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Abstract
Neurofeedback (NF) allows to exert self-regulation over specific aspects of one’s 

own brain function by returning information extracted in real-time from brain ac-
tivity measures. These measures are usually acquired from a single modality, most 
commonly EEG or fMRI. EEG-fMRI-neurofeedback (EEG-fMRI-NF) is a new NF 
approach that consists of providing a NF based simultaneously on EEG and fMRI. 
By exploiting the complementarity of these two modalities, EEG-fMRI-NF opens a 
spectrum of possibilities for defining bimodal NF targets that could be more ro-bust, 
flexible and effective than unimodal ones. However facing a greater amount of 
information, the question arises of how to represent the EEG and fMRI features 
simultaneously in order to allow the subject to achieve better self-regulation. In this 
work, we propose that the EEG and fMRI features should be represented in a single 
bimodal feedback, which we refer to as integrated feedback. We then introduce two 
integrated feedback strategies for EEG-fMRI-NF and compare their early effects on 
a motor imagery task with a between-group design. The first group (BI DIM, n=10) 
was shown a two-dimensional (2D) feedback in which each dimension de-picted the 
information from one modality. The second group (UNI DIM, n=10) was shown a 
one-dimensional (1D) feedback that integrated both types of information even 
further by merging them into one. Online fMRI activations were significantly higher 
in the UNI DIM group than in the BI DIM group, which suggests that the 1D 
feedback is easier to control than the 2D feedback. However when looking at posthoc 
activation levels, the difference of fMRI activation levels between the NF runs and 
the preliminary motor imagery run without NF was more significant in the 2D group. 
Moreover, subjects from the BI DIM group produced more specific BOLD 
activations with a notably stronger activation in the right superior parietal lobule 
(BI DIM > UNI DIM, p < 0.001, uncorrected). These results suggest that the 2D 
feedback encourages subjects to explore their strategies to recruit more spe-cific 
brain patterns. To summarize, our study shows that 1D and 2D integrated feedbacks 
are effective but also appear to be complementary and could therefore be used in 
combination in a bimodal NF training program. Altogether, our study paves the way 
to novel integrated feedback strategies for the development of flexible and effective 
bimodal NF paradigms making the most of the bimodal information and better 
suited to clinical applications.
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1 Introduction

Neurofeedback is the process of feeding back real-time information to an individual about42

his/her ongoing brain activity so that he/she can learn to control some aspects of it, hope-43

fully resulting in functional (behavioral, physical, cognitive, emotional) improvements44

(Arns et al., 2017; Sitaram et al., 2016; Sulzer et al., 2013; Thibault, Lifshitz, Birbaumer,45

et al., 2015). NF has been investigated for a host of clinical (Birbaumer, Ramos Murguial-46

day, et al., 2009) and non clinical applications (Arns et al., 2017; Gruzelier, 2014; Sitaram47

et al., 2016; Sulzer et al., 2013; Thibault, Lifshitz, Birbaumer, et al., 2015; Thibault, Lif-48

shitz, and Raz, 2016). However its effective deployment in the clinical armamentiarium49

is being held back by the debated evidence about its efficiency, most likely as a result of50

poor study design and lack of established guidelines and knowledge about the underly-51

ing mechanisms of NF (Perronnet, Lécuyer, Lotte, et al., 2016; Thibault, Lifshitz, and52

Raz, 2016). In recent years, this situation has started to change as increasingly rigorous53

approaches are becoming the new standard (Stoeckel et al., 2014; Sulzer et al., 2013;54

Thibault, Lifshitz, and Raz, 2016), and as new studies are delving into the mechanisms55

(Birbaumer, Ruiz, and Sitaram, 2013; Emmert, Kopel, Sulzer, et al., 2016; Kober, Witte,56

et al., 2013; Ninaus et al., 2013; Sitaram et al., 2016) as well as the methodological as-57

pects of NF (Emmert, Kopel, Koush, et al., 2017; Krause et al., 2017; Sepulveda et al.,58

2016; Sorger et al., 2016). However another reason for the debated efficiency of current59

approaches might be the inherent limitations of single imaging modalities (Biessmann60

et al., 2011; Fazli, Dahne, et al., 2015). Indeed, most NF approaches rely on the use of a61

single brain imaging modality such as EEG (Hammond, 2011), fMRI (Sulzer et al., 2013),62

functional near infra-red spectroscopy (fNIRS) (Kober, Wood, et al., 2014; Mihara et al.,63

2012) or magnetoencephalography (Buch et al., 2008; Lal et al., 2005; Sudre et al., 2011).64

Each of these modalities is sensitive to a particular biophysical phenomenon related to the65

brain activity and comes with technical and physiological limitations (Biessmann et al.,66

2011). NF studies often report a significant proportion of subjects (usually about 30%)67

that are not able to self-regulate, (Alkoby et al., 2017). In the brain-computer-interface68

(BCI) community this phenomenon is known as BCI-deficiency and might originate from69

non optimal features, flaws from the design (Chavarriaga et al., 2016; Lotte, Larrue, and70

Mühl, 2013), but also from anatomo-physiological factors that would make some subjects71

less responsive to certain modalities (Zich et al., 2015). EEG is the most popular NF72

modality for it is unexpensive and benefits from millisecond temporal resolution. How-73

ever, its spatial resolution is limited by volume conduction of the head and the number74

of electrodes. Also source localization from EEG is inaccurate because of the ill-posed75

inverse problem (Baillet, Mosher, and Leahy, 2001; Grech et al., 2008). fMRI is being76

increasingly used for NF as it allows to regulate even deeper brain regions with high77

spatial resolution (Sulzer et al., 2013). However its temporal resolution is limited by the78

time required to acquire one brain volume (hundreds of milliseconds), and the fact that79

the hemodynamic response peak is delayed of 4-6s from the neuronal onset and that it80

acts like a low-pass filter that smears out the neuronal response.81

Bimodal EEG-fMRI-neurofeedback (EEG-fMRI-NF) is a new neurofeedback (NF)82

approach that consists of using information coming simultaneously from EEG and fMRI in83

real-time to allow the subject to regulate electrophysiological and hemodynamic activities84

of their brain at the same time (Zotev et al., 2014). The feasibility of this approach was85

demonstrated by Zotev et al. who hypothesized that it could be more efficient than the86

unimodal approaches (ibid.). Bimodal EEG-fMRI-NF was compared against unimodal87
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EEG-NF and fMRI-NF in a recent study (Perronnet, Lécuyer, Mano, et al., 2017). This
study suggested that EEG-fMRI-NF could indeed be more specific or more engaging than89

