenocarcinomas than in squa-
mous carcinomas, and was associated with poor tumor
differentiation [36]. Winn et al. [37] reported that the
restoration of FZD9 signaling inhibited both cell prolif-
eration and anchorage-independent growth, promoted
cellular differentiation, and reversed the transformed
phenotype in NSCLC. The overexpression of MMP7
was associated with tumor proliferation, and a poor
prognosis in NSCLC [38]. RAC1 generally plays an
important role in cancer progression and metastasis
[39].

By comparing (a) and (b) in Figure 5, we can see that
the estimated differential network can be very different
with/without considering the batch effect. Although it
is inevitable to result in information loss in the dis-
cretization procedure for method B-RDN, [40] argued
that this procedure can potentially improve the accu-
racy of the statistical analysis. In real data example, we
recommend to use the B-RDN method to remove the
batch effect despite the little information loss. At last
we argue that statistical comparison of group differ-
ence in this biological network or pathway can provide
new insight into the underlying lung cancer mecha-
nism, which may further offer more effective targets
for drug development.

To further interpret the underlying biological impli-
cations of the identified hub genes, we conducted Gene
Ontology (GO) enrichment analysis. Table 5 shows the
common GO terms enriched by C-RDN, B-RDN and
DDN. The GO enrichment analysis is performed us-
ing R package “clusterProfiler” with the P-value ad-
justed by Benjamini-Hochberg method. It shows that
our methods (C-RDN, B-RDN) have smaller P-value
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than DDN. The common molecular function and cellu-
lar component suggest that the change of frizzled bind-
ing, Wnt-protein binding and beta-catenin destruction
complex are important in the etiology of lung cancer.
These predictions are supported by the literatures [41–
43] , which indicates that the proposed differential net-
work model can provide biological meaningful under-
lying signals.

Discussion and conclusions
A complex disease phenotype (e.g. diabetes, cancer)
often reflects various pathobiological processes that in-
teract in a network rather than the abnormality of a
single gene. Such interactions are not static processes,
instead they are dynamic in response to changing ge-
netic, epigenetic and environmental factors, which fur-
ther entails the analysis of differential network. In this
paper, we propose adaptive estimation approaches for
latent variable differential network model with the as-
sumption that the true differential network is sparse,
which do not require precision matrices to be sparse.
The latent variable differential network model is fun-
damentally different from the existing ones in the lit-
erature in the sense that the differential structure in
the unobserved latent variables are of primary interest.
Theoretical analysis shows that the proposed methods
achieve the same parametric convergence rate for both
the difference of the precision matrices estimation and
differential structure recovery, which means that the
extra modelling flexibility comes at almost no cost of
statistical efficiency. The unified latent variable differ-
ential network model provides deeper understanding
of the unknown genomic mechanism than that among
the observed variables.

The current work could be extended in the following
two aspects. First, in this paper, we consider the fol-
lowing optimization problem to directly estimate the
difference matrix ∆:

arg min |∆|1, subject to

|ŜX∆ŜY − ŜX + ŜY |∞ ≤ λn,

where ŜX and ŜY denote the rank-based estimators
of the covariance matrices. The D-trace loss function
[15, 44] can also be applied to to directly estimate the
precision matrix difference. Thus, we may also consider
the D-trace loss function to estimate the Gaussian cop-
ula and latent Gaussian copula differential graphical
models. In specific, the difference matrix ∆ could be
eatimated by:

arg min
∆

1

2
Tr
(
∆ŜX∆ŜY

)
−Tr

(
∆(ŜX − ŜY )

)
+Gλ(∆),

where λ > 0 is a regularization parameter and Gλ is a
decomposable non-convex penalty function which has
the form Gλ =

∑
j,k gλ(∆jk), such as smoothly clipped

absolute deviation (SCAD) penalty [45]. The theoret-
ical guarantees are still needed to be investigated, but
we expect that the empirical performance could be
comparable.

Second, for the latent Gaussian copula differential
graphical model, we focus on the binary data. In fact,
the methods can be extended to the discrete data with
more than two categories. The properties of this pro-
cedure are left for future investigation as there are a
lot of work still needed to be done.

The proposed latent variable differential network
models are very flexible and provide deeper under-
standing of the unknown biological mechanism. It is
demonstrated latent differential network models enjoy
great advantages over existing models and thus are
highly recommended in real application.