EEG-NF as demonstrated by higher BOLD activations during EEG-fMRI-NF than during90

EEG-NF. It also highligted that during bimodal EEG-fMRI-NF subjects could happen to91

regulate more one modality than the other suggesting the existence of specific mechanisms92

involved when learning to regulate simultaneously hemodynamic and electrophysiological93

aspects of the brain activity.94

EEG and fMRI share mutual information yet also contain important distinct features.95

However their degree of overlap is hard to predict. In the context of NF, the information96

coming from EEG and fMRI could therefore benefit from being integrated in order to97

be used as an efficient feedback. Yet integrating EEG and fMRI data is a real challenge98

(Biessmann et al., 2011; Fazli, Dahne, et al., 2015; Jorge, Van der Zwaag, and Figueiredo,99

2014; Lahat, Adali, and Jutten, 2015). Multimodal data integration methods are cat-100

egorized as asymmetrical (EEG-informed fMRI, fMRI-informed EEG) and symmetrical101

(data fusion, model-driven or data-driven) (Biessmann et al., 2011; Jorge, Van der Zwaag,102

and Figueiredo, 2014; Lahat, Adali, and Jutten, 2015). For NF purpose the integration103

method should be applicable in real-time. As illustrated by Figure 1, the integration of104

multimodal data can theoretically be made at different levels: the raw measures level,105

the features level (high level or multivariate), the NF signal level or the feedback level106

(Fazli, Dahne, et al., 2015). It is also possible not to integrate EEG and fMRI data and107

simply show them as two separate feedbacks but we argue that this might be sub-optimal108

(see below). Integrating EEG and fMRI at the measures level in real-time does not seem109

feasible due to the considerable amount of information that it would represent. In hybrid110

BCI, output of different classifiers are usually passed to a meta-classifier (Fazli, Dahne,111

et al., 2015; Fazli, Mehnert, et al., 2012). In NF it is less common to use a classifier112

(Huster et al., 2014) and the feature often directly constitutes the NF signal. We argue113

that for EEG-fMRI-NF, EEG and fMRI integration can be done directly at the feedback114

level and that this already has strong implication.115

Figure 1: Possible levels of integration of EEG and fMRI information

A few unimodal NF/BCI studies have investigated the effects of feedback presentation
(Darvishi et al., 2017; Jeunet, Vi, et al., 2015; Kaufmann and Williamson, 2011; Krause117

et al., 2017; Ono et al., 2014; Sollfrank et al., 2016; Stoeckel et al., 2014) which is a central118

issue in NF/BCI design. In the case of bimodal NF, feedback design might be even more119

critical as there is more information to display and as the EEG and fMRI bits of informa-120

tion have different spatio-temporal dynamic properties. To our knowledge, no previous121
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work has addressed the question of how to represent the EEG and fMRI information122

simultaneously and how the bimodal representation would affect NF performance.123

In their pioneering work Zotev et al. naturally extended the classical thermometer124

feedback to bimodal NF by juxtaposing two feedback gauges, one for EEG and one for125

fMRI (Zotev et al., 2014). Though this has the advantage of clearly and fully representing126

both features, this could suffer from a few drawbacks. Firstly, it might be suboptimal in127

term of cognitive load (Gaume et al., 2016; Sweller, Merrienboer, and Paas, 1998) because128

the subject has to concentrate on two gauges. Secondly, the fact that the representations129

of both signals are separated seem to imply that there are two targets to reach. Therefore130

the regulation task might be perceived by the subject as two simultaneous regulation tasks131

instead of one. Thirdly, it can be misleading when the subject tries to interpret how both132

features evolve in time, especially when they exhibit inconsistencies. Lastly, it does not133

fully exploit the possibility of using a NF target defined by the state of both features.134

In contrast to representing the EEG and fMRI features with two separate feedbacks,135

we propose that both features could be represented in an integrated feedback: that is a136

single feedback having a single NF target characterized by the state of both features. This137

type of feedback has the advantage of encouraging the subject to perceive the bimodal NF138

task as a single self-regulation task and offers great flexibility in the definition of bimodal139

NF targets. In this study, we introduce two integrated feedback strategies (illustrated140

in figure Figure 2) and compare their early effects on an EEG-fMRI-NF guided motor-141

imagery task with a between-group design in order to evaluate which strategy is better142

than the other on a single EEG-fMRI-NF session. The first integrated feedback strategy143

is a two-dimensional (2D) plot in which each dimension depicts the information from one144

modality. The second integrated feedback strategy is a one-dimensional (1D) gauge that145

merges both information into one and therefore has a higher degree of integration than146

the 2D feedback. The performance of each strategy is evaluated in terms of sensitivity147

(activation level) and spatial specificity of the motor-imagery related EEG and fMRI148

activations.149

2 Material and methods150

The study was conducted at the Neurinfo platform (CHU Pontchaillou, Rennes, France)151

and was approved by the Institutional Review Board. Twenty right-handed NF-naive152

healthy volunteers with no prior MI-NF experience (mean age: 35 ± 10.6 years, 10153

females) participated in the study. Participants were randomly assigned to the bi-154

dimensional (BI DIM; mean age: 37 ± 14 years, 5 females) or to the uni-dimensional155

(UNI DIM; mean age: 33 ± 6.2 years, 5 females) group. Throughout the whole ex-156

periment, the participants were lying down in the MR bore and wearing a 64 channel157

MR-compatible EEG cap.158

2.1 Hypotheses159

Figure 2 illustrates the separate feedback (following Zotev et al., 2014) as well as the160

integrated 2D and 1D feedback strategies and summarizes their potential advantages and161

drawbacks. Our integrated 2D feedback consists of a ball moving on a 2D diamond-162

shape plot, the left dimension representing the EEG feature and the right dimension163

representing the fMRI feature. This type of feedback was introduced in our previous164

work (Perronnet, Lécuyer, Mano, et al., 2017) and we propose here an upgraded version165
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in which the plot background delineates regions that indicate prefered direction of effort,166

encouraging the subject to regulate EEG and fMRI equitably. Our integrated 1D feedback167

consists of a ball moving in a gauge, the ball position representing the average of the EEG168

and fMRI features. The background of the 1D gauge is splitted in four regions to give169

the subject reference points. Interestingly, the separate feedback and the integrated 2D170

feedback strategies share common advantages and drawbacks because they both map171

the bimodal information onto two dimensions. On the good side, they fully represent the172

EEG and fMRI features and allow to discriminate between both, but as a counterpart the173

difference of update rates is perceivable and inconsistencies between the two features can174

be misleading. The integrated 2D feedback is visually more optimal than the separate175

feedback as subjects only need to look at a single representation. However it might176

be complex to apprehend as the subjects need to understand how the ball travels in177

the 2D space. Subjects would therefore probably need more time to get used to this178

feedback. But the information it conveys is highly meaningful regarding how the subject179

is regulating both features at the same time. When the ball is on one side it means that180

the subject is controlling more one feature than the other, but when the ball is on the181

diagonal it means that the subject is controlling both features equally. The integrated182

1D feedback has the advantage of being simpler to comprehend but as a counterpart it183

is less informative than the two other strategies.184

2.2 Experimental protocol185

After signing an informed consent form describing the MR environment, the participants186

were verbally informed about the goal of both the study and the protocol. They were187

instructed that during the NF runs, they would be presented with a ball moving in two188

dimensions (for the BI DIM group) or in a one-dimensional gauge (for the UNI DIM189

group) according to the activity in their motor regions as measured with EEG and fMRI190

(see Figure 2). Participants were told that they would have to bring the ball closer191

to the darker blue areas by imagining clenching their right-hand. This instruction was192

reminded in written form on the screen at the beginning of each NF run. More specifically193

we explained the participants that they would need to perform kinesthetic motor imagery194

(kMI)(Neuper et al., 2005) of their right-hand in order to control the ball. Kinesthetic195

motor imagery was defined as trying to feel the sensation of the motion rather than only196

visualizing it. Participants were informed about the nature of EEG and fMRI signal,197

and specifically about the 4-6 seconds delay of the hemodynamic response. Additionally,198

for participants in the BI DIM group, we explained them that EEG was represented on199

the left axis while fMRI was represented on the right axis. This implied that when the200

ball would be on the left side, it would mean that they are controlling more EEG than201

fMRI, and on the opposite when the ball would be on the right side it would mean that202

they are controlling fMRI more than EEG. We told them that they should try to control203

both dimensions, i.e. try to move the ball near the diagonal. These instructions were204

given verbally at the beginning of the experiment and reminded later if the participant205

asked for it. Participants were asked not to move at all, especially during the course of206

a run. Video monitoring of the inside of the MR tube allowed to check for whole-body207

movements of the participant.208

After receiving the instructions and having the EEG cap setup on his/her scalp, the209

participant was installed in the MR tube where we made sure the electrodes impedances210

one last time in the supine position. The experimental protocol then consisted of: a211
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Figure 2: Summary of potential advantages and drawbacks of different bimodal feedback
strategies: separate, integrated 2D, integrated 1D. As opposed to the separate feedback
strategy proposed by pioneer authors in Zotev et al., 2014, we introduce two novel in-
tegrated feedback strategies for bimodal EEG-fMRI-NF. The integrated 2D feedback
consists of a ball moving in two dimensions, the left dimension representing the EEG
feature and the right dimension representing the fMRI feature. Subjects in the BI DIM
group are shown the integrated 2D feedback. The integrated 1D feedback consists of a
ball moving in one dimension, the ball position representing the average of the EEG and
the fMRI features. Subjects in the UNI DIM group are shown the integrated 1D feed-
back. NB: in this study, we compare the integrated 2D and the integrated 1D strategies,
however we do not evaluate integrated feedback strategies against the separate feedback
strategy.

structural 3D T1 ; a preliminary MI run without NF (MI pre), the data of which was212

used to calibrate the NF target (see subsection 2.5); three NF runs with a one minute213

break in between each ; a post MI run without NF (MI post). The five EEG-fMRI214

functional runs employed a block-design alternating 8 times 20s of rest and 20s of task215

(see Figure 3).216

Figure 3: The experimental protocol consisted of 5 EEG-fMRI runs: a preliminary motor
imagery run without NF (MI pre) used for calibration, three NF runs (NF1, NF2, NF3),
and a post motor imagery run without NF (MI post). Each run consisted of a block
design alternating 8 times 20s of rest and 20s of task.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 22, 2018. ; https://doi.org/10.1101/397729doi: bioRxiv preprint 

cbarillo
Rectangle 

https://doi.org/10.1101/397729
http://creativecommons.org/licenses/by-nc-nd/4.0/


During rest, the screen displayed a white cross and participants were asked to con-217

centrate on the cross and not on the passed or upcoming task block. During task, the218

screen displayed the cue ”Imagine right” as well as the feedback during NF runs. The219

feedback consisted of a yellow ball moving in a two-dimensional plot for the BI DIM220

group or in a one-dimensional gauge for the UNI DIM group. The participants were in-221

structed to bring the ball closer to the darker blue area by performing kinesthetic motor222

imagery of their right hand clenching. The EEG feature was defined as the event-related223

desynchronization (ERD) (Pfurtscheller and Lopes da Silva, 1999) in the [8-30Hz] band224

of the EEG data filtered with a subject specific spatial filter (see Section 2.5 and 2.4)225

and was updated every 250ms. The fMRI feature was defined as the mean BOLD in a226

subject-specific motor region-of-interest (ROI) (see Section 2.5 and 2.4) and was updated227

at every repetition time (TR=1s). For the UNI DIM group, the ball position was the228

average of the EEG and fMRI features (EEG nf+fMRI nf)/2. For the BI DIM group,229

the right axis depicted the normalized fMRI feature while the left axis depicted the nor-230

malized EEG feature. At the end of the experiment, the participants were asked to fill231

out a questionnaire about their perceived performance, motivation, fatigue, interest and232

difficulty in performing the NF task. Figure 3 illustrates the experimental protocol.233