Additional File
Additional file 1 —Supplementary Files
Contains the theoretical guarantee of of the proposed
methods and proofs . (PDF 284 kb)
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Figure 1 Illustration of latent differential network
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Figure 2 Receiver operating characteristic curves under Gaussian copula model with dimensionality varying from 50 to 120. The red
line represents the proposed RDN method, the black dotted represents the benchmark method ZP-DDN, the blue dotted line
represents DDN method.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2018. ; https://doi.org/10.1101/397265doi: bioRxiv preprint 

https://doi.org/10.1101/397265
http://creativecommons.org/licenses/by-nc-nd/4.0/


He et al. Page 14 of 20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p=50
p=80
p=100
p=120  

T
P

R

1−TNR

(a) Scenario 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p=50
p=80
p=100
p=120  

T
P

R

1−TNR

(b) Scenario 2

Figure 3 Receiver operating characteristic curves for Scenario 1 and Scenario 2 under latent Gaussian copula model, with
dimensionality varying from 50 to 120.
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Figure 4 Receiver operating characteristic curves for Scenario 3 under latent Gaussian copula model, with dimensionality varying
from 50 to 120. The red line represents the proposed RDN method, the black dotted represents the benchmark method ZP-DDN,
the blue dotted line represents DDN method.
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Figure 5 Differential network estimated by different methods. Orange edges show an increase in conditional dependency from
control group to lung cancer patient group; grey edges show a decrease. Red points stand for hub genes which have edges with more
than 3 other genes.
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Tables

Table 1 Average true discovery rates (%) and average estimation errors over 100 simulations.

Average true discovery rates

ZP-DDN RDN DDN

p L∞ LF L∞ LF L∞ LF

50 74.0 (13.6) 83.2 (10.9) 75.6 (14.0) 89.1 (11.3) 45.9 (24.7) 27.8 (17.3)

80 91.4 (16.4) 99.6 (4.3) 95.2 (14.2) 100.0 (0.0) 44.9 (34.6) 51.0 (42.8)

100 96.3 (14.1) 100.0(0.0) 99.5 (5.2) 100.0 (0.0) 39.3 (40.3) 50.0 (49.1)

120 78.8 (16.8) 100.0(0.0) 79.0 (18.2) 100.0 (0.0) 23.4 (41.3) 30.0 (46.3)

Average estimation errors in the elementwise L∞ norm

p L∞ LF L∞ LF L∞ LF

50 3.26 (0.41) 2.91 (0.33) 3.08 (0.32) 2.59 (0.35) 2.27 (0.12) 2.41 (0.21)

80 2.06 (0.28) 1.92 (0.06) 1.98 (0.21) 1.91 (0.00) 1.97 (0.09) 1.94 (0.08)

100 1.86 (0.15) 1.82 (0.00) 1.82 (0.04) 1.82 (0.00) 1.87 (0.10) 1.83 (0.04)

◦◦ 120 1.12 (0.17) 0.87 (0.00) 1.12 (0.18) 0.87 (0.00) 0.89 (0.07) 0.87 (0.00)
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Table 2 Simulation results over 100 replications for Scenario 1 and Scenario 2 .

Average true discovery rates(%)
Scenario 1 Scenario 2

p L∞ LF L∞ LF

50 78.8 (15.2) 98.4 (5.9) 79.6 (13.8) 40.8 (25.6)
80 76.4 (23.1) 100.0(0.0) 83.4 (17.0) 88.2 (17.6)

100 89.5 (22.1) 100.0(0.0) 84.8 (20.0) 99.3 (3.9)
120 76.5 (31.0) 94.0(24.0) 82.4 (15.2) 100.0 (0.0)

Average estimation errors in the elementwise L∞ norm
Scenario 1 Scenario 2

p L∞ LF L∞ LF

50 2.66 (0.26) 2.21 (0.15) 3.23 (0.40) 3.85 (0.55)
80 2.10 (0.20) 1.91 (0.00) 2.29 (0.35) 2.14 (0.32)

100 1.88 (0.13) 1.82 (0.00) 2.03 (0.28) 1.83 (0.08)
120 1.00 (0.16) 0.87 (0.00) 1.17 (0.16) 0.88 (0.07)
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Table 3 Simulation results over 100 replications for Scenario 3 .