2.3 Data acquisition234

EEG and fMRI data were simultaneously acquired with a 64-channel MR-compatible235

EEG solution from Brain Products (Brain Products GmbH, Gilching, Germany) and a236

3T Verio Siemens scanner (VB17) with a 12 channel head coil. Foam pads were used to237

restrict head motion. EEG data was sampled at 5kHz with FCz as the reference electrode238

and AFz as the ground electrode. fMRI acquisitions were performed using echo-planar239

imaging (EPI) with the following parameters: repetition time (TR) / echo time (TE) =240

1000/23ms, FOV = 210× 210mm2, voxel size = 2× 2× 4mm3, matrix size = 105× 105,241

16 slices, flip angle = 90°). Visual instructions and feedback were transmitted using the242

NordicNeurolab hardware and presented to the participant via an LCD screen and a243

rear-facing mirror fixed on the coil. As a structural reference for the fMRI analysis, a244

high resolution 3D T1 MPRAGE sequence was acquired with the following parameters:245

TR/TI/TE = 1900/900/2.26ms, GRAPPA 2, FOV = 256×256mm2 and 176 slabs, voxel246

size = 1× 1× 1mm3, flip angle = 90°. Our multimodal EEG/fMRI-NF system (Mano et247

al. 2017) integrates EEG and fMRI data streams via a TCP/IP socket. The EEG data248

is pre-processed with BrainVision Recview (Brain Products GmbH, Gilching, Germany)249

software for gradient and ballistocardiogram (BCG) artifact correction (see Section 2.4)250

and sent to Matlab (The MathWorks, Inc., Natick, Massachussets, United States) for251

further processing. The fMRI data is pre-processed online for slice-time correction and252

motion correction with custom Matlab code adapted from SPM8 (FIL, Wellcome Trust253

Centre for Neuroimaging, UCL, London, UK). EEG and fMRI NF features are then254

computed and translated as feedback with Psychtoolbox (Kleiner et al., 2007).255

2.4 Real-time data processing256

During NF runs, online gradient artifact correction and BCG correction of the EEG data257

were done in BrainVision Recview (Brain Products GmbH, Gilching, Germany) software.258

The gradient artifact correction in Recview is based on the average artifact subtraction259

(AAS) method (Allen, Josephs, and Turner, 2000). At the beginning and throughout the260
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length of each experiment, we checked that the signal quality of the ECG channel was261

good because BCG artifact correction relies on the quality of the ECG channel. We would262

also reset the template regularly before the start of each run. We used an artifact subtrac-263

tion template of 2000ms and 4 templates for template drift correction. The data was then264

down-sampled to 200Hz and low pass filtered at 50 Hz (48 db slope) with a Butterworth265

filter. The data were subsequently corrected for BCG artifact (Allen, Polizzi, et al., 1998).266

The pulse model was searched in the first 15 seconds of the data. The pulse detection267

was based on a moving template matching approach with minimal pulse period of 800ms,268

minimum correlation threshold of 0.7, and amplitude ratio range from 0.6 to 1.2 relative269

to the pulse model. For pulse correction, a moving template was computed by averaging270

the 10 previously detected pulses, and the correction was done on a window length of271

[-100ms, 700ms] relatively to the R-peak. This corrected data was then sent to Matlab for272

feature extraction. The corrected data was filtered with the subject specific spatial filter273

FILT computed during the calibration phase (see Section 2.5). The band power in the274

[8-30Hz] band was then computed on this filtered data using the periodogram and a 2s275

window size, and it was normalized with the following ERD-like (Pfurtscheller and Lopes276

da Silva, 1999) formulae: EEGnf (t) = reverse × (bp(prev rest) − bp(t))/bp(prev rest)277

where bp(t) is the power at time t, bp(prev rest) is the average power over the previ-278

ous rest block (values between the fourteen and the nineteen seconds) and reverse = 1279

if the selected filter FILT = frest>task or the default filter (laplacian around C3), or280

reverse = −1 otherwise. Finally, the EEG feature was smoothed over the last four val-281

ues, divided by EEGtresh (see subsection 2.5) and translated as visual feedback every282

250ms.283

EEGnf (t) = reverse× bp(prev rest)−bp(t)

bp(prev rest
284

fMRInf (v) = Broi(v)

Broi(prev rest)
− Bbg(v)

Bbg(prev rest)
285

The fMRI signal was pre-processed online for motion correction, slice-time correction286

and then the fMRI NF feature was computed according to the following definition:287

fMRInf (v) = Broi(v)/Broi(prev rest)−Bbg(v)/Bbg(prev rest) where Broi(v) (respectively288

Bbg(v)) is the average BOLD signal in the ROI (respectively in the background (BG)) at289

volume v, and Broi(prev rest) (respectively Bbg(prev rest)) is the ROI (respectively BG)290

baseline obtained by averaging the signal in the ROI (respectively in the BG) from the291

fourteenth to the nineteenth second (to account for the hemodynamic delay) of the pre-292

vious rest block. The background was defined as a large slice (slice 6 out of 16) in deeper293

regions and used to cancel out global changes. Finally the fMRI feature was smoothed294

over the last three volumes, divided by fMRItresh (see subsection 2.5) and translated as295

visual feedback every 1s.296

2.5 Calibration phase297

In order to define subject-specific NF features, right at the end of the MI pre run, the298

MI pre EEG and fMRI data were pre-processed and analyzed to extract a spatial filter299

FILT and a threshold EEGthresh for the EEG NF feature as well as a BOLD ROI and300

a threshold fMRIthresh for the fMRI NF feature.301

2.5.1 EEG calibration302

Right at the end of the MI pre run, the MI pre data was pre-processed similarly to what303

was done in real-time (see Section 2.4) except that the BCG correction was done semi-304
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automatically. Using the Common Spatial Pattern (CSP) method (Ramoser, Müller-305

Gerking, and Pfurtscheller, 2000), we then computed the pairs of spatial filters that best306

maximized the difference in [8-30Hz] power between rest and task blocks on 18 channels307

located over the motor regions (C3, C4, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, C1,308

C2, FC3, FC4, CP3, CP4, C5, C6). The first filter frest>task of the pair maximizes the309

power during the rest blocks while the second filter ftask>rest of the pair maximizes the310

power during the task blocks. If the eigenvalue of frest>task was greater than the inverse of311

the eigenvalue of ftask>rest (Blankertz et al., 2008), then the subject-specific filter FILT312

was set to frest>task, otherwise it was set to ftask>rest. In case the CSP filter did not313

look satisfactory (visual inspection to see if the MI pre data filtered was correlated with314

the task), we used a laplacien filter over C3 instead (Nunez et al., 1997). The ERD315

feature was then computed (see Section 2.4) and the threshold for the EEG NF was set316

by computing the ERD threshold that was reached at least 30% of the time.317

2.5.2 fMRI calibration318

MI pre fMRI data was pre-processed for slice-time correction, spatial realignment and319

spatial smoothing with a 6mm Gaussian kernel with SPM8. A first-level general linear320

model (GLM) analysis modeling the task and the rest was then performed. The fMRI321

ROI was defined by taking a 9×9×3 box around the maximum of activation (constrained322

to the left motor area) of the thresholded T-map (task > rest, p < 0.001, k > 10). The323

fMRI feature was then computed on this MI pre data (see Section 2.4) and the threshold324

for the fMRI NF was set by computing the value that was reached at least 30% of the325

time.326

2.6 Offline analysis327

2.6.1 EEG analysis328

For offline analysis, EEG signal was pre-processed similarly to what was done in real-329

time (see Section 2.4) except that the BCG correction was done semi-automatically. For330

each subject and run, we checked that the R-peaks were well detected by adapting the331

parameters and by correcting or selecting the R-peaks manually when necessary.332

To analyze how the participants regulated their EEG NF feature, we re-computed the333

ERD values on offline pre-processed data filtered with the online FILT as defined in 2.4334

except that the baseline was not computed sliding-block-wise, but instead by averaging335

power values after the first second and before the nineteenth second of all rest blocks.336

We refer to this feature as ”online ERD”.337

As the amount of calibration data was limited and as participants had no prior MI338

training, it is possible that the filter from the calibration was suboptimal. Therefore339

we also extracted the ERD values on data filtered with a posthoc FILT . We refer to340

this feature as ”posthoc ERD”. The posthoc FILT was computed the same way as341

the online FILT (see Section 2.5) except that it was computed on the concatenation of342

MI pre, NF1, NF1 and NF3 instead of MI pre only.343

For statistical analysis, the ERD values were standardized to z-scores by consider-344

ing for each subject their mean and standard deviation over MI pre, NF1, NF2, NF3,345

MI post. For each run the standardized ERD values were averaged by considering the346

values between the first and the nineteenth second of all NF blocks but the first. The347

mean ERD over NF1, NF2 and NF3 was averaged to get the mean NF ERD NF . We348
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also considered maxiNFi the best mean ERD over the three NF runs. We refer to the349

best NF run regarding the EEG feature as maxNFeeg.350

2.6.2 fMRI analysis351

The fMRI data from each of the five runs (MI pre, NF1, NF2, NF3, MI post) was pre-352

processed and analyzed with AutoMRI (Maumet, 2013), a proprietary software for fMRI353

analysis automation based on SPM8. Pre-processing included slice-time correction, spa-354

tial realignment, co-registration to the 3D T1, followed by spatial smoothing with a 8355

mm Gaussian kernel. A first-level and second-level general linear model (GLM) analysis356

was performed. The first-level GLM included the canonical HRF for the task as well357

as its temporal and dispersion derivatives. For the second-level GLM analysis, the in-358

dividual data were normalized to the Montreal Neurological Institute (MNI) template359

and grouped using a mixed effects linear model. The activation maps were corrected for360

multiple comparisons using Family-Wise error (FWE) correction (p < 0.05 with cluster361

size > 10 voxels).362

To analyze how the participants regulated the BOLD signal in the online ROI, we363

extracted the ROI percent signal change (PSC) on offline pre-processed data. For each364

participant and each run, the registered fMRI values were high-pass filtered (100 seconds)365

to remove the linear drift, averaged in the online ROI and transformed into PSC using366

the formulae (Broi(v) −m)/m where m is the average of Broi values from the fourteenth367

to the nineteenth second. We refer to this feature as ”online PSC”.368

Because NF training affects patterns beyond the one being fed back (Kopel et al.,369

2016; Wander et al., 2013), the same procedure was done to extract the PSC in a posthoc370

ROI defined by computing individually an average activation map over NF1, NF2 and371

NF3 and taking a 9 × 9 × 3 box around the maximum of activation (constrained to the372

left motor area). We refer to this feature as ”posthoc PSC”. Finally the PSC values373

were standardized to z-scores by considering for each subject their mean and standard374

deviation over MI pre, NF1, NF2, NF3, MI post. For each run the standardized PSC375

values were averaged across the last 16 volumes of all NF blocks but the first. The mean376

PSC over NF1, NF2 and NF3 was averaged to get the mean NF PSC NF . We also377

considered maxiNFi the best mean PSC over the three NF runs. We refer to the best378

NF run regarding the fMRI feature as maxNFfmri.379

2.6.3 Statistical analysis380

For each group (UNI DIM/BI DIM), each modality (EEG/fMRI) and level of feature381

(online/posthoc) we conducted non-parametric Friedman tests of the differences among382

MI pre, NF , MI post, as well as Wilcoxon signed-rank tests (signrank Matlab function)383

between NF and MI pre as well as between maxiNFi and MI pre with Bonferroni cor-384

rection (corrected p-value: 0.05/3 conditions = 0.0167). For between group comparison385

we computed a Wilcoxon test (ranksum Matlab function, equivalent to Mann-Whitney386

U-test) on NF . The tests were done both for the online PSC and for the posthoc PSC.387

3 Results388

GLM analysis of both groups (UNI DIM + BI DIM) revealed activations during NF (see389