Average true discovery rates(%)

ZP-DDN RDN ZR-RDN

p L∞ LF L∞ LF L∞ LF

50 39.8 (39.5) 46.1 (47.3) 87.6 (14.7) 97.3 (7.4) 88.0 (11.0) 90.0 (12.4)

80 32.4 (41.9) 35.5 (47.9) 80.7 (14.8) 99.8 (2.5) 89.5 (8.7) 95.4 (7.2)

100 23.5 (40.2) 31.7 (46.9) 75.6 (20.3) 100.0(0.0) 84.0 (12.0) 99.1 (4.2)

120 16.0 (37.0) 16.0 (37.0) 52.9 (44.6) 68.0(47.1) 70.4 (26.8) 93.0 (24.8)

Average estimation errors in the elementwise L∞ norm

p L∞ LF L∞ LF L∞ LF

50 2.15 (0.03) 2.16 (0.01) 2.05 (0.15) 2.12 (0.08) 2.05 (0.17) 2.02 (0.15)

80 1.91 (0.02) 1.91 (0.01) 1.91 (0.12) 1.92 (0.04) 1.92 (0.12) 1.91 (0.08)

100 1.82 (0.02) 1.82 (0.00) 1.88 (0.12) 1.82 (0.00) 1.90 (0.12) 1.83 (0.04)

◦◦ 120 0.87 (0.00) 0.87 (0.00) 0.91 (0.09) 0.87 (0.00) 0.97 (0.11) 0.88 (0.05)

Table 4 Hub genes selected by different methods.

DDN PRKACA MAPK8 CACYBP CAMK2B SFRP1 CSNK2A2 TCF7

BTRC RUVBL1

C-RDN PLCB2 DVL2 MAPK8 PLCB1 APC WNT2 FZD9

WNT11 DKK1 SFRP4

B-RDN WIF1 MMP7 RAC1 LEF1 APC PRKACA WNT8B

BAMBI
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Table 5 Gene Ontology (GO) enrichment analysis result

ID Functional term Ontology
C-RDN B-RDN DDN

Adjust P-value

GO:0016055 Wnt signaling pathway BP 1.69× 10−11 2.96× 10−6 0.0022

GO:0198738 cell-cell signaling by wnt BP 1.69× 10−11 2.96× 10−6 0.0022

GO:0060828 regulation of canonical Wnt signaling pathway BP 1.49× 10−9 0.0012 0.0027

GO:0060070 canonical Wnt signaling pathway BP 4.78× 10−9 0.0012 0.0027

GO:0030111 regulation of Wnt signaling pathway BP 6.67× 10−9 0.0058 0.0091

GO:0005109 frizzled binding MF 5.28× 10−5 0.0058 0.0091

GO:0007369 gastrulation BP 0.0024 0.0058 0.0276

GO:0017147 Wnt-protein binding MF 0.0025 0.0073 0.0286

GO:0060562 epithelial tube morphogenesis BP 0.0068 0.0073 0.0290

GO:0003002 regionalization BP 0.0074 0.0080 0.0331

GO:0035239 tube morphogenesis BP 0.0082 0.0090 0.0332

GO:0001503 ossification BP 0.0093 0.0131 0.0341

GO:0007389 pattern specification process BP 0.0113 0.0131 0.0357

GO:0043393 regulation of protein binding BP 0.0202 0.0175 0.0377

GO:0034329 cell junction assembly BP 0.0205 0.0178 0.0382

GO:0030877 beta-catenin destruction complex CC 0.0223 0.0377 0.0382

GO:0045216 cell-cell junction organization BP 0.0229 0.0409 0.0402

GO:0034330 cell junction organization BP 0.0259 0.0411 0.0408

GO:0071496 cellular response to external stimulus BP 0.0281 0.0411 0.0418

GO:0071214 cellular response to abiotic stimulus BP 0.0290 0.0421 0.0448

GO:0104004 cellular response to environmental stimulus BP 0.0290 0.0450 0.0453

GO:0051098 regulation of binding BP 0.0330 0.0474 0.0478

GO:0045992 negative regulation of embryonic development BP 0.0341 0.0479 0.0495

GO:1903829 positive regulation of cellular protein localization BP 0.0397 0.0489 0.0495

GO:1901990 regulation of mitotic cell cycle phase transition BP 0.0409 0.0489 0.0498

BP:biological process; MF:molecular function; CC:cellular component

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2018. ; https://doi.org/10.1101/397265doi: bioRxiv preprint 

https://doi.org/10.1101/397265
http://creativecommons.org/licenses/by-nc-nd/4.0/