Figure 4) in : bilateral premotor cortex (BA 6) including left and right supplementary390
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Figure 4: Average activations (in yellow) and deactivations (in blue) over the three NF
runs (NF1+NF2+NF3) in both groups (UNI DIM + BI DIM) thresholded at p<0.05
FWE corrected

motor area (SMA), left and right inferior frontal gyrus (pars opercularis rolandic opercu-391

lum) (BA 44), left and right inferior parietal lobule (IPL), left and right superior parietal392

lobule (SPL), left and right supramarginal lobule/gyrus (BA 40,BA 2,BA 48), left and393

right superior parietal (BA 7, BA 5), bilateral mid-cingulate cortex, left and right pre-394

cuneus (BA 7). Deactivations were observed in right primary motor cortex (M1), left and395

right angular gyrus (BA 39), right cuneus (BA 18), left and right precuneus, left middle396

occipital (BA 10) and in the left inferior parietal lobule (BA 19).397

Figure 5: Average activations over the three NF runs (NF1+NF2+NF3) in each group
thresholded at p<0.05 FWE corrected. Activations of the UNI DIM group are shown in
red. Activations of the BI DIM are shown in green, deactivations of the BI DIM group
are shown in blue. Yellow corresponds to activations common to UNI DIM and BI DIM

.

GLM analysis of the BI DIM group during NF revealed activations in (figure 5): Left398

PMC (BA 6) including SMA, left IPL (BA 40), left SPL (BA 7), right SPL (BA 5, BA399

7), right superior occipital (BA 7). Deactivations were observed in right M1, (BA 4),400

left IPL (BA 19). GLM analysis of the UNI DIM group during NF revealed activations401

in (Figure 5): left and right PMC (BA 6) including left and right SMA, left IPL (BA402

40), left superior parietal lobule (BA 40), left and right supramarginal lobule (BA 2).403
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Deactivations were observed in the right angular gyrus (BA 39).404

The BI DIM group showed more activations (p < 0.001, uncorrected) than the UNI DIM405

group in the right superior parietal lobule (BA 7).406

Figure 6: Group difference : BI DIM>UNI DIM thresholded at p<0.001 uncorrected.
The BI DIM activated more the right superior parietal lobule (BA7).

Friedman tests between MI pre, NF and MI post were significant for posthoc EEG407

in the BI DIM group (p=0.045, χ2(2, 10) = 6.2) and for posthoc fMRI in the BI DIM408

group (p=0.0136, χ2(2, 10)= 8.6).409

Wilcoxon signed rank tests between MI pre and maxNF were significant for: on-410

line EEG (p=0.0098, signedrank = 52) and online fMRI (p=0.0195, signedrank = 50)411

in the UNI DIM group; posthoc EEG (p=0.0020, signedrank =55) and posthoc fMRI412

(p=0.0137, signedrank =51) in the UNI DIM group; and for posthoc EEG (p=0.0020,413

signedrank =55) and posthoc fMRI (p=0.0020, signedrank =55) in the BI DIM group.414

Wilcoxon signed rank tests between MI pre and NF were significant for: posthoc EEG415

(p=0.0195, signedrank = 50) in the UNI DIM group; posthoc EEG (p=0.0273, signedrank416

= 49) and posthoc fMRI (p=0.0039, signedrank = 54) in the BI DIM group. Results are417

summarized in figure 8 and figure 9. During the NF runs the fMRI PSC in the online ROI418

was significantly higher in the UNI DIM group than in the BI DIM group (Wilcoxon: z419

= 3.0615, ranksum = 146, p = 0.0022).420

Questionnaire : In the BI DIM group 5 participants out of 10 found that the blocks421

were too short (against one who found them too long in the UNI DIM group), and 5422

participants out of 10 found that the feedback was not a good indicator of their motor423

imagery (against 0 in the UNI DIM group).424

4 Discussion425

In the present study we introduced and evaluated two integrated feedback strategies for426

EEG-fMRI-NF: a 2D plot in which EEG and fMRI are mapped onto each dimension,427

and a 1D gauge that integrates both information even more by merging them into one.428

In contrast to representing the EEG and fMRI features with two separate feedbacks,429

these integrated feedback strategies represent both information in a single feedback with430

a single NF target. They have the advantage of relieving the cognitive load of the subject,431
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Figure 7: Anatomical labels, hemisphere, cluster size, peak t-value and MNI coordinates
of significant group activation/deactivation clusters.

to represent the task as a single regulation task instead of two and to allow to define a432

NF target characterized by the state of both signals.433

Online and posthoc performance Overall both strategies allowed participants to434

up-regulate MI-related EEG and fMRI patterns, as demonstrated by the higher posthoc435

EEG and fMRI activation levels during maxNF/NF compared to MI pre (see Figure 9).436

The improvement was even more significant on posthoc fMRI in the BI DIM group.437

Online fMRI activation level during NF were significantly higher in the UNI DIM438

group than in the BI DIM group (figure 8) which showed particularly high variability439

among participants and NF runs. Though the UNI DIM worked better than the BI DIM440

regarding the regulation of the initial (online) targets, their performance was moderate.441

Indeed, the online activation level improvement with respect to MI pre was only signifi-442

cant for the UNI DIM group in the maxNF run (see Figure 8). The loss of performance443
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Figure 8: Group means (EEG/fMRI, online, z-scored) on each run with standard devia-
tion + significance of Wilcoxon tests

Figure 9: Group means (EEG/fMRI, posthoc, z-scored) on each run with standard devi-
ation + significance of Wilcoxon tests.

on the online fMRI activation level during NF with a bi-dimensional feedback was also444

observed in our previous study (Perronnet, Lécuyer, Mano, et al., 2017). Our new results445

thus highlight the fact that the bi-dimensional feedback is harder to control than the446

uni-dimensional feedback and that this affects online EEG and fMRI activation levels447

differently, at least on a single-session basis. We hypothesize that this could be due to448

the higher complexity of the bi-dimensional feedback. This complexity comes from the449

fact that it has two degrees of freedom with slightly different update rates (4 Hz and 1450

Hz), whose relationship is non-trivial, and one of which is delayed from the other. Sub-451

jects therefore need more time to get acquainted with this more complex feedback. By452

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 22, 2018. ; https://doi.org/10.1101/397729doi: bioRxiv preprint 

cbarillo
Rectangle 

https://doi.org/10.1101/397729
http://creativecommons.org/licenses/by-nc-nd/4.0/


allowing subjects to discriminate between the information coming from EEG and fMRI,453

the bi-dimensional feedback leads subjects to make interpretations about EEG and fMRI454

contingency. They might be able to try different strategies and analyze how they af-455

fect both dimensions. In particular it can be disturbing when both dimensions seem to456

present inconsistencies. This could explain why half of the participants in the BI DIM457

group reported that the feedback was not a good indicator of their motor imagery. The458

hypothesis that the bi-dimensional feedback is more complex and therefore requires more459

habituation time is supported by the fact that half of the participants in the BI DIM460

group reported they found the training blocks too short (20 seconds) and by participants461

comments from the BI DIM group : ”it is hard to know which mental process will favor462

EEG activity and which one will favor fMRI activity”, ”the discrepancy between EEG463

and fMRI did not help to control the feedback given the small number of trials”, ”task464

blocks could have been longer to allow to test different strategies and observe their effect”.465

The fact that the loss of performance affected more fMRI than EEG could mean that466

they focused more on regulating the EEG because feedback from EEG is immediate while467

feedback from fMRI is delayed. Additionnally this could also be due to the fact that the468

feedback was moving 4 times faster in the EEG dimension.469

Looking at the opposite trend between the online and posthoc activation levels of470

both groups (i.e. higher online fMRI activation levels for UNI DIM and higher posthoc471

fMRI activation elvels for BI DIM) suggests that participants in the BI DIM group could472

have moved further away from their initial MI pre calibration pattern than participants473

from the UNI DIM group. Though the 2D feedback is more complex, it seems to encour-474

age participants to explore mental strategies, interpret their effects on the two feedback475

dimensions in order to find a strategy that allows to control both dimensions equitably.476

Training block length might benefit from being adapted to the feedback strategy, with477

shorter block for the 1D feedback and longer block for the 2D feedback to allow for the478

exploration and interpretation of inner strategies. The 1D strategy could be well suited479

during earlier phases of a NF program as it is easier to control, while the 2D strategy480

could prove valuable in the longer term to reach more specific self-regulation.481

Group distribution across the 3 NF runs Looking at the distribution of online482

mean activation levels (figure 11) over the three NF runs shows how the two group pop-483

ulations evolved over the course of the training. In the first run, both populations were484

rather widespread and distributed along the EEG axis which suggests that participants485

started by exploring EEG. Participants from the BI DIM group were also slightly dis-486

tributed along the fMRI axis in the first NF run. In the second NF run, both populations487

were spread along the fMRI axis, which suggests that participants explored fMRI while488

keeping EEG at a mean level. In the third run, both populations are spread along the489

central (0.5) isoline, which suggests that participants adopted a strategy that minimized490

the errors in both dimensions. Overall the progression look similar in both group but the491

BI DIM population is more widespread than UNI DIM in NF1 and NF2. This higher492

variability might once again be due to the higher complexity of the feedback to which493

participants need to get used.494

Accurate assessments of strategies, motivation, cognitive state but also of personality495

traits (such as the sense of agency ...) (Jeunet, Lotte, et al., 2018; Jeunet, N’Kaoua, et496

al., 2015) are key to interpreting the learning curve and the effects of neurofeedback. Our497

questionnaire inquiring about strategies, fatigue, motivation, perceived performance, and498

confidence in the feedback gave us valuable qualitative hindsights about how subjects in499
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the BI DIM group reacted to the complexity of the feedback. In future experiments, espe-500

cially some involving multiple NF sessions, we plan to use a more thorough questionnaire501

incorporating behavioral and personality aspects.502

Figure 10: Individual means (online EEG ERD and fMRI PSC, z-scored) of all partici-
pants during NF runs. Individuals from the UNI DIM group are shown in red. Individuals
from the BI DIM group are shown in green. We can see how the groups evolved over the
NF runs.

Figure 11: Individual means (posthoc EEG ERD and fMRI PSC, z-scored) of all partici-
pants during NF runs. Individuals from the UNI DIM group are shown in red. Individuals
from the BI DIM group are shown in green. We can see how the groups evolved over the
NF runs.

Activation maps BOLD activation maps show that during NF both groups signifi-503

cantly activated regions from the motor imagery network including premotor areas and504

posterior parietal areas (figures 5 and 4), as well as regions that have been shown to505

be consistently active during NF (Emmert, Kopel, Sulzer, et al., 2016) (mid-cingulate506

(ACC), supra-marginal (temporo-parietal), dlPFC, premotor,). Subcortical and cerebel-507

lar regions activations could not be identified as they were out of the field of view. The508

BI DIM group showed more activations (p<0.001, uncorrected) than the UNI DIM group509

in the right superior parietal lobule (BA 7). The SPL plays an essential role in many510

cognitive, perceptive, and motor-related processes (Culham and Kanwisher, 2001; Wang511

et al., 2015). In particular it has been reported to be activated both during motor ex-512

ecution (ME) and MI (Confalonieri et al., 2012; Fleming, Stinear, and Byblow, 2010;513

Hétu et al., 2013; Lotze and Halsband, 2006; Raffin et al., 2012; Sharma and Baron,514

2013; Solodkin et al., 2004) though greater activation has been observed during MI than515

ME (Gerardin et al., 2000; Hanakawa et al., 2002). More specifically, the SPL is known516

to play a role in guiding motor activity in relation to spatial information (Buneo and517
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Andersen, 2006; Culham and Kanwisher, 2001; Wang et al., 2015) and to be crucial in518

the generation of mental motor representations (Sirigu et al., 1996). Several studies have519

demonstrated that impairments to the parietal cortex reduced MI ability (Danckert et520

al., 2002; McInnes, Friesen, and Boe, 2016; Sirigu et al., 1996). A meta-analysis recently521

conducted to determine which neurologic disorders/lesions impair or restrict MI ability522

showed that patients with parietal lobe damage were most impaired (McInnes, Friesen,523

and Boe, 2016). In MI, the SPL is thought to play a role in facilitating the planning524

and coordination of imagined movements and/or in indirectly inhibiting M1 through its525

connection with the SMA (Kasess et al., 2008; McInnes, Friesen, and Boe, 2016; Solodkin526

et al., 2004). Activations in the SPL have been shown to be more active during visual527

imagery than during kinaesthetic imagery (Guillot et al., 2009). However we found no528

significant activation in the occipital regions as would be expected during visual imagery.529

Therefore it is unlikely that the SPL activation would indicate that participants in the530

BI DIM performed a motor imagery that would have been more visual than kinesthetic.531

The superior parietal cortex has also been demonstrated to be active during generalized532

neurofeedback when feedback is presented visually (Emmert, Kopel, Sulzer, et al., 2016;533

Ninaus et al., 2013; Sitaram et al., 2016). However the fact that the SPL was more534

significantly active in the BI DIM group than in the UNI DIM group suggest that it is535

more than a generalized NF effect. This activation could result from both the overlap536

of the motor imagery task and the self-regulation process (Sitaram et al., 2016), both of537

which could be more intense under the bi-dimensional condition.538

Though not shown at the group comparison level, the overlay of UNI DIM activations539

and BI DIM activations (see Figure 5) shows that activations in the premotor areas were540

more widespread and bilateral in the UNI DIM group while they were more localized and541

lateralized to the left hemisphere in the BI DIM group. Also, the BI DIM group showed542

significant deactivations in the right primary motor cortex while the UNI DIM group did543

not. Overall, our results suggest that the bi-dimensional feedback triggered more specific544

activations than the uni-dimensional feedback.545

Defining bimodal NF targets An integrated feedback allows to reward specific546

EEG/fMRI pair values and gives flexibility on the definition of the bimodal NF tar-547

get, depending on the assumed spatio-temporal complementarity of the EEG and fMRI548

features. In this study, we designed the integrated strategies so that subjects would549

have to regulate both EEG and fMRI at the same time in order to reach the NF target.550

This assumes that such a state is possible. Indeed, neuro-vascular studies show that the551

electrophysiological and hemodynamic activity are correlated (Formaggio et al., 2010;552

Gonçalves et al., 2006; Murta et al., 2015; Ritter, Moosmann, and Villringer, 2009; Zaidi553

et al., 2015). For example, a study by (Zaidi et al., 2015) found significant correlations554

between hemodynamic peak-times of [HbO] and [HbR] signals with the underlying neural555

activity as measured with intra-cortical electrophysiology in primates, but not for their556

peak-amplitude. However depending on the type of tasks, the features, and the subjects,557

this might not necessarily be the case as illustrated in the study by De Vos et al. (De558

Vos et al., 2013) who reported no correlation between EEG and fMRI of a face processing559

task. Though it is hard to predict the degree of complementarity and redundancy of the560

EEG and fMRI features, it might be beneficial to take into consideration the degree of561

correlation of both features during the calibration phase.562

Instead of defining the target on the ”intersection” of the EEG and fMRI features, one563

could think of using a more laxist target defined by their ”union”, that is the target would564
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be reached when the EEG target or the fMRI target is reached. Such a target would be565

easier to reach, therefore potentially less specific, but it might be advantageous in order566

to limit the user frustration when used at the beginning of a protocol for example. Also567

the ”union” strategy could be used in case the EEG and fMRI features would be hardly568

redundant. This could happen if the mental process being regulated was more complex569

and involved for example a cognitive regulation and an emotional regulation aspect each570

of which would be associated to one of the feature. Moreover in the ”union” strategy, one571

could imagine displaying a secondary reward when the pair of EEG and fMRI features572

would reach the intersection without ”penalizing” the subject when he/she does not573

control for both.574

Artifacts The strong artifacts affecting the EEG in the MR environment and the dif-575

ficulty to correct them in real-time constitute the main current limitation of EEG-fMRI-576

NF. Artifact removal for simultaneous EEG/fMRI traditionnally consists of correcting577

the gradient and the BCG artifact with the AAS technique. However, this technique578

is likely to result in residual artifacts. In their pionneering work, Zotev et al. reported579

that residual MR and CB artifacts contributed up to 50% to the EEG feature after basic580

real-time signal processing (Zotev et al., 2014). Other sources of artifacts such as the581

helium pump (Nierhaus et al., 2013), the MR ventilation and motion (Fellner et al., 2016;582

Jansen et al., 2012) can also seriously affect the EEG data. As the helium pump artifact583

lies in the gamma range, in our particular case it should not affect our features of interest584

(alpha/beta). But altogether, these other sources of artifacts can limit the quality of the585

online EEG-nf signal and therefore also the potential of the EEG-fMRI-NF approach.586

However, the posthoc CSP patterns of the majority of the participants corresponded to587

motor imagery patterns which confirms that participants executed the task well and that588

the data was well pre-processed.589

Alternative to AAS such as optimal basis sets (Niazy et al., 2005), independent com-590

ponent analysis (Mantini et al., 2007), reference-layer adaptive subtraction(Chowdhury591

et al., 2014) and carbon-wire loop (Abbott et al., 2014; Meer et al., 2016) have been592

proposed in order to better remove gradient and BCG artifacts or to remove the other593

types of artefacts. However only few methods are currently available for online use (Kr-594

ishnaswamy et al., 2016; Mayeli et al., 2016; Meer et al., 2016; Steyrl et al., 2017; Wu595

et al., 2016). In future experiments, using such methods could allow to improve for the596

EEG-NF signal quality. Interestingly, a recent approach called automated EEG-assisted597

retrospective motion correction (aE-REMCOR) (Wong et al., 2016)) uses the EEG data598

in order to estimate head motion and improve fMRI motion correction.599

5 Conclusion600

Our study introduces new integrated feedback strategies for EEG-fMRI-NF and demon-601

strates that during a motor imagery task they enable to regulate EEG and fMRI simul-602

taneously, even when EEG and fMRI are integrated in a 1D feedback. Our results also603

suggest that the 1D feedback is easier to control on a single session while the 2D feedback604

encourages subjects to explore their strategies to find one that allows to control EEG and605

fMRI by recruiting more specific brain patterns. Altogether, our study paves the way to606

novel integrated EEG-fMRI-NF strategies for the development of flexible and effective607

NF paradigms that could prove useful for clinical applications.608
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